
UNIT I

1.1. Exploratory Data Analysis Fundamentals ... 1.1

1.2. Understanding data science ... 1.1

1.3. The significance of EDA ... 1.2

1.4. Making Sense of Data ... 1.3

1.5. Comparing EDA with Classical and Bayesian Analysis 1.5

1.6. Software tools available for EDA .. 1.6

1.7. Visual Aids for EDA ... 1.12

1.8. Data Transformation.. 1.22

1.9. Merging Database ... 1.31

1.10. Reshaping and pivoting .. 1.36

1.11. Transformation Techniques ... 1.38

1.12. Grouping Datasets .. 1.55

1.13. Data Aggregation .. 1.58

1.14. Pivot Tables ... 1.65

1.15. Cross-Tabulations... 1.67

Two Marks Question and Answers - (Part-A) .. 1.72

Part-B & C .. 1.77

 C.2 Data Exploration and Visualization

 UNIT II

2.1. Importing Matplotlib ... 2.1

2.2. Simple Line Plots .. 2.3

2.3. Simple Scatter Plots .. 2.7

2.4. Visualizing errors ... 2.10

2.5. Density and Contour Plots .. 2.12

2.6. Plotting Histogram in Python using Matplotlib 2.15

2.7. How to manually add a legend with a color box on a Matplotlib figure?

 ... 2.20

2.8. Creating legend with color box ... 2.21

2.9. Subplots ... 2.23

2.10. Text and Annotation... 2.29

2.11. Customization ... 2.38

2.12. Three-dimensional Plotting using Matplotlib 2.42

2.13. Geographic Data with Basemap .. 2.45

2.14. Visualization with seaborn .. 2.55

Two Marks Question and Answers (Part-A) ... 2.66

Part- B & C ... 2.71

 UNIT III

3.1. Introduction to Single Variable ... 3.1

Contents C.3

3.1.1. Distributions and Variables .. 3.1

3.2. Numerical Summaries of Level and Spread .. 3.4

3.3. Scaling and Standardizing ... 3.11

3.4. Inequality... 3.23

3.5. Smoothing .. 3.30

Two Marks Question and Answers (Part- A) .. 3.34

Part - B & C .. 3.37

 UNIT IV

4.1. Relationships between two Variables ... 4.1

4.2. Percentage Tables ... 4.1

4.3. Analysing Contingency Tables .. 4.9

4.4. Handling Several Batches .. 4.17

4.5. Scatterplots and Resistant Lines ... 4.21

4.6. Transformations ... 4.25

Two Marks Question and Answers (Part-A) .. 4.29

Part- B & C ... 4.33

 UNIT V

5.1. Introducing a Third Variable .. 5.1

5.1.1. Causal Explanations ... 5.1

 C.4 Data Exploration and Visualization

5.2. Three-Variable Contingency tables and beyond causal path models

 for three variables .. 5.7

5.3. Longitudinal Data ... 5.9

5.4. Fundamentals of TSA... 5.11

5.5. Characteristics of Time Series Data ... 5.11

5.6. Data Cleaning.. 5.12

5.7. Time-based Indexing .. 5.14

5.8. Data Visualization .. 5.23

5.9. Grouping ... 5.28

5.10. Resampling .. 5.28

Two Marks Question and Answers (Part-A) ... 5.34

Part-B & C .. 5.36

Model Question Papers .. MQ.1 - MQ.

UNIT I

EXPLORATORY DATA ANALYSIS

SYLLABUS

EDA fundamentals - Understanding data science - Significance of

EDA - Making sense of data - Comparing EDA with classical and

Bayesian analysis - Software tools for EDA - Visual Aids for EDA -

Data transformation techniques - Merging database, reshaping and

pivoting, Transformation techniques - Grouping Datasets - Data

aggregation - Pivot tables and cross-tabulations.

 EDA Fundamentals

 Understanding Data Science

 Significance of EDA

 Making Sense of Data

 Comparing EDA with Classical and Bayesian Analysis

 Software Tools for EDA

 Visual Aids for EDA

 Data Transformation Techniques

 Merging Database, Reshaping and Pivoting

 Transformation Techniques

 Grouping Datasets

 Data Aggregation

 Pivot Tables and Cross -Tabulations

UNIT I

EXPLORATORY DATA ANALYSIS

EDA is a process of examining the available dataset to discover patterns, spot

anomalies, test hypotheses, and check assumptions using statistical measures. In this

chapter, we are going to discuss the steps involved in performing top-notch

exploratory data analysis and get our hands dirty using some open source databases.

As mentioned here and in several studies, the primary aim of EDA is to examine

what data can tell us before actually going through formal modeling or hypothesis

formulation.

The main takeaway here is the stages of EDA. Let's understand in brief what these

stages are:

Data requirements: There can be various sources of data for an organization. It

is important to comprehend what type of data is required for the organization to be

collected, curated, and stored.

Data collection: Data collected from several sources must be stored in the correct

format and transferred to the right information technology personnel within a

company. As mentioned previously, data can be collected from several objects on

several events using different types of sensors and storage tools.

Data processing: Preprocessing involves the process of pre-curating the dataset

before actual analysis. Common tasks involve correctly exporting the dataset, placing

them under the right tables, structuring them, and exporting them in the correct

format.

Data cleaning: Preprocessed data must be correctly transformed for an

incompleteness check, duplicates check, error check, and missing value check. These

 1.2 Data Exploration and Visualization

tasks are performed in the data cleaning stage, which involves matching the correct

record, finding inaccuracies in the dataset, understanding the overall data quality,

removing duplicate items, and filling in the missing values.

Modeling and algorithm: From a data science perspective, generalized models

or mathematical formulas can represent or exhibit relationships among different

variables, such as correlation or causation. These models or equations involve one or

more variables that depend on other variables to cause an event.

Data Product: Any computer software that uses data as inputs, produces outputs,

and provides feedback based on the output to control the environment is referred to

as a data product. A data product is generally based on a model developed during

data analysis, for example, a recommendation model that inputs user purchase

history and recommends a related item that the user is highly likely to buy.

Communication: This stage deals with disseminating the results to end

stakeholders to use the result for business intelligence. One of the most notable steps

in this stage is data visualization. Visualization deals with information relay

techniques such as tables, charts, summary diagrams, and bar charts to show the

analyzed result.

Exploratory data analysis is key, and usually the first exercise in data mining. It

allows us to visualize data to understand it as well as to create hypotheses for further

analysis. The exploratory analysis centers around creating a synopsis of data or

insights for the next steps in a data mining project.

Steps in EDA

Problem definition: The problem definition works as the driving force for a data

analysis plan execution. The main tasks involved in problem definition are defining

the main objective of the analysis, defining the main deliverables, outlining the main

roles and responsibilities, obtaining the current status of the data, defining the

timetable, and performing cost/benefit analysis.

Exploratory Data Analysis 1.3

Data preparation: This step involves methods for preparing the dataset before

actual analysis. In this step, we define the sources of data, define data schemas and

tables, understand the main characteristics of the data, clean the dataset, delete non-

relevant datasets, transform the data, and divide the data into required chunks for

analysis.

Data analysis: This is one of the most crucial steps that deals with descriptive

statistics and analysis of the data. The main tasks involve summarizing the data,

finding the hidden correlation and relationships among the data, developing

predictive models, evaluating the models, and calculating the accuracies. Some of the

techniques used for data summarization are summary tables, graphs, descriptive

statistics, inferential statistics, correlation statistics, searching and grouping.

Development and representation of the results: This step involves presenting

the dataset to the target audience in the form of graphs, summary tables, maps, and

diagrams. This is also an essential step as the result analyzed from the dataset should

be interpretable by the business stakeholders, which is one of the major goals of

EDA.

A dataset contains many observations about a particular object. For instance, a

dataset about patients in a hospital can contain many observations. A patient can be

described by a patient identifier (ID), name, address, weight, date of birth, address,

email, and gender. Each of these features that describes a patient is a variable. Each

observation can have a specific value for each of these variables.

Numerical Data

This data has a sense of measurement involved in it; for example, a person's age,

height, weight, blood pressure, heart rate, temperature, number of teeth, number of

bones, and the number of family members. This data is often referred to as

quantitative data in statistics. The numerical dataset can be either discrete or

continuous types.

 1.4 Data Exploration and Visualization

Discrete Data

This is data that is countable and its values can be listed out. For example, if we

flip a coin, the number of heads in 200 coin flips can take values from 0 to 200

(finite) cases. A variable that represents a discrete dataset is referred to as a discrete

variable. The discrete variable takes a fixed number of distinct values. For example,

the Country variable can have values such as Nepal, India, Norway, and Japan. It is

fixed. The Rank variable of a student in a classroom can take values from 1, 2, 3, 4,

5, and so on.

Continuous Data

A variable that can have an infinite number of numerical values within a specific

range is classified as continuous data. A variable describing continuous data is a

continuous variable.

Categorical Data

This type of data represents the characteristics of an object; for example, gender,

marital status, type of address, or categories of the movies. This data is often referred

to as qualitative datasets in statistics.

A variable describing categorical data is referred to as a categorical variable.

These types of variables can have one of a limited number of values. There are

different types of categorical variables:

A binary categorical variable can take exactly two values and is also referred to as

a dichotomous variable. For example, when you create an experiment, the result is

either success or failure. Hence, results can be understood as a binary categorical

variable.

Polytomous variables are categorical variables that can take more than two

possible values. For example, marital status can have several values, such as annulled,

divorced, interlocutory, legally separated, married, polygamous, never married,

domestic partners, unmarried, widowed, domestic partner, and unknown. Since

marital status can take more than two possible values, it is a polytomous variable.

Exploratory Data Analysis 1.5

There are several approaches to data analysis.

Classical data analysis: For the classical data analysis approach, the problem

definition and data collection step are followed by model development, which is

followed by analysis and result communication. Exploratory data analysis

approach: For the EDA approach, it follows the same approach as classical data

analysis except the model imposition and the data analysis steps are swapped. The

main focus is on the data, its structure, outliers, models, and visualizations.

Bayesian data analysis approach: The Bayesian approach incorporates prior

probability distribution knowledge into the analysis steps as shown in the following

diagram. Well, simply put, prior probability distribution of any quantity expresses

the belief about that particular quantity before considering some evidence.

Fig. 1.1.

 1.6 Data Exploration and Visualization

There are several software tools that are available to facilitate EDA.

NumPy

For importing numpy, we will use the following code:

import numpy as np

For NumPy arrays and file operations, we will use the following code:

Save a numpy array into file x = np.arange(0.0,50.0,1.0)

np.savetxt('data.out', x, delimiter=',')

Loading numpy array from text

z = np.loadtxt('data.out', unpack=True) print(z)

Loading numpy array using genfromtxt method my_array2 =

np.genfromtxt('data.out',

skip_header=1, filling_values=-999) print(my_array2)

For inspecting NumPy arrays, we will use the following code:

Print the number of `my2DArray`'s dimensions print(my2DArray.ndim)

Print the number of `my2DArray`'s elements print(my2DArray.size)

Print information about `my2DArray`'s memory layout print(my2DArray.flags)

Print the length of one array element in bytes print(my2DArray.itemsize)

Print the total consumed bytes by `my2DArray`'s elements

print(my2DArray.nbytes)

Pandas

1. Use the following to set default parameters:

import numpy as np import pandas as pd

print("Pandas Version:", pd. version)

pd.set_option('display.max_columns', 500)

Exploratory Data Analysis 1.7

pd.set_option('display.max_rows', 500)

2. In pandas, we can create data structures in two ways: series and

dataframes. The following code snippet shows how we can create a

dataframe from a series:

series = pd.Series([2, 3, 7, 11, 13, 17, 19, 23]) print(series)

Creating dataframe from Series series_df = pd.DataFrame({

'A': range(1, 5),

'B': pd.Timestamp('20190526'),

'C': pd.Series(5, index=list(range(4)), dtype='float64'), 'D': np.array([3] * 4,

dtype='int64'),

'E': pd.Categorical(["Depression", "Social Anxiety", "Bipolar Disorder", "Eating

Disorder"]),

'F': 'Mental health', 'G': 'is challenging'

})

print(series_df)

3. Now, let's load a dataset from an external source into a pandas

DataFrame. After that, let's see the first 10 entries:

columns = ['age', 'workclass', 'fnlwgt', 'education', 'education_num',

'marital_status', 'occupation', 'relationship', 'ethnicity',

'gender','capital_gain','capital_loss','hours_per_week','country_of_origin','inco me']

df=pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-

databases/adult/adult.data',names=columns)

df.head(10)

If you run the preceding cell, you should get an output similar to the followi n g

screenshot:

http://archive.ics.uci.edu/ml/machine-learning-
http://archive.ics.uci.edu/ml/machine-learning-

 1.8 Data Exploration and Visualization

age

work

class
fnlwgt education

education-

num

marital-

status
Occupation relationship Ethinicity Gender Capital_gain Capital_loss Hours_per_week

0 39 State-

gov

77516 Bachelors 13 Never-

married

Adm-

clerical

Not-in-

family

White Male 2174 0 40

1 50 Self-

emp-

not-inc

83311 Bachelors 13 Married-

civ-

spouse

Exec-

managerial

Husband White Male 0 0 13

2 38 Private 215646 HS-grad 9 Divorced Handlers-

cleaners

Not-in-

family

White Male 0 0 40

3 53 Private 234721 11th 7 Married-

civ-

spouse

Handlers-

cleaners

Husband Black Male 0 0 40

4 28 Private 338409 Bachelors 13 Married-

civ-

spouse

Prof-

speciality

Wife Black Female 0 0 40

5 37 Private 284582 Masters 14 Married-

civ-

spouse

Exec-

managerial

Wife White Female 0 0 40

6 49 Private 160187 9th 5 Married-

spouse-

absent

Other-

service

Not-in

family

Black Female 0 0 16

7 52 Self-

emp-

not-inc

209642 HS-grad 9 Married-

civ-

spouse

Exec-

managerial

Husband White Male 0 0 45

8 31 Private 45781 Masters 14 Never-

married

Prof-

speciality

Not-in

family

White Female 14084 0 50

9 42 Private 159449 Bachelors 13 Married-

civ-

spouse

Exec-

managerial

Husband White Male 5178 0 40

Exploratory Data Analysis 1.9

4. The following code displays the rows, columns, data types, and memory

used by the dataframe:

df.info()

The output of the preceding code snippet should be similar to the following:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 32561 entries, 0 to 32560 Data columns (total 15 columns):age

32561 non-null int64 workclass 32561 non-null object fnlwgt 32561 non-null

int64 education 32561 non-null object

education_num 32561 non-null int64 marital_status 32561 non-null object

occupation 32561 non-null object relationship 32561 non-null object ethnicity

32561 non-null object gender 32561 non-null object capital_gain 32561 non-null

int64 capital_loss 32561 non-null int64 hours_per_week 32561 non-null int64

country_of_origin 32561 non-null object income 32561 non-null object

dtypes: int64(6), object(9) memory usage: 3.7 + MB

5. Let's now see how we can select rows and columns in any dataframe:

Selects a row df.iloc[10]

Selects 10 rows df.iloc[0:10]

Selects a range of rows df.iloc[10:15]

Selects the last 2 rows df.iloc[-2:]

Selects every other row in columns 3-5 df.iloc[::2, 3:5].head()

6. Let's combine NumPy and pandas to create a dataframe as follows:

import pandas as pd import numpy as np

np.random.seed(24)

dFrame = pd.DataFrame({'F': np.linspace(1, 10, 10)})

dFrame = pd.concat([df, pd.DataFrame(np.random.randn(10, 5),

columns=list('EDCBA'))],

axis=1) dFrame.iloc[0, 2] = np.nan dFrame

7. Let's style this table using a custom rule. If the values are greater than

zero, we change the color to black (the default color); if the value is less

 1.10 Data Exploration and Visualization

than zero, we change the color to red; and finally, everything else would

be colored green. Let's define a Python function to accomplish that:

Define a function that should color the values that are less than 0 def

colorNegativeValueToRed(value):

if value < 0: color = 'red'

elif value > 0: color = 'black'

else:

color = 'green'

return 'color: %s' % color

8. Now, let's pass this function to the dataframe. We can do this by using

the style method provided by pandas inside the dataframe:

s = df.style.applymap(colorNegativeValueToRed, subset=['A','B','C','D','E']) s

It should display a colored dataframe as shown in the following screenshot:

 F E D C B A

0

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

1.32921

–1.43871

0.678805

0.850229

–1.33694

1.2076

–0.385684

–2.08935

1.2641

0.118098

nan

0.564417

1.88927

1.45342

0.562861

– 0.00204021

0.519818

– 0.12982

0.290035

– 0.0218533

–0.31628

0.295722

0.961538

1.05774

1.39285

1.6278

1.68658

0.631523

–1.97029

0.0468407

–0.99081

–1.6264

0.104011

0.165562

– 0.063328

0.354493

–1.32596

–0.586538

0.803906

–1.62875

–1.07082

0.219565

–0.481165

0.515018

0.121668

1.03753

1.42898

0.29072

1.03055

–0.392361

It should be noted that the apply map and apply methods are computationally

expensive as they apply to each value inside the dataframe. Hence, it will take some

time to execute. Have patience and await execution.

Exploratory Data Analysis 1.11

9. Now, let's go one step deeper. We want to scan each column and

highlight the maximum value and the minimum value in that column:

def highlightMax(s): isMax = s == s.max()

return ['background-color: orange' if v else '' for v in isMax]

def highlightMin(s): isMin = s == s.min()

return ['background-color: green' if v else '' for v in isMin]

We apply these two functions to the dataframe as follows:

df.style.apply(highlightMax).apply(highlightMin).highlight_null(null_color='red)

The output should be similar to the following screenshot:

 F E D C B A

0

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

1.32921

–1.43871

0.678805

0.850229

–1.33694

1.2076

–0.385684

–2.08935

1.2641

0.118098

nan

0.564417

1.88927

1.45342

0.562861

– 0.00204021

0.519818

– 0.12982

0.290035

– 0.0218533

–0.31628

0.295722

0.961538

1.05774

1.39285

1.6278

1.68658

0.631523

–1.97029

0.0468407

–0.99081

–1.6264

0.104011

0.165562

– 0.063328

0.354493

–1.32596

–0.586538

0.803906

–1.62875

–1.07082

0.219565

–0.481165

0.515018

0.121668

1.03753

1.42898

0.29072

1.03055

–0.392361

SciPy

SciPy is a scientific library for Python and is open source. We are going to use this

library in the upcoming chapters. This library depends on the NumPy library, which

provides an efficient n-dimensional array manipulation function. If you want to get

started early, check for scipy.stats from the SciPy library.

 1.12 Data Exploration and Visualization

Matplotlib

Matplotlib provides a huge library of customizable plots, along with a

comprehensive set of backends. It can be utilized to create professional reporting

applications, interactive analytical applications, complex dashboard applications,

web/GUI applications, and embedded views.

As data scientists, two important goals in our work would be to extract knowledge

from the data and to present the data to stakeholders. Presenting results to

stakeholders is very complex in the sense that our audience may not have enough

technical know-how to understand programming jargon and other technicalities.

Hence, visual aids are very useful tools.

Line Chart

We have created a function using the faker Python library to generate the dataset.

It is the simplest possible dataset you can imagine, with just two columns. The first

column is Date and the second column is Price,

My generate Data function is defined here:

import datetime import math

import pandas as pd import random

import radar

from faker import Faker fake = Faker()

def generateData(n): listdata = []

start = datetime.datetime(2019, 8, 1)

end = datetime.datetime(2019, 8, 30) delta = end - start

for _ in range(n):

date = radar.random_datetime(start='2019-08-1', stop='2019-08- 30').strftime("%Y-

%m-%d")

Exploratory Data Analysis 1.13

price = round(random.uniform(900, 1000), 4) listdata.append([date, price])

df = pd.DataFrame(listdata, columns = ['Date', 'Price']) df['Date'] =

pd.to_datetime(df['Date'], format='%Y-%m-%d') df = df.groupby(by='Date').mean()

return df

Having defined the method to generate data, let's get the data into a pandas dataframe

and check the first 10 entries:

df = generateData(50) df.head(10)

The output of the preceding code is shown in the following screenshot:

Date Price

2019-08-01

2019-08-02

2019-08-04

2019-08-05

2019-08-06

2019-08-07

2019-08-08

2019-08-10

2019-08-13

2019-08-14

999.598900

957.870150

978.674200

963.380375

978.092900

987.847700

952.669900

973.929400

971.485600

977.036200

Steps involved

Let's look at the process of creating the line chart:

1. Load and prepare the dataset.

2. Import the matplotlib library. It can be done with this command:

import matplotlib.pyplot as plt

3. Plot the graph:

 1.14 Data Exploration and Visualization

plt.plot(df)

4. Display it on the screen:

plt.show()

Here is the code if we put it all together:

import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (14, 10) plt.plot(df)

And the plotted graph looks something like this:

Fig. 1.2.

Bar Charts

This is one of the most common types of visualization that almost everyone must

have encountered. Bars can be drawn horizontally or vertically to represent

categorical variables.

Bar charts are frequently used to distinguish objects between distinct collections

in order to track variations over time. In most cases, bar charts are very convenient

when the changes are large. In order to learn about bar charts, let's assume a

Exploratory Data Analysis 1.15

pharmacy in Norway keeps track of the amount of Zoloft sold every month. Zoloft

is a medicine prescribed to patients suffering from depression. We can use the

calendar

1. Let's import the required libraries:

import numpy as np import calendar

import matplotlib.pyplot as plt

2. Set up the data. Remember, the range stopping parameter is exclusive,

meaning if you generate range from (1, 13), the last item, 13, is not

included:

months = list(range(1, 13))

sold_quantity = [round(random.uniform(100, 200)) for x in range(1, 13)]

3. Specify the layout of the figure and allocate space:

figure, axis = plt.subplots()

4. In the x axis, we would like to display the names of the months:

plt.xticks(months, calendar.month_name[1:13], rotation=20)

5. Plot the graph:

plot = axis.bar(months, sold_quantity)

6. This step is optional depending upon whether you are interested in

displaying the data value on the head of the bar. It visually gives more

meaning to show an actual number of sold items on the bar itself:

for rectangle in plot:

height = rectangle.get_height()

axis.text(rectangle.get_x() + rectangle.get_width() /2., 1.002 * height, '%d' %

int(height), ha='center', va = 'bottom')

7. Display the graph on the screen:

plt.show()

 1.16 Data Exploration and Visualization

The bar chart is as follows:

Fig. 1.3.

Scatter Plot

Scatter plots are also called scatter graphs, scatter charts, scattergrams, and scatter

diagrams. They use a Cartesian coordinates system to display values of typically

two variables for a set of data.

When should we use a scatter plot? Scatter plots can be constructed in the

following two situations:

When one continuous variable is dependent on another variable, which is under

the control of the observer

When both continuous variables are independent

Exploratory Data Analysis 1.17

There are two important concepts - independent variable and dependent

variable. In statistical modeling or mathematical modeling, the values of dependent

variables rely on the values of independent variables. The dependent variable is the

outcome variable being studied. The independent variables are also referred to as

regressors.

Here, we are using seaborn to load the dataset:

1. Import seaborn and set some default parameters of matplotlib: import

seaborn as sns

import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (8, 6)

plt.rcParams['figure.dpi'] = 150

2. Use style from seaborn. Try to comment on the next line and see the

difference in the graph:

sns.set()

3. Load the Iris dataset:

df = sns.load_dataset('iris')

df['species'] = df['species'].map({'setosa': 0, "versicolor": 1,

"virginica": 2})

4. Create a regular scatter plot:

plt.scatter(x=df["sepal_length"], y=df["sepal_width"], c = df.species)

5. Create the labels for the axes:

plt.xlabel('Septal Length') plt.ylabel('Petal length')

6. Display the plot on the screen:

plt.show()

The scatter plot generated by the preceding code is as follows:

 1.18 Data Exploration and Visualization

Fig. 1.4.

Pie Chart

This is one of the more interesting types of data visualization graphs.

There are two ways in which you can load the data: first, directly from the GitHub

URL; or you can download the dataset from the GitHub and reference it from your

local machine by providing the correct path. In either case, you can use the read_csv

method from the pandas library. Check out the following snippet:

Create URL to JSON file (alternatively this can be a filepath)

url='https://raw.githubusercontent.com/hmcuesta/PDA_Book/master/Chapter3/poke

monByType

.csv'

Load the first sheet of the JSON file into a data frame pokemon = pd.read_csv(url,

index_col='type')pokemon

The preceding code snippet should display the dataframe as follows:

Exploratory Data Analysis 1.19

Type Amount

Bug

Dark

Dragon

Electric

Fighting

Fire

Ghost

Grass

Ground

Ice

Normal

Poison

Psychic

Rock

Steel

Water

45

16

12

7

3

14

10

31

17

11

29

11

9

24

13

45

Next, we attempt to plot the pie chart:

import matplotlib.pyplot as plt

plt.pie(pokemon['amount'],labels=pokemon.index,shadow=False,startangle=90,autop

ct='%1.1f%%',)

plt.axis('equal') plt.show()

We should get the following pie chart from the preceding code:

 1.20 Data Exploration and Visualization

Fig. 1.5.

Histogram

Histogram plots are used to depict the distribution of any continuous variable.

These types of plots are very popular in statistical analysis.

Consider the following use cases. A survey created in vocational training sessions

of developers had 100 participants. They had several years of Python programming

experience ranging from 0 to 20.

Let's import the required libraries and create the dataset:

import numpy as np

import matplotlib.pyplot as plt

#Create data set

yearsOfExperience = np.array([10, 16, 14, 5, 10, 11, 16, 14, 3, 14, 13, 19, 2, 5,

7, 3, 20,11, 11, 14, 2, 20, 15, 11, 1, 15, 15, 15, 2, 9, 18, 1, 17, 18,

13, 9, 20, 13, 17, 13, 15, 17, 10, 2, 11, 8, 5, 19, 2, 4, 9,

17, 16, 13, 18, 5, 7, 18, 15, 20, 2, 7, 0, 4, 14, 1, 14, 18,

8, 11, 12, 2, 9, 7, 11, 2, 6, 15, 2, 14, 13, 4, 6, 15, 3,

6, 10, 2, 11, 0, 18, 0, 13, 16, 18, 5, 14, 7, 14, 18])

Exploratory Data Analysis 1.21

yearsOfExperience

In order to plot the histogram chart, execute the following steps:

1. Plot the distribution of group experience:

nbins = 20n, bins, patches = plt.hist(yearsOfExperience, bins=nbins)

2. Add labels to the axes and a title:

plt.xlabel("Years of experience with Python Programming") plt.ylabel("Frequency")

plt.title("Distribution of Python programming experience in the vocational training

session")

3. Draw a green vertical line in the graph at the average experience:

plt.axvline(x=yearsOfExperience.mean(), linewidth=3, color = 'g')

4. Display the plot:

plt.show()

The preceding code generates the following histogram:

Distribution of Python Programming Experience in the Vocational Training Session

Fig. 1.6.

 1.22 Data Exploration and Visualization

EDA with Personal Email

The exploration of useful insights from a dataset requires a great deal of thought

and a high level of experience and practice.

Loading the Dataset

1. Let's load the required libraries:

import numpy as np import pandas as pd

import matplotlib.pyplot as plt

2. When you have loaded the libraries, load the dataset:

import mailbox

mboxfile = "PATH TO DOWNLOADED MBOX FIL"

mbox = mailbox.mbox(mboxfile) mbox

Note that it is essential that you replace the mbox file path with your own path.

The output of the preceding code is as follows:

<mailbox.mbox at 0x7f124763f5c0>

3. Next, let's see the list of available keys:

for key in mbox[0].keys(): print(key)

Although there are a lot of objects returned by the extracted data, we do not need

all the items. We will only extract the required fields. Data cleansing is one of the

essential steps in the data analysis phase. For our analysis, all we need is data for the

following: subject, from, date, to, label, and thread.

Data Ccleansing

Let's create a CSV file with only the required fields. Let's start with the following

steps:

1. Import the csv package:

import csv

2. Create a CSV file with only the required attributes:

with open('mailbox.csv', 'w') as outputfile:

Exploratory Data Analysis 1.23

writer = csv.writer(outputfile) writer. write row (['subject', 'from', 'date', 'to', 'label',

'thread'])

for message in mbox: writer.writerow([

message['subject'], message['from'],

message['date'],

message['to'],

message['X-Gmail-Labels'], message['X-GM-THRID']

]

Loading the CSV File

We will load the CSV file. Refer to the following code block:

dfs = pd.read_csv('mailbox.csv', names=['subject', 'from', 'date', 'to', 'label', 'thread'])

The preceding code will generate a pandas dataframe with only the required fields

stored in the CSV file.

Converting the Date

Next, we will convert the date.

Check the datatypes of each column as shown here:

dfs.dtypes

The output of the preceding code is as follows:

subject object from object date object

to object label object

thread float64 dtype: object

Note that a date field is an object. So, we need to convert it into a DateTime

argument. In the next step, we are going to convert the date field into an actual

DateTime argument. We can do this by using the pandas to_datetime() method. See

the following code:

dfs['date'] = dfs['date'].apply(lambda x: pd.to_datetime(x, errors='coerce', utc=True))

Removing NaN Values

Next, we are going to remove NaN values from the field. We can do this as

follows:

dfs = dfs[dfs['date'].notna()]

 1.24 Data Exploration and Visualization

Next, it is good to save the preprocessed file into a separate CSV file in case we

need it again. We can save the dataframe into a separate CSV file as follows:

dfs.to_csv('gmail.csv')

Data Refactoring

We noticed that the from field contains more information than we need. We just

need to extract an email address from that field. Let's do some refactoring:

1. First of all, import the regular expression package:

import re

2. Next, let's create a function that takes an entire string from any column and

extracts an email address:

def extract_email_ID(string):

email = re.findall(r'<(.+?)>', string) if not email:

email = list(filter(lambda y: '@' in y, string.split())) return email[0] if email else

np.nan

3. Next, let's apply the function to the from column:

dfs['from'] = dfs['from'].apply(lambda x: extract_email_ID(x))

We used the lambda function to apply the function to each and every

value in the column.

1. Next, we are going to refactor the label field. The logic is simple. If an

email is from your email address, then it is the sent email. Otherwise, it is

a received email, that is, an inbox email:

myemail = 'itsmeskm99@gmail.com'

dfs['label'] = dfs['from'].apply(lambda x: 'sent' if x==myemail else 'inbox')

Dropping Columns

Let's drop a column:

1. Note that the to column only contains your own email. So, we can drop

this irrelevant column:

dfs.drop(columns='to', inplace=True)

2. This drops the to column from the dataframe. Let's display the first 10

entries now:

dfs.head(10)

Exploratory Data Analysis 1.25

The output of the preceding code is as follows:

 Subject From Date label thread

 0 New Books: The Python Journey man + understandi james@sitepoint.com 2019-09-20

14.07.05 + 00:00

Inbox 1.645217e+18

 1 iphone 11 Pro og iphone 11 er her News_Europe@Inside

Apple.Apple.com

2019-09-20

10:33:27 + 00:00

Inbox 1.645190e+18

 2 =?utf-8?Q?Save=20on=20Burlap=20Bags=20Today=21 support@totebagfactory.com 2019-09-20

15:32:31 +00:00

Inbox 1.645210e+18

 3 Hi there, looking for the best Dashain deals? info@email.daraz.com.np 2019-09-17

06:19:10 +00:00

Inbox 1.644916e+18

 4 The file=?UTF-8?B?JOJyYW5kXOJvb2sgdGVzdC5wZGY noreply@box.com 2019-09-20

19:04:16 +00:00

Inbox 1.645222e+18

 5 We miss you on Google Maps noreply-local-

guides@google.com

2019-09-20

11:19:56 +00:00

Inbox 1.645193e+18

 6 =?utf-8?B?VGFrZSB5b3VyIHNraWxscyBObyBOaGUgbmV4 news@edx.org 2019-09-17

13:32:49 +00:00

Inbox 1.644930e+18

 7 Freelancing 101: How to market a small Business partners@email.shopify.com 2019-09-17

14:10:12 +00:00

Inbox 1.644932e+18

 8 Suresh KUMAR, your profile is getting hits linkedin@e.linkedin.com 2019-09-17

17:29:38 +00:00

Inbox 1.644956e+18

 9 =?UTF-8?Q?Forget_FOMO_=E2=80=93_you_can_go_bac info@flatironschool.com 2019-09-19

18:01:13 +00:00

Inbox 1.645128e+18

 1.26 Data Exploration and Visualization

Data Analysis

This is the most important part of EDA. This is the part where we gain insights

from the data that we have.

Let's answer the following questions one by one:

1. How many emails did I send during a given timeframe?

2. At what times of the day do I send and receive emails with Gmail?

3. What is the average number of emails per day?

4. What is the average number of emails per hour?

5. What am I mostly emailing about?

Number of emails

The answer to the first question, "How many emails did I send during a given

timeframe?", can be answered as shown here:

print(dfs.index.min().strftime('%a, %d %b %Y %I:%M %p')) print (dfs.index. max().

strftime('%a, %d %b %Y %I:%M %p'))

print(dfs['label'].value_counts())

The output of the preceding code is given here:

Tue, 24 May 2011 11:04 AM

Fri, 20 Sep 2019 03:04 PM

inbox 32952

sent 4602

Name: label, dtype: int64

Average emails per day and hour

Let's answer the rest of the questions, taking a look at the average number of

emails per day and per hour:

1. To do so, we will create two functions, one that counts the total number

of emails per day and one that plots the average number of emails per

hour:

Exploratory Data Analysis 1.27

def plot_number_perday_per_year(df, ax, label=None, dt=0.3, **plot_kwargs): year =

df[df['year'].notna()]['year'].values

T = year.max() - year.min() bins = int(T / dt)

weights = 1 / (np.ones_like(year) * dt * 365.25)

ax.hist(year, bins=bins, weights=weights, label=label, **plot_kwargs); ax.grid(ls=':',

color='k')

The preceding code creates a function that plots the average number of emails

per day.

def plot_number_perdhour_per_year(df, ax, label=None, dt=1, smooth=False,

weight_fun=None, **plot_kwargs):

tod = df[df['timeofday'].notna()]['timeofday'].values year = df [df ['year']. notna()]

['year'].values

Ty = year.max() - year.min() T = tod.max() - tod.min() bins = int(T / dt)

if weight_fun is None:

weights = 1 / (np.ones_like(tod) * Ty * 365.25 / dt) else:

weights = weight_fun(df) if smooth:

hst, xedges = np.histogram(tod, bins=bins, weights=weights); x = np.delete(xedges, -1)

+ 0.5*(xedges[1] - xedges[0])

hst = ndimage.gaussian_filter(hst, sigma=0.75) f = interp1d(x, hst, kind='cubic')

x = np.linspace(x.min(), x.max(), 10000) hst = f(x)

ax.plot(x, hst, label=label, **plot_kwargs) else:

ax.hist(tod, bins=bins, weights=weights, label=label,

**plot_kwargs);

ax.grid(ls=':', color='k')

orientation = plot_kwargs.get('orientation')

if orientation is None or orientation == 'vertical':

ax.set_xlim(0, 24) ax.xaxis.set_major_locator(MaxNLocator(8))

 1.28 Data Exploration and Visualization

ax.set_xticklabels([datetime.datetime.strptime(str(int(np.mod(ts, 24))),

"%H").strftime("%I %p")

for ts in ax.get_xticks()]); elif orientation == 'horizontal':

ax.set_ylim(0, 24) ax.yaxis.set_major_locator(MaxNLocator(8))

ax.set_yticklabels([datetime.datetime.strptime(str(int(np.mod(ts, 24))),

"%H").strftime("%I %p")

for ts in ax.get_yticks()]);

Fig. 1.7.

Exploratory Data Analysis 1.29

Number of emails per day

Let's find the busiest day of the week in terms of emails:

counts = dfs.dayofweek.value_counts(sort=False) counts.plot(kind='bar')

The output of the preceding code is as follows:

Fig. 1.8.

The preceding output shows that my busiest day is Thursday. I receive most of

my emails on Thursdays. Let's go one step further and see the most active days for

receiving and sending emails separately:

sdw = sent.groupby('dayofweek').size() / len(sent)

rdw = received.groupby('dayofweek').size() / len(received)

df_tmp = pd.DataFrame(data={'Outgoing Email': sdw, 'Incoming Email':rdw})

df_tmp.plot(kind='bar', rot=45, figsize=(8,5), alpha=0.5)

plt.xlabel('');

plt.ylabel('Fraction of weekly emails'); plt.grid(ls=':', color='k', alpha=0.5)

 1.30 Data Exploration and Visualization

The output of the preceding code is as follows:

Fig. 1.9.

Fig. 1.10.

Exploratory Data Analysis 1.31

StudentID ScoreSE StudentID ScoreSE

1 89 2 98

3 39 4 93

5 50 6 44

7 97 8 77

9 20 10 69

27 73 28 56

29 92 30 27

We can concatenate the data using the pandas concat() method:

dataframe = pd.concat([dataFrame1, dataFrame2], ignore_index=True) dataframe

See the difference using the following code:

pd.concat([dataFrame1, dataFrame2], axis=1)

The output of the preceding code is shown in the following screenshot:

 StudentID Score StudentID Score

0

1

2

3

4

5

6

7

8

1

3

5

7

9

11

13

15

17

89

39

50

97

22

66

31

51

71

2

4

6

8

10

12

14

16

18

98

93

44

77

69

56

31

53

78

 1.32 Data Exploration and Visualization

 StudentID Score StudentID Score

9

10

11

12

13

14

19

21

23

25

27

29

91

56

32

52

73

92

20

22

24

26

28

30

93

56

77

33

56

27

Check the following dataframes:

StudentID ScoreSE StudentID ScoreSE

9 22 2 98

11 66 4 93

13 31 6 44

15 51 8 77

17 71 10 69

27 73 28 56

29 92 30 27

StudentID ScoreSE StudentID ScoreSE

1 39 2 98

3 49 4 93

5 55 6 44

7 77 8 77

9 52 10 69

27 23 28 56

29 49 30 27

Exploratory Data Analysis 1.33

Using the pd.merge() method with a left join

The third option is to use the pd.merge() method with the left join technique. By

now, you should have understood the concept of a merge. The argument of the

pd.merge() method allows us to use different types of joins.

These are the following types of joins:

The inner join takes the intersection from two or more dataframes. It corresponds

to the INNER JOIN in Structured Query Language (SQL). The outer join takes the

union from two or more dataframes. It corresponds to the FULL OUTER JOIN in

SQL.

The left join uses the keys from the left-hand dataframe only. It corresponds to the

LEFT OUTER JOIN in SQL.

The right join uses the keys from the right-hand dataframe only. It corresponds to

the RIGHT OUTER JOIN in SQL.

Let's see how we can use the left outer join:

dfSE = pd.concat([df1SE, df2SE], ignore_index=True) dfML = pd.concat([df1ML,

df2ML], ignore_index=True)

df = dfSE.merge(dfML, how='left') df

The output of the preceding code is as follows:

 StudentID ScoreSE ScoreML

0

1

2

3

4

5

6

7

8

9

10

11

12

9

11

13

15

17

19

21

23

25

27

29

2

4

22

66

31

51

71

91

56

32

52

73

92

98

93

52.0

86.0

41.0

77.0

73.0

51.0

86.0

82.0

92.0

23.0

49.0

93.0

44.0

 1.34 Data Exploration and Visualization

 StudentID ScoreSE ScoreML

13

14

15

16

17

18

19

20

21

22

23

24

25

6

8

10

12

14

16

18

20

22

24

26

28

30

44

77

69

56

31

53

78

93

56

77

33

56

27

78.0

97.0

87.0

89.0

39.0

43.0

88.0

78.0

NaN

NaN

NaN

NaN

NaN

Using the pd.merge() method with a right join

This is the fourth option. Similarly to those options we've already looked at, we

can use the right join to get a list of all the students who appeared in the Machine

Learning course.

The code for doing it is as follows:

dfSE = pd.concat([df1SE, df2SE], ignore_index=True) dfML = pd.concat([df1ML,

df2ML], ignore_index=True)

df = dfSE.merge(dfML, how='right') df

The output of this snippet is left as part of an exercise for you to complete. Check

which columns have NaN values.

Using pd.merge() methods with outer join

This is the fifth option. Finally, we want to know the total number of students

appearing for at least one course. This can be done using an outer join:

dfSE = pd.concat([df1SE, df2SE], ignore_index=True) dfML = pd.concat([df1ML,

df2ML], ignore_index=True)

df = dfSE.merge(dfML, how='outer') df

Check the output and compare the differences with the previous output.

Exploratory Data Analysis 1.35

Merging on Index

Sometimes the keys for merging dataframes are located in the dataframes index. In

such a situation, we can pass left_index=True or right_index=True to indicate that the

index should be accepted as the merge key.

 Key Value Group_Val

0

1

2

3

4

5

apple

ball

apple

apple

ball

cat

0

1

2

3

4

5

apple

ball

33.4

5.0

Merging on index is done in the following steps:

1. Consider the following two dataframes:

left1 = pd.DataFrame({'key': ['apple','ball','apple', 'apple', 'ball', 'cat'], 'value':

range(6)})

right1 = pd.DataFrame({'group_val': [33.4, 5]}, index=['apple', 'ball'])

If you print these two dataframes, the output looks like the following screenshot:

2. Now, let's consider two different cases. Firstly, let's try merging using an

inner join, which is the default type of merge. In this case, the default

merge is the intersection of the keys. Check the following example code:

df = pd.merge(left1, right1, left_on='key', right_index=True) df

The output of the preceding code is as follows:

 Key value group_val

0

2

3

1

4

apple

apple

apple

ball

ball

0

2

3

1

4

33.4

33.4

33.4

5.0

5.0

 1.36 Data Exploration and Visualization

3. Secondly, let's try merging using an outer join, as follows:

df = pd.merge(left1, right1, left_on='key', right_index=True, how='outer') df

The output of the preceding code is as follows:

 Key value group_val

0

2

3

1

4

5

apple

apple

apple

ball

ball

cat

0

2

3

1

4

5

33.4

33.4

33.4

5.0

5.0

NaN

This can be done with hierarchical indexing using two actions:

Stacking: Stack rotates from any particular column in the data to the rows.

Unstacking: Unstack rotates from the rows into the column.

We will look at the following example:

1. Let's create a dataframe that records the rainfall, humidity, and wind

conditions of five different counties in Norway:

data = np.arange(15).reshape((3,5))

indexers = ['Rainfall', 'Humidity', 'Wind']

dframe1 = pd.DataFrame(data, index=indexers, columns=['Bergen', 'Oslo',

'Trondheim', 'Stavanger', 'Kristiansand'])

dframe1

The output of the preceding snippet is as follows:

 Bergen Oslo Trondheim Stavanger Kristiansand

Rainfall 0 1 2 3 4

Humidity 5 6 7 8 9

Wind 10 11 12 13 14

Exploratory Data Analysis 1.37

2. Now, using the stack() method on the preceding dframe1, we can pivot

the columns into rows to produce a series:

stacked = dframe1.stack() stacked

The output of this stacking is as follows:

 Rainfall Bergen

Oslo

Trondheim

Stavanger

Kristiansand

0

1

2

3

4

Humidity Bergen

Oslo

Trondheim

Stavanger

Kristiansand

5

6

7

8

9

Wind Bergen

Oslo

Trondheim

Stavanger

Kristiansand

10

11

12

13

14

dtype: int64

3. The preceding series stored unstacked in the variable can be rearranged

into a dataframe using the unstack() method:

stacked.unstack()

4. Now, let's unstack the concatenated frame:

series1 = pd.Series([000, 111, 222, 333], index=['zeros','ones', 'twos', 'threes'])

series2 = pd.Series([444, 555, 666], index=['fours', 'fives', 'sixes'])

frame2 = pd.concat([series1, series2], keys=['Number1', 'Number2']) frame2.unstack()

The output of the preceding unstacking is shown in the following screenshot:

 1.38 Data Exploration and Visualization

 Fives Fours Ones Sixs Threes Twos Zeros

Number1 NaN NaN 111.0 NaN 333.0 222.0 0.0

Number2 555.0 444.0 NaN 666.0 NaN NaN NaN

Let's dive more into how we can perform other types of data transformations

including cleaning, filtering, deduplication, and others.

Performing Data Deduplication

It is very likely that your dataframe contains duplicate rows. Removing them is

essential to enhance the quality of the dataset. This can be done with the following

steps:

1. Let's consider a simple dataframe, as follows:

frame3 = pd.DataFrame({'column 1': ['Looping'] * 3 + ['Functions'] * 4, 'column 2':

[10, 10, 22, 23, 23, 24, 24]})

The preceding code creates a simple dataframe with two columns. You can clearly

see from the following screenshot that in both columns, there are some duplicate

entries:

 Column 1 Column 2

0

1

2

3

4

5

6

Looping

Looping

Looping

Functions

Functions

Functions

Functions

10

10

22

23

23

24

24

2. The pandas dataframe comes with a duplicated() method that returns a

Boolean series stating which of the rows are duplicates:

Exploratory Data Analysis 1.39

frame3.duplicated()

The output of the preceding code is pretty easy to interpret:

0

1

2

3

4

5

6

False

True

False

False

True

False

True

dtype: bool

3. Now, we can drop these duplicates using the drop_duplicates() method:

frame4 = frame3.drop_duplicates() frame4

The output of the preceding code is as follows:

 Column 1 Column 2

0

2

3

5

Looping

Looping

Functions

Functions

10

22

23

24

Note that rows 1, 4, and 6 are removed. Basically, both the duplicated() and

drop_duplicates() methods consider all of the columns for comparison. Instead of all

the columns, we could specify any subset of the columns to detect duplicated items.

4. Let's add a new column and try to find duplicated items based on the

second column:

frame3['column 3'] = range(7)

frame5 = frame3.drop_duplicates(['column 2']) frame5

The output of the preceding snippet is as follows:

 1.40 Data Exploration and Visualization

 Column 1 Column 2 Column 3

0 Looping 10 0

2 Looping 22 2

3 Functions 23 3

5 Functions 24 5

Note that both the duplicated and drop_duplicates methods keep the first observed

value during the duplication removal process. If we pass the take_last=True

argument, the methods return the last one.

Replacing Values

Often, it is essential to find and replace some values inside a dataframe. This can

be done with the following steps:

1. We can use the replace method in such cases:

import numpy as np

replaceFrame = pd.DataFrame({'column 1': [200., 3000., -786., 3000., 234.,

444., -786., 332., 3332.], 'column 2': range(9)})

replaceFrame.replace(to_replace =-786, value= np.nan)

The output of the preceding code is as follows:

 Column 1 Column 2

 0

1

2

3

4

5

6

7

8

200.0

3000.0

NaN

3000.0

234.0

444.0

NaN

332.0

3332.0

0

1

2

3

4

5

6

7

8

Exploratory Data Analysis 1.41

Note that we just replaced one value with the other values. We can also replace

multiple values at once.

2. In order to do so, we display them using a list:

replaceFrame = pd.DataFrame({'column 1': [200., 3000., -786., 3000., 234.,

444., -786., 332., 3332.], 'column 2': range(9)})

replaceFrame.replace(to_replace =[-786, 0], value= [np.nan, 2])

Handling Missing Data

Whenever there are missing values, a NaN value is used, which indicates that

there is no value specified for that particular index. There could be several reasons

why a value could be NaN:

It can happen when data is retrieved from an external source and there are some

incomplete values in the dataset.

It can also happen when we join two different datasets and some values are not

matched.

Missing values due to data collection errors.

When the shape of data changes, there are new additional rows or columns that

are not determined.

Reindexing of data can result in incomplete data.

Let's see how we can work with the missing data:

1. Let's assume we have a dataframe as shown here:

data = np.arange(15, 30).reshape(5, 3)

dfx = pd.DataFrame(data, index=['apple', 'banana', 'kiwi', 'grapes', 'mango'],

columns=['store1', 'store2', 'store3'])

dfx

And the output of the preceding code is as follows:

 Store 1 Store 2 Store 3

 apple

banana

kiwi

grapes

mango

15

18

21

24

27

16

19

22

25

28

17

20

23

26

29

 1.42 Data Exploration and Visualization

2. Let's add some missing values to our dataframe:

dfx['store4'] = np.nan dfx.loc['watermelon'] = np.arange(15, 19) dfx.loc['oranges'] =

np.nan

dfx['store5'] = np.nan dfx['store4']['apple'] = 20. dfx

And the output will now look like the following screenshot:

 store 1 store 2 store 3 store 4 store 5

apple 15.0 16.0 17.0 20.0 NaN

banana 18.0 19.0 20.0 NaN NaN

kiwi 21.0 22.0 23.0 NaN NaN

grapes 24.0 25.0 26.0 NaN NaN

mango 27.0 28.0 29.0 NaN NaN

watermelon 15.0 16.0 17.0 18.0 NaN

oranges NaN NaN NaN NaN NaN

Note that we've added two more stores, store4 and store5, and two more types of

fruits, watermelon and oranges. Assume that we know how many kilos of apples and

watermelons were sold from store4, but we have not collected any data from store5.

Moreover, none of the stores reported sales of oranges. We are quite a huge fruit

dealer, aren't we?

NaN values in pandas objects

We can use the is null() function from the pandas library to identify NaN values:

1. Check the following example:

dfx.isnull()

The output of the preceding code is as follows:

 store 1 store 2 store 3 store 4 store 5

apple False False False False True

banana False False False True True

kiwi False False False True True

grapes False False False True True

mango False False False True True

watermelon False False False False True

Oranges True True True True True

Exploratory Data Analysis 1.43

Note that the True values indicate the values that are NaN. Pretty obvious, right?

Alternatively, we can also use the notnull() method to do the same thing. The only

difference would be that the function will indicate True for the values which are not

null.

2. Check it out in action:

dfx.notnull()

And the output of this is as follows:

 store 1 store 2 store 3 store 4 store 5

apple True True True True False

banana True True True False False

kiwi True True True False False

grapes True True True False False

mango True True True False False

watermelon True True True True False

oranges False False False False False

Compare these two tables. These two functions, notnull() andisnull(), are the

complement to each other.

3. We can use the sum() method to count the number of NaN values in each

store. How does this work, you ask? Check the following code:

dfx.isnull().sum()

And the output of the preceding code is as follows:

store1 1

store2 1

store3 1

store4 5

store5 7 dtype: int64

 1.44 Data Exploration and Visualization

The fact that True is 1 and False is 0 is the main logic for summing. The preceding

results show that one value was not reported by store1, store2, and store3. Five

values were not reported by store4 and seven values were not reported by store5.

4. We can go one level deeper to find the total number of missing values:

dfx.isnull().sum().sum()

And the output of the preceding code is as follows:

15

This indicates 15 missing values in our stores. We can use an alternative way to

find how many values were actually reported.

5. So, instead of counting the number of missing values, we can count the

number of reported values:

dfx.count()

And the output of the preceding code is as follows:

store1 6

store2 6

store3 6

store4 2

store5 0 dtype: int64

Pretty elegant, right? We now know two different ways to find the missing values,

and also how to count the missing values.

Dropping Missing Values

One of the ways to handle missing values is to simply remove them from our

dataset. We have seen that we can use the isnull() and notnull() functions from the

pandas library to determine null values:

dfx.store4[dfx.store4.notnull()]

The output of the preceding code is as follows:

apple 20.0

watermelon 18.0

Exploratory Data Analysis 1.45

Name: store4, dtype: float64

Dropping by Rows

We can also drop rows that have NaN values. To do so, we can use the how=all

argument to drop only those rows entire values are entirely NaN:

dfx.dropna(how='all')

The output of the preceding code is as follows:

 store 1 store 2 store 3 store 4 store 5

apple 15.0 16.0 17.0 20.0 NaN

banana 18.0 19.0 20.0 NaN NaN

kiwi 21.0 22.0 23.0 NaN NaN

grapes 24.0 25.0 26.0 NaN NaN

mango 27.0 28.0 29.0 NaN NaN

watermelon 15.0 16.0 17.0 18.0 NaN

Note that only the orange rows are removed because those entire rows contained

NaN values.

Dropping by Columns

Furthermore, we can also pass axis=1 to indicate a check for NaN by columns.

dfx.dropna(how='all', axis=1)

And the output of the preceding code is as follows:

 store 1 store 2 store 3 store 4

apple 15.0 16.0 17.0 20.0

banana 18.0 19.0 20.0 NaN

kiwi 21.0 22.0 23.0 NaN

grapes 24.0 25.0 26.0 NaN

mango 27.0 28.0 29.0 NaN

watermelon 15.0 16.0 17.0 18.0

oranges NaN NaN NaN NaN

 1.46 Data Exploration and Visualization

Note that store5 is dropped from the dataframe. By passing in axis=1, we are

instructing pandas to drop columns if all the values in the column are NaN.

Furthermore, we can also pass another argument, thresh, to specify a minimum

number of NaNs that must exist before the column should be dropped:

dfx.dropna(thresh=5, axis=1)

And the output of the preceding code is as follows:

 store 1 store 2 store 3

apple 15.0 16.0 17.0

banana 18.0 19.0 20.0

kiwi 21.0 22.0 23.0

grapes 24.0 25.0 26.0

mango 27.0 28.0 29.0

watermelon 15.0 16.0 17.0

oranges NaN NaN NaN

Compared to the preceding, note that even the store4 column is now dropped

because it has more than five NaN values.

Filling Missing Values

We can use the fillna() method to replace NaN values with any particular values.

Check the following example:

filledDf = dfx.fillna(0) filledDf

The output of the preceding code is shown in the following screenshot:

 store 1 store 2 store 3 store 4 store 5

apple 15.0 16.0 17.0 20.0 0.0

banana 18.0 19.0 20.0 0.0 0.0

kiwi 21.0 22.0 23.0 0.0 0.0

grapes 24.0 25.0 26.0 0.0 0.0

mango 27.0 28.0 29.0 0.0 0.0

watermelon 15.0 16.0 17.0 18.0 0.0

oranges 0.0 0.0 0.0 0.0 0.0

Exploratory Data Analysis 1.47

Note that in the preceding dataframe, all the NaN values are replaced by 0.

Replacing the values with 0 will affect several statistics including mean, sum, and

median.

Check the difference in the following two examples:

dfx.mean()

And the output of the preceding code is as follows:

store1 20.0

store2 21.0

store3 22.0

store4 19.0

store5 NaN dtype: float64

And the output we get is as follows:

store1 17.142857

store2 18.000000

store3 18.857143

store4 5.428571

store5 0.000000 dtype: float64

Benefits of Data Transformation

Let's try to list these benefits:

Data transformation promotes interoperability between several applications. The

main reason for creating a similar format and structure in the dataset is that it

becomes compatible with other systems.

Comprehensibility for both humans and computers is improved when using better-

organized data compared to messier data.

Data transformation ensures a higher degree of data quality and protects

applications from several computational challenges such as null values, unexpected

duplicates, and incorrect indexings, as well as incompatible structures or formats.

Data transformation ensures higher performance and scalability for modern

analytical databases and dataframes.

 1.48 Data Exploration and Visualization

Mean/average

The mean, or average, is a number around which the observed continuous

variables are distributed. This number estimates the value of the entire dataset.

Mathematically, it is the result of the division of the sum of numbers by the number

of integers in the dataset.

Let x be a set of integers:

 x = (12, 2, 3, 5, 8, 9, 6, 4, 2)

Hence, the mean value of x can be calculated as follows:

 Mean (x) =
12 + 2 + 3 + 5 + 8 + 9 + 6 + 4 + 2

9
 = 5.66

Median

Given a dataset that is sorted either in ascending or descending order, the median

divides the data into two parts. The general formula for calculating the median is as

follows:

 Median position =
(n + 1)

2
 th observation

Here, n is the number of items in the data. The steps involved in calculating the

median are as follows:

1. Sort the numbers in either ascending or descending order.

2. If n is odd, find the (n + 1) / 2th term. The value corresponding to this

term is the median.

3. If n is even, find the (n + 1) / 2th term. The median value is the average of

numbers on either side of the median position.

For a set of integers such as x , we must arrange them in ascending order and then

select the middle integer.

In ascending order = (2, 2, 3, 4, 5, 6, 8, 9, 12). Here, the median is 5.

Mode

The mode is the integer that appears the maximum number of times in the dataset.

It happens to be the value with the highest frequency in the dataset. In the x dataset

in the median example, the mode is 2 because it occurs twice in the set.

Exploratory Data Analysis 1.49

Python provides different libraries for operating descriptive statistics in the dataset. Commonly used libraries are

pandas, numpy, and scipy. These measures of central tendency can simply be calculated by the numpy and pandas

functionalities.

Here is a dataset of automobiles that enlists different features and attributes of cars, such as symboling, normalized

losses, aspiration, and many others, an analysis of which will provide some valuable insight and findings in relation to

automobiles in this dataset.

Let's begin by importing the datasets and the Python libraries required:

import pandas as pd import numpy as np

Now, let's load the automobile database:

df = pd.read_csv("data.csv") df.head()

The output of the code is given here:

Symboling
normalized

losses
make aspiration

number

of

doors

body style
drive-

wheels

engine

location

wheel-

base
length width height

curb

weight

engine-

type

Num of

cylinders

engine

-size

0

1

2

3

4

3

3

1

2

2

122

122

122

164

164

alfa-

romero

alfa-

romero

alfa

romero

audi

audi

std

std

std

std

std

two

two

two

four

four

convertible

convertible

hatchback

sedan

sedan

rwd

rwd

rwd

fwd

4wd

front

front

front

front

front

88.6

88.6

94.5

99.8

99.4

0.811148

0.811148

0.822681

0.848630

0.848630

0.890278

0.890278

0.909722

0.919444

0.922222

48.8

48.8

52,4

54.3

54.3

2548

2548

2823

2337

2824

dohc

dohc

ohcv

ohc

ohc

four

four

six

four

five

130

130

152

109

136

 1.50 Data Exploration and Visualization

Standard Deviation

Different Python libraries have functions to get the standard deviation of the

dataset. The NumPy library has the numpy.std(dataset) function. The statistics library

has the statistics.stdev(dataset). function. Using the pandas library, we calculate the

standard deviation in our df data frame using the df.std() function:

#standard variance of dataset using std() function std_dev =df.std()

print(std_dev)

standard variance of the specific column sv_height=df.loc[:,"height"].std()

print(sv_height)

The output of the preceding code is as follows:

symboling

normalized-losses

wheel-base

length

width

height

curb-weight

engine-size

bore

stroke

compression-ratio

horsepower

peak-rpm

city-mpg

highway-mpg

price

city-L/100 km

diesel

gas

dtype: float64

2.44782216129631

1.254802

31.996250

6.066366

0.059213

0.029187

2.447822

517.296727

41.546834

0.268072

0.319256

4.004965

37.365700

478.113805

6.423220

6.815150

7947.066342

2.534599

0.300083

0.300083

Exploratory Data Analysis 1.51

Variance

Variance is the square of the average/mean of the difference between each value

in the dataset with its average/mean; that is, it is the square of standard deviation.

Different Python libraries have functions to obtain the variance of the dataset. The

NumPy library has the numpy.var(dataset) function. The statistics library has the

statistics.variance(dataset) function. Using the pandas library, we calculate the

variance in our df data frame using the df.var() function:

variance of dataset using var() function variance=df.var()

print(variance)

variance of the specific column var_height=df.loc[:,"height"].var() print(var_height)

The output of the preceding code is as follows:

symboling

normalized-losses

wheel-base

length

width

height

curb-weight

engine-size

bore

stroke

compression-ratio

horsepower

peak-rpm

city-mpg

highway-mpg

price

city-L/100 km

diesel

gas

dtype: float64

5.991833333333338

1.574527e+00

1.023760e+03

3.680079e+01

3.506151e–03

8.518865e–04

5.991833e+00

2.675959e+05

1.726139e+03

7.186252e–02

1.019245e–01

1.603975e+01

1.396195e+03

2.285928e+05

4.125776e+01

4.644627e+01

6.315586e+07

6.424193e+00

9.004975e–02

9.004975e–02

 1.52 Data Exploration and Visualization

Skewness

In probability theory and statistics, skewness is a measure of the asymmetry of

the variable in the dataset about its mean. The skewness value can be positive or

negative, or undefined. The skewness value tells us whether the data is skewed or

symmetric. Here's an illustration of a positively skewed dataset, symmetrical data,

and some negatively skewed data:

Fig. 1.11.

Note the following observations from the preceding diagram:

The graph on the right-hand side has a tail that is longer than the tail on the

right-hand side. This indicates that the distribution of the data is skewed to the left.

If you select any point in the left-hand longer tail, the mean is less than the mode.

This condition is referred to as negative skewness.

The graph on the left-hand side has a tail that is longer on the right- hand side. If

you select any point on the right-hand tail, the mean value is greater than the mode.

This condition is referred to as

Positive Skewness.

The graph in the middle has a right-hand tail that is the same as the left- hand

tail. This condition is referred to as a symmetrical condition.

Different Python libraries have functions to get the skewness of the dataset. The

SciPy library has a scipy.stats.skew(dataset) function. Using the pandas library, we

can calculate the skewness in our df data frame using the df.skew() function.

Exploratory Data Analysis 1.53

Here, in our data frame of automobiles, let's get the skewness using the

df.skew() function:

df.skew()

The output of the preceding code is as follows:

symboling

normalized-losses

wheel-base

length

width

height

curb-weight

engine-size

bore

stroke

compression-ratio

horsepower

peak-rpm

city-mpg

highway-mpg

price

dtype: float64

0.204275

0.209007

1.041170

0.154086

0.900685

0.064134

0.668942

1.934993

0.013419

–0.669515

2.682640

9.985047

0.073094

0.673533

0.549104

1.812335

Kurtosis

Basically, kurtosis is a statistical measure that illustrates how heavily the tails of

distribution differ from those of a normal distribution. This technique can identify

whether a given distribution contains extreme values.

Kurtosis, unlike skewness, is not about the peakedness or flatness. It is the

measure of outlier presence in a given distribution. Both high and low kurtosis are an

indicator that data needs further investigation. The higher the kurtosis, the higher the

outliers.

 1.54 Data Exploration and Visualization

Types of Kurtosis

There are three types of kurtosis - mesokurtic, leptokurtic, and platykurtic. Let's

look at these one by one:

Mesokurtic: If any dataset follows a normal distribution, it follows a mesokurtic

distribution. It has kurtosis around 0.

Leptokurtic: In this case, the distribution has kurtosis greater than 3 and the fat

tails indicate that the distribution produces more outliers. Platykurtic: In this case,

the distribution has negative kurtosis and the tails are very thin compared to the

normal distribution.

All three types of kurtosis are shown in the following diagram:

Fig. 1.12.

Calculating Percentiles

Percentiles measure the percentage of values in any dataset that lie below a

certain value. In order to calculate percentiles, we need to make sure our list is

sorted. An example would be if you were to say that the 80th percentile of data is

130: then what does that mean? Well, it simply means that 80% of the values lie

below 130. Pretty easy, right? We will use the following formula for this:

`

The formula for calculating

 percentile of X
 =

Number of values less than X

Total number of observations
 100

Suppose we have the given data: 1, 2, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10. Then the

percentile value of 4 = (4 / 12) * 100 = 33.33%.

Exploratory Data Analysis 1.55

This simply means that 33.33% of the data is less than 4.

Quartiles

Given a dataset sorted in ascending order, quartiles are the values that split the

given dataset into quarters. Quartiles refer to the three data points that divide the

given dataset into four equal parts, such that each split makes 25% of the dataset. In

terms of percentiles, the 25th percentile is referred to as the first quartile (Q1), the

50th percentile is referred to as the second quartile (Q2), and the 75th percentile is

referred to as the third quartile (Q3).

Based on the quartile, there is another measure called inter-quartile range that also

measures the variability in the dataset. It is defined as follows:

 IQR = Q3 – Q1

IQR is not affected by the presence of outliers. Let's get the IQR for the price

column from the same dataframe we have been using so far:

rice = df.price.sort_values() Q1 = np.percentile(price, 25) Q2 = np.percentile(price,

50) Q3 = np.percentile(price, 75)

IQR = Q3 - Q1 IQR

The output of the preceding snippet is as follows:

8718.5

Understanding groupby()

During the data analysis phase, categorizing a dataset into multiple categories or

groups is often essential. We can do such categorization using the pandas library. The

pandas groupby function is one of the most efficient and time-saving features for

doing this. Groupby provides functionalities that allow us to split-apply-combine

throughout the dataframe; that is, this function can be used for splitting, applying,

and combining dataframes.

 1.56 Data Exploration and Visualization

Group by mechanics

To work with groupby functionalities, we need a dataset that has multiple numerical as well as categorical records in it

so that we can group by different categories and ranges.

Let's take a look at a dataset of automobiles that enlists the different features and attributes of cars, such as symbolling,

normalized-losses, make, aspiration, body- style, drive-wheels, engine-location, and many others. Let's get started:

1. Let's start by importing the required Python libraries and datasets:

import pandas as pd

df = pd.read_csv("/content/automobileEDA.csv") df.head()

The output of the preceding code is as follows:

Symboling normalized

losses

make aspiration number

of

doors

body style drive-

wheels

engine

location

wheel-

base

length width height curb

weight

engine

type

sum of

cylinders

engine

size

0

1

2

3

4

3

3

1

2

2

122

122

122

164

164

alfa-

romero

alfa

romero

alfa

romero

audi

audi

std

std

std

std

std

two

two

two

four

four

convertible

convertible

hatchback

sedan

sedan

rwd

rwd

rwd

fwd

4wd

front

front

front

front

front

88.6

88.6

94.5

99.8

99.4

0.811148

0.811148

0.822681

0.848630

0.848630

0.890278

0.890278

0.909722

0.919444

0.922222

48.8

48.8

52,4

54.3

54.3

2548

2548

2823

2337

2824

dohc

dohc

ohcv

ohc

ohc

four

four

six

four

five

130

130

152

109

136

Exploratory Data Analysis 1.57

As you can see, there are multiple columns with categorical variables.

2. Using the groupby() function lets us group this dataset on the basis of the body-style column:

df.groupby('body-style').groups.keys()

The output of the preceding code is as follows:

dict_keys(['convertible', 'hardtop', 'hatchback', 'sedan', 'wagon'])

From the preceding output, we know that the body-style column has five unique values, including convertible,

hardtop, hatchback, sedan, and wagon.

3. Now, we can group the data based on the body-style column. Next, let's print the values contained in that

group that have the body-style value of convertible. This can be done using the following code:

Group the dataset by the column body-style style = df.groupby('body-style')

Get values items from group with value convertible style.get_group("convertible")

The output of the preceding code is as follows:

Symboling normalized

losses

make aspiration number

of doors

body style drive-

wheels

engine

location

wheel-

base

length width height curb

weight

engine

type

sum of

cylinders

engine

size

0

1

69

125

168

185

3

3

3

3

2

2

122

122

142

122

134

122

alfa-romero

alfa romero

Mercedes

benz

porsche

Toyota

volkswagen

std

std

std

std

std

std

two

two

two

two

two

two

convertible

convertible

convertible

convertible

convertible

convertible

rwd

rwd

rwd

rwd

rwd

fwd

front

front

front

rear

front

front

88.6

88.6

96.6

89.5

98.4

94.5

0.811148

0.811148

0.866410

0.811629

0.846708

0.765497

0.890278

0.890278

0.979167

0.902778

0.911111

0.891667

48.8

48.8

50.8

– 51.6

53.0

55.6

2548

2548

3685

2800

2975

2254

dohc

dohc

ohcv

ohcf

ohc

ohc

four

four

eight

six

four

four

130

130

234

194

146

109

 1.58 Data Exploration and Visualization

Max and Min

Let's compute the maximum and minimum entry for each group. Here, we will

find the maximum and minimum for the normalized-losses column:

max() will print the maximum entry of each group style['normalized-losses'].max()

min() will print the minimum entry of each group style['normalized-losses'].min()

The output of the preceding code is as follows:

body-style convertible 122

hardtop 93

hatchback 65

sedan 65

wagon 74

Name: normalized-losses, dtype: int64

Aggregation is the process of implementing any mathematical operation on a

dataset or a subset of it. Aggregation is one of the many techniques in pandas that's

used to manipulate the data in the dataframe for data analysis.

The Dataframe.aggregate() function is used to apply aggregation across one or

more columns. Some of the most frequently used aggregations are as follows:

sum: Returns the sum of the values for the requested axis

min: Returns the minimum of the values for the requested axis

max: Returns the maximum of the values for the requested axis We can apply

aggregation in a DataFrame, df, as df.aggregate() or df.agg().

Since aggregation only works with numeric type columns, let's take some of the

numeric columns from the dataset and apply some aggregation functions to them:

new dataframe that consist length,width,height,curb-weight and price

new_dataset = df.filter(["length","width","height","curb-weight","price"],axis=1)

new_dataset

Exploratory Data Analysis 1.59

The output of the preceding code snippet is as follows:

Length Width Height

Curb-

weight
Price

0

1

2

3

4

196

197

198

199

200

201 rows 5 columns

0.811148

0.811148

0.822681

0.848630

0.848630

0.907256

0.907256

0.907256

0.907256

0.907256

0.890278

0.890278

0.909722

0.919444

0.922222

0.956944

0.955556

0.956944

0.956944

0.956944

48.8

48.8

52.4

54.3

54.3

55.5

55.5

55.5

55.5

55.5

2548

2548

2823

2337

2824

2952

3049

3012

3217

3062

13495.0

16500.0

16500.0

13950.0

17450.0

16845.0

19045.0

21485.0

22470.0

22625.0

Next, let's apply a single aggregation to get the mean of the columns. To do this,

we can use the agg() method, as shown in the following code:

applying single aggregation for mean over the columns new_dataset.agg("mean",

axis="rows")

The output of the preceding code is as follows:

length 0.837102

width 0.915126

height 53.766667

curb-weight 2555.666667

 1.60 Data Exploration and Visualization

price 13207.129353

dtype: float64

 Length Width Height Curb-weight

Max

Min

Sum

NaN

0.678039

168.257568

1.0000

0.8375

NaN

NaN

47.8

10807.1

NaN

NaN

513689.0

Group-wise operations

The most important operations groupBy implements are aggregate, filter,

transform, and apply. An efficient way of implementing aggregation functions in the

dataset is by doing so after grouping the required columns. The aggregated function

will return a single aggregated value for each group.

Let's group the DataFrame, df, by body-style and drive-wheels and extract stats

from each group by passing a dictionary of aggregation functions:

Group the data frame df by body-style and drive-wheels and extract stats from each

group

df.groupby(

["body-style","drive-wheels"]

).agg(

{

'height':min, # minimum height of car in each group 'length': max, # maximum length

of car in each group 'price': 'mean', # average price of car in each group

}

)

Exploratory Data Analysis 1.61

The output of the preceding code is as follows:

Body-style Drive

wheels

Height Length Price

Convertible fwd

rwd

55.6

48.8

0.765497

0.866410

11595.000000

23949.600000

Hardtop fwd

rwd

53.3

51.6

0.780394

0.957232

8249.000000

24202.714286

Hatchback 4wd

fwd

rwd

55.7

49.4

49.6

0.755887

0.896684

0.881788

7603.000000

8396.387755

14337.777778

Sedan 4wd

fwd

rwd

54.3

50.6

47.8

0.848630

0.925997

1.000000

12647.333333

9811.800000

21711.833333

Wagon 4wd

fwd

rwd

54.9

53.0

54.1

0.834214

0.925997

0.955790

9095.750000

9997.333333

16994.222222

The preceding code groups the dataframe according to body-style and then driver-

wheels. Then, the aggregate functions are applied to the height, length, and price

columns, which return the minimum height, maximum length, and average price in

the respective groups.

create dictionary of aggregations aggregations=(

{

'height':min, # minimum height of car in each group 'length': max, # maximum length

of car in each group 'price': 'mean', # average price of car in each group

}

)

 1.62 Data Exploration and Visualization

implementing aggregations in groups df.groupby(

["body-style","drive-wheels"]

).agg(aggregations)

The output of the preceding code is as follows:

Body-style Drive

wheels

Sum Mean Std

Convertible fwd

rwd

11595.0

119748.0

11595.000000

23949.600000

NaN

11165.099700

Hardtop fwd

rwd

8249.0

169419.0

8249.000000

24202.714286

NaN

14493.311190

Hatchback 4wd

fwd

rwd

7603.0

411423.0

258080.0

7603.000000

8396.387755

14337.777778

NaN

3004.675695

3831.795195

Sedan 4wd

fwd

rwd

37942.0

539649.0

781626.0

12647.333333

9811.800000

21711.833333

4280.814681

3519.517598

9194.820239

Wagon 4wd

fwd

rwd

36383.0

119968.0

152948.0

9095.750000

9997.333333

16994.222222

1775.652063

3584.185551

4686.703313

Group-wise transformations

Working with groupby() and aggregation, you must have thought, why can't we

group data, apply aggregation, and append the result into the dataframe directly? Is it

possible to do all this in a single step? Yes, it is.

Performing a transformation on a group or a column returns an object that is

indexed by the same axis length as itself. It is an operation that's used in conjunction

with groupby(). The aggregation operation has to return a reduced version of the

Exploratory Data Analysis 1.63

data, whereas the transformation operation can return a transformed version of the

full data. Let's take a look:

1. Let's begin by using a simple transformation function to increase the price

of each car by 10% using the lambda function:

df["price"]=df["price"].transform(lambda x:x + x/10) df.loc[:,'price']

The output of the preceding code is as follows:

0 14844.5

1 18150.0

2 18150.0

3 15345.0

4 19195.0

... 196 18529.5

197 20949.5

198 23633.5

199 24717.0

200 24887.5

Name: price, Length: 201, dtype: float64

2. Let's observe the average price of cars for each grouping by body-style and

drive-wheels:

df.groupby(["body-style","drive-wheels"])["price"].transform('mean')

The output of the preceding code is as follows:

0 26344.560000

1 26344.560000

 15771.555556

3 10792.980000

4 13912.066667

...

 1.64 Data Exploration and Visualization

196 23883.016667

197 23883.016667

198 23883.016667

199 23883.016667

3. Now, create a new column for an average price in the original dataframe:

df["average-price"]=df.groupby(["body-style","drive-wheels"])

["price"].transform('mean')

selecting columns body-style,drive-wheels,price and average-price df.loc[:,["body-

style","drive-wheels","price","average-price"]]

The output of the preceding code is as follows:

 body-style drive

wheels

price average-price

0

1

2

3

4

196

197

198

199

200

201 rows 4 columns

convertible

convertible

hatchback

sedan

sedan

sedan

sedan

sedan

sedan

sedan

rwd

rwd

rwd

fwd

4wd

rwd

rwd

rwd

rwd

rwd

14844.5

18150.0

18150.0

15345.0

19195.0

18529.5

20949.5

23633.5

24717.0

24887.5

26344.560000

26344.560000

15771.555556

10792.980000

13912.066667

23883.016667

23883.016667

23883.016667

23883.016667

23883.016667

Exploratory Data Analysis 1.65

The pandas.pivot_table() function creates a spreadsheet-style pivot table as a

dataframe. The levels in the pivot table will be stored in MultiIndex objects

(hierarchical indexes) on the index and columns of the resulting dataframe.

The simplest pivot tables must have a dataframe and an index/list of the index.

Let's take a look at how to do this:

1. Let's make a pivot table of a new dataframe that consists of the body-

style, drive-wheels, length, width, height, curb-weight, and price columns:

new_dataset1 = df.filter(["body-style","drive-wheels",

"length","width","height","curb-

weight","price"],axis=1)

#simplest pivot table with dataframe df and index body-style table =

pd.pivot_table(new_dataset1, index =["body-style"]) table

The output of the preceding code is as follows:

Body-style
Curb-

weight
Height Length Price Width

Convertible 2801.666667 51.433333 0.818757 24079.550000 0.910880

Hardtop 2810.625000 52.850000 0.850252 24429.350000 0.925174

Hatchback 2322.852941 52.133824 0.799078 10953.185294 0.904228

Sedan 2625.893617 54.387234 0.855583 15905.730851 0.921070

Wagon 2784.240000 56.728000 0.871235 13609.156000 0.920222

The output table is similar to how we group a dataframe with respect to body-

style. The values in the preceding table are the mean of the values in the

corresponding category.

2. Now, design a pivot table with the new_dataset1 dataframe and make

body- style and drive-wheels as an index. Note that providing multiple

indexes will make a grouping of the dataframe first and then summarize

the data:

 1.66 Data Exploration and Visualization

#pivot table with dataframe df and index body-style and drive-wheels

table = pd.pivot_table(new_dataset1, index =["body-style","drive-wheels"]) table

The output of the preceding code is as follows:

Body-style
drive

wheels

Curb-

weight
Height Length Price Width

Convertible fwd

rwd

2254.000000

2911.200000

55.600000

50.600000

0.765497

0.829409

12754.500000

26344.560000

0.891667

0.914722

Hardtop fwd

rwd

2008.000000

2925.285714

53.300000

52.785714

0.780394

0.860232

9073.900000

26622.985714

0.886111

0.930754

Hatchback 4wd

fwd

rwd

2240.000000

2181.551020

2712.11111

55.700000

52.442857

51.094444

0.755887

0.787818

0.832132

8363.300000

9236.026531

15771.555556

0.886111

0.898214

0.921605

Sedan 4wd

fwd

rwd

2573.000000

2313.018182

3108.305556

54.300000

53.956364

55.052778

0.833894

0.828404

0.898913

13912.066667

10792.980000

23883.016667

0.921963

0.908182

0.941435

Wagon 4wd

fwd

rwd

2617.500000

2464.333333

3284.888889

57.000000

56.008333

57.566667

0.824844

0.843064

0.929414

1005.325000

10997.066667

18693.644444

0.895833

0.910185

0.944444

3. We can also apply a different aggregation function to different columns:

table = pd.pivot_table(new_dataset1, values=['price','height','width'],

index =["body-style","drive-wheels"], aggfunc={'price': np.mean,'height': [min,

max],'width': [min, max]},

fill_value=0)

table

Exploratory Data Analysis 1.67

The output of the preceding code is as follows:

body-style
drive-

wheels
Height Price Width

 max. min mean max min

Convertible fwd

rwd

55.6

53.0

55.6

48.8

12754.500000

26344.560000

0.891667

0.890278

0.891667

0.890278

Hardtop fwd

rwd

53.3

55.4

53.3

51.6

9073.900000

26622.985714

0.886111

1.000000

0.886111

0.902778

Hatchback 4wd

fwd

rwd

55.7

56.1

54.8

55.7

49.4

49.6

8363.300000

9236.026531

15771.555556

0.886111

0.925000

0.948611

0.886111

0.837500

0.888889

Sedan 4wd

fwd

rwd

54.3

56.1

56.7

54.3

50.6

47.8

13912.066667

10792.980000

23883.016667

0.922222

0.991667

0.995933

0.908333

0.868056

0.858333

Wagon 4wd

fwd

rwd

59.1

59.8

58.7

54.9

53.0

54.1

10005.325000

10997.066667

18693.644444

0.908333

0.991667

0.976389

0.883333

0.883333

0.923611

This pivot table represents the maximum and minimum of the height and width

and the average price of cars in the respective categories mentioned in the index.

We can customize the pandas dataframe with another technique called cross-

tabulation. This allows us to cope with groupby and aggregation for better data

analysis. Pandas has the crosstab function, which helps when it comes to building a

cross-tabulation table. The cross-tabulation table shows the frequency with which

certain groups of data appear. Let's take a look:

 1.68 Data Exploration and Visualization

1. Let's use pd.crosstab() to look at how many different body styles cars are

made by different makers:

pd.crosstab(df["make"], df["body-style"])

The output of the preceding code is as follows:

Body-style

make
Convertible Hardtop Hatchback Sedan Wagon

alfa-romero

audi

bmw

Chevrolet

Dodge

Honda

Isuzu

Jaguar

Mazda

Mercedes-benz

Mercury

2

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

2

0

1

0

0

2

5

7

1

0

10

0

1

0

5

8

1

3

5

1

3

7

4

0

0

1

0

0

1

1

0

0

0

1

0

Let's apply margins and the margins_name attribute to display the row- wise and

column-wise sum of the cross tables, as shown in the following code:

apply margins and margins_name attribute to displays the row wise # and

column wise sum of the cross table

pd.crosstab(df["make"], df["body-style"],margins=True,margins_name="Total

Made")

Exploratory Data Analysis 1.69

The output of the preceding code is as follows:

Body-style

make
Convertible Hardtop Hatchback Sedan Wagon

Total

Made

alfa-romero

audi

bmw

Chevrolet

Dodge

Honda

Isuzu

Jaguar

Mazda

Mercedes-benz

Mercury

Mitsubishi

Nissan

Peugot

2

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

1

0

1

0

0

2

5

7

1

0

10

0

1

9

5

0

0

5

8

1

3

5

1

3

7

4

0

4

9

7

0

1

0

0

1

1

0

0

0

1

0

0

3

4

3

6

8

3

9

13

2

3

17

8

1

13

18

11

2. Let's see how the data is distributed by the body-type and drive_wheels

columns within the maker of car and their door type in a crosstab:

pd.crosstab([df["make"],df["num-of-doors"]], [df["body-style"],df["drive- wheels"]],

margins=True,margins_name="Total Made")

 1.70 Data Exploration and Visualization

The output of the preceding code is as follows:

Make

body-

style

drive

wheels

num-

of-

wheels

Convertible Hardtop Hatchback Sedan Wagon Total

made

 fwd rwd fwd rwd 4wd fwd rwd 4wd fwd rwd 4wd fwd rwd

alfa-

romero
two 0 2 0 0 0 0 1 0 0 0 0 0 0 3

audi four

two

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

3

1

0

0

0

0

1

0

0

0

5

1

bmw four

two

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5

3

0

0

0

0

0

0

5

3

Chevrolet four

two

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

2

Dodge four

two

0

0

0

0

0

0

0

0

0

0

1

4

0

0

0

0

3

0

0

0

0

0

1

0

0

0

5

4

Honda four

two

0

0

0

0

0

0

0

0

0

0

0

7

0

0

0

0

4

1

0

0

0

0

1

0

0

0

5

8

Isuzu four 0 0 0 0 0 0 0 0 0 1 0 0 0 1

The pivot table syntax of pd.crosstab also takes some arguments, such as

dataframe columns, values, normalize, and the aggregation function. We can apply

the aggregation function to a cross table at the same time. Passing the aggregation

function and values, which are the columns that aggregation will be applied to, gives

us a cross table of a summarized subset of the dataframe.

3. First, let's look at the average curb-weight of cars made by different

makers with respect to their body-style by applying the mean()

aggregation function to the crosstable:

Exploratory Data Analysis 1.71

values are the column in which aggregation function is to be applied # aggfunc is

the aggregation function to be applied

round() to round the output

pd.crosstab(df["make"], df["body-style"],values=df["curb-weight"], aggfunc=

'mean').round(0)

The output of the preceding code is as follows:

Body-style

make

Convertible Hardtop Hatchback Sedan Wagon

alfa-romero

audi

bmw

Chevrolet

Dodge

Honda

Isuzu

Jaguar

Mazda

Mercedes-benz

Mercury

Mitsubishi

Nissan

Peugot

2548.0

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

3685.0

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

3605.0

NaN

NaN

2008.0

NaN

2823.0

NaN

NaN

1681.0

2132.0

1970.0

2734.0

NaN

2254.0

NaN

2910.0

2377.0

2740.0

NaN

NaN

2720.0

2929.0

1909.0

2056.0

2289.0

237.0

4027.0

2361.0

3731.0

NaN

2394.0

2238.0

NaN

NaN

2954.0

NaN

NaN

2535.0

2024.0

NaN

NaN

NaN

3750.0

NaN

NaN

2452.0

3358.0

 1.72 Data Exploration and Visualization

1. Define EDA.

EDA is a process of examining the available dataset to discover patterns, spot

anomalies, test hypotheses, and check assumptions using statistical measures. In

this chapter, we are going to discuss the steps involved in performing top-notch

exploratory data analysis and get our hands dirty using some open source

databases.

2. What is data processing?

Preprocessing involves the process of pre-curating the dataset before actual

analysis. Common tasks involve correctly exporting the dataset, placing them

under the right tables, structuring them, and exporting them in the correct format.

3. What do you understand from data cleaning?

Preprocessed data must be correctly transformed for an incompleteness

check, duplicates check, error check, and missing value check. These tasks are

performed in the data cleaning stage, which involves matching the correct

record, finding inaccuracies in the dataset, understanding the overall data

quality, removing duplicate items, and filling in the missing values.

4. List down the steps in EDA

 Problem definition

 Data preparation

 Data analysis

 Development and representation of the results

5. What are different categories of data available in EDA?

 Numerical data

 Discrete data

 Continuous data

 Categorical data

6. Brief the term Bayesian analysis?

The Bayesian approach incorporates prior probability distribution

knowledge into the analysis steps as shown in the following diagram. Well,

Exploratory Data Analysis 1.73

simply put, prior probability distribution of any quantity expresses the belief

about that particular quantity before considering some evidence.

7. List the Software tools available for EDA.

 NumPy

 Pandas

 Sea born

 Sci py

 Matplotlib

8. Define matplotlib

Matplotlib provides a huge library of customizable plots, along with a

comprehensive set of back ends. It can be utilized to create professional

reporting applications, interactive analytical applications, complex dashboard

applications, web/GUI applications, embedded views, and many more. What are

the visual aids for EDA?

 Line chart

 Bar chart

 Scatter plot

 Pie chart

 Histogram

9. What is the purpose of bar chart?

This is one of the most common types of visualization that almost everyone

must have encountered. Bars can be drawn horizontally or vertically to

represent categorical variables. Bar charts are frequently used to distinguish

objects between distinct collections in order to track variations over time. In

most cases, bar charts are very convenient when the changes are large.

10. What is a scatter plot?

Scatter plots are also called scatter graphs, scatter charts, scattergrams, and

scatter diagrams. They use a Cartesian coordinates system to display values of

typically two variables for a set of data.

 1.74 Data Exploration and Visualization

Scatter plots can be constructed in the following two situations:

 When one continuous variable is dependent on another variable, which is

under the control of the observer

 When both continuous variables are independent

11. Differentiate dependent and independent variable

There are two important concepts—independent variable and dependent

variable. In statistical modeling or mathematical modeling, the values of

dependent variables rely on the values of independent variables. The dependent

variable is the outcome variable being studied. The independent variables are

also referred to as regressors.

12. What are the various steps in data transformation?

 Data cleansing

 Data refactoring

 Data analysis

13. List the different methods in merging a database.

 pd.merge() method with a left join

 pd.merge() method with a right join

 pd.merge() method with a inner join

 pd.merge() method with a outer join

14. Distinguish stacking and unstacking.

Pivoting can be done with hierarchical indexing using two actions:

 Stacking: Stack rotates from any particular column in the data to the rows.

 Unstacking: Unstack rotates from the rows into the column.

15. What are the benefits of data transformation

 Data transformation promotes interoperability between several

applications. The main reason for creating a similar format and structure in

the dataset is that it becomes compatible with other systems.

 Data transformation ensures a higher degree of data quality and protects

applications from several computational challenges such as null values,

unexpected duplicates, and incorrect indexings, as well as incompatible

structures or formats.

Exploratory Data Analysis 1.75

 Data transformation ensures higher performance and scalability for

modern analytical databases and dataframes.

16. Define mean, median, mode.

Mean/average

The mean, or average, is a number around which the observed continuous

variables are distributed. This number estimates the value of the entire dataset.

Mathematically, it is the result of the division of the sum of numbers by the

number of integers in the dataset.

Median

Given a dataset that is sorted either in ascending or descending order, the

median divides the data into two parts. The general formula for calculating the

median is as follows:

 Median position =
(n + 1)

2
 th observation

Mode

The mode is the integer that appears the maximum number of times in the

dataset. It happens to be the value with the highest frequency in the dataset. In

the x dataset in the median example, the mode is 2 because it occurs twice in

the set.

17. Define standard deviation and variance.

Standard deviation

Different Python libraries have functions to get the standard deviation of the

dataset. The NumPy library has the numpy.std(dataset) function. The statistics

library has the statistics.stdev(dataset). function. Using the pandas library, we

calculate the standard deviation in our df data frame using the df.std() function

Variance

Variance is the square of the average/mean of the difference between each

value in the dataset with its average/mean; that is, it is the square of standard

deviation.

18. What is skewness?

Skewness is a measure of the asymmetry of the variable in the dataset about

its mean. The skewness value can be positive or negative, or undefined. The

skewness value tells us whether the data is skewed or symmetric.

 1.76 Data Exploration and Visualization

19. Define kurtosis

Basically, kurtosis is a statistical measure that illustrates how heavily the tails

of distribution differ from those of a normal distribution. This technique can

identify whether a given distribution contains extreme values.

20. What are the types of kurtosis?

 Mesokurtic: If any dataset follows a normal distribution, it follows a

mesokurtic distribution. It has kurtosis around 0.

 Leptokurtic: In this case, the distribution has kurtosis greater than 3 and

the fat tails indicate that the distribution produces more outliers.

 Platykurtic: In this case, the distribution has negative kurtosis and the tails

are very thin compared to the normal distribution.

21. Define percentile

Percentiles measure the percentage of values in any dataset that lie below a

certain value. In order to calculate percentiles, we need to make sure our list is

sorted. We will use the following formula for this:

The formula for calculating

 percentile of X
 =

Number of values less than X

Total number of observations
 100

22. Define Quartile

Quartiles refer to the three data points that divide the given dataset into four

equal parts, such that each split makes 25% of the dataset. In terms of

percentiles, the 25th percentile is referred to as the first quartile (Q1), the 50th

percentile is referred to as the second quartile (Q2), and the 75th percentile is

referred to as the third quartile (Q3).

 IQR = Q3 – Q1

23. What is data aggregation?

Aggregation is the process of implementing any mathematical operation on a

dataset or a subset of it. Aggregation is one of the many techniques in pandas

that's used to manipulate the data in the dataframe for data analysis.

24. What are the group-wise operations?

The most important operations groupBy implements are aggregate, filter,

transform, and apply. An efficient way of implementing aggregation functions in

the dataset is by doing so after grouping the required columns.

Exploratory Data Analysis 1.77

25. Define group-wise transformation

Performing a transformation on a group or a column returns an object that is

indexed by the same axis length as itself. It is an operation that's used in

conjunction with groupby(). The aggregation operation has to return a reduced

version of the data, whereas the transformation operation can return a

transformed version of the full data

26. What is a pivot table?

The pandas.pivot_table() function creates a spreadsheet-style pivot table as a

dataframe. The levels in the pivot table will be stored in MultiIndex objects

(hierarchical indexes) on the index and columns of the resulting dataframe.The

simplest pivot tables must have a dataframe and an index/list of the index.

27. What is a cross tabulation?

We can customize the pandas dataframe with another technique called cross-

tabulation. This allows us to cope with groupby and aggregation for better data

analysis. pandas has the crosstab function, which helps when it comes to

building a cross-tabulation table.

28. What are the transformation techniques?

 Performing data deduplication

 Replacing values

 Handling missing data

 Filling missing values

1. Explain the various stages in EDA.

2. Write down the steps in EDA, Explain.

3. Explain the software tools available for EDA

4. Elaborate in detail the visual aids for EDA

5. Elucidate the different transformation techniques in EDA

6. Define pivot table and cross tabulation, Explain.

UNIT II

VISUALIZING USING

MATPLOTLIB

SYLLABUS

Importing Matplotlib – Simple line plots – Simple scatter plots –

visualizing errors – density and contour plots – Histograms – legends

– colors – subplots – text and annotation – customization – three

dimensional plotting - Geographic Data with Basemap - Visualization

with Seaborn.

 Importing Matplotlib

 Simple Line Plots

 Simple Scatter Plots

 Visualizing Errors

 Density and Contour Plots

 Histograms

 Legends

 Colors

 Subplots

 Text and Annotation

 Customization

 Three Dimensional Plotting

 Geographic Data with Basemap

 Visualization with Seaborn

UNIT II

VISUALIZING USING

MATPLOTLIB

Matplotlib is a low level graph plotting library in python that serves as a

visualization utility. Matplotlib was created by John D. Hunter. Matplotlib is open

source and we can use it freely. Matplotlib is mostly written in python, a few

segments are written in C, Objective-C and Javascript for Platform compatibility.

Matplotlib is a Python library that helps to plot graphs. It is used in data visualization

and graphical plotting. To use matplotlib, we need to install it.

Step 1 − Make sure Python and pip is preinstalled on your system

Type the following commands in the command prompt to check is python and pip

is installed on your system.

To check Python

python --version

If python is successfully installed, the version of python installed on your

system will be displayed.

To check pip

pip -V

The version of pip will be displayed, if it is successfully installed on your

system.

Step 2 − Install Matplotlib

Matplotlib can be installed using pip. The following command is run in the

command prompt to install Matplotlib.

 2.2 Data Exploration and Visualization

pip install matplotlib

This command will start downloading and installing packages related to the

matplotlib library. Once done, the message of successful installation will be

displayed.

Step 3 − Check if it is installed successfully

To verify that matplotlib is successfully installed on your system, execute the

following command in the command prompt. If matplotlib is successfully installed,

the version of matplotlib installed will be displayed.

import matplotlib

matplotlib.__version__

Pyplot

Most of the Matplotlib utilities lies under the pyplot submodule, and are usually

imported under the plt alias:

import matplotlib.pyplot as plt

Now the Pyplot package can be referred to as plt.

Fig. 2.1.

Example

Draw a line in a diagram from position (0,0) to position (6,250):

Visualizing using Matplotlib 2.3

import matplotlib.pyplot as plt

import numpy as np

xpoints=np.array([0, 6])

ypoints=np.array([0, 250])

plt.plot(xpoints, ypoints)

plt.show()

Perhaps the simplest of all plots is the visualization of a single

function y=f(x)y=f(x). Here we will take a first look at creating a simple plot of this

type. As with all the following sections, we'll start by setting up the notebook for

plotting and importing the packages we will use:

import matplotlib.pyplot as plt

plt.style.use('seaborn-whitegrid')

import numpy as np

For all Matplotlib plots, we start by creating a figure and an axes. In their simplest

form, a figure and axes can be created as follows:

fig = plt.figure()

ax = plt.axes()

In Matplotlib, the figure (an instance of the class plt.Figure) can be thought of as a

single container that contains all the objects representing axes, graphics, text, and

labels. The axes (an instance of the class plt.Axes) is what we see above: a bounding

box with ticks and labels, which will eventually contain the plot elements that make

up our visualization.

Once we have created an axes, we can use the ax.plot function to plot some data.

Let's start with a simple sinusoid:

fig = plt.figure()

ax = plt.axes()

x = np.linspace(0, 10, 1000)

 2.4 Data Exploration and Visualization

ax.plot(x, np.sin(x));

Alternatively, we can use the pylab interface and let the figure and axes be created

for us in the background,

plt.plot(x, np.sin(x));

If we want to create a single figure with multiple lines, we can simply call

the plot function multiple times:

plt.plot(x, np.sin(x))

plt.plot(x, np.cos(x));

Adjusting the Plot: Line Colors and Styles

The first adjustment you might wish to make to a plot is to control the line colors

and styles. The plt.plot() function takes additional arguments that can be used to

specify these. To adjust the color, you can use the color keyword, which accepts a

string argument representing virtually any imaginable color. The color can be

specified in a variety of ways:

plt.plot(x, np.sin(x - 0), color='blue') # specify color by name

plt.plot(x, np.sin(x - 1), color='g') # short color code (rgbcmyk)

plt.plot(x, np.sin(x - 2), color='0.75') # Grayscale between 0 and 1

plt.plot(x, np.sin(x - 3), color='#FFDD44') # Hex code (RRGGBB from 00 to FF)

plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB tuple, values 0 to 1

plt.plot(x, np.sin(x - 5), color='chartreuse'); # all HTML color names supported

If no color is specified, Matplotlib will automatically cycle through a set of

default colors for multiple lines.

Similarly, the line style can be adjusted using the linestyle keyword:

plt.plot(x, x + 0, linestyle='solid')

plt.plot(x, x + 1, linestyle='dashed')

plt.plot(x, x + 2, linestyle='dashdot')

plt.plot(x, x + 3, linestyle='dotted');

For short, you can use the following codes:

Visualizing using Matplotlib 2.5

plt.plot(x, x + 4, linestyle='-') # solid

plt.plot(x, x + 5, linestyle='--') # dashed

plt.plot(x, x + 6, linestyle='-.') # dashdot

plt.plot(x, x + 7, linestyle=':'); # dotted

If you would like to be extremely terse, these linestyle and color codes can be

combined into a single non-keyword argument to the plt.plot() function:

plt.plot(x, x + 0, '-g') # solid green

plt.plot(x, x + 1, '--c') # dashed cyan

plt.plot(x, x + 2, '-.k') # dashdot black

plt.plot(x, x + 3, ':r'); # dotted red

Adjusting the Plot: Axes Limits

Matplotlib does a decent job of choosing default axes limits for your plot, but

sometimes it's nice to have finer control. The most basic way to adjust axis limits is

to use the plt.xlim() and plt.ylim() methods:

plt.plot(x, np.sin(x))

plt.xlim(-1, 11)

plt.ylim(-1.5, 1.5);

If for some reason you'd like either axis to be displayed in reverse, you can simply

reverse the order of the arguments:

plt.plot(x, np.sin(x))

plt.xlim(10, 0)

plt.ylim(1.2, -1.2);

A useful related method is plt.axis() (note here the potential confusion

between axes with an e, and axis with an i). The plt.axis() method allows you to set

the x and y limits with a single call, by passing a list which specifies [xmin, xmax,

ymin, ymax]:

plt.plot(x, np.sin(x))

plt.axis([-1, 11, -1.5, 1.5]);

 2.6 Data Exploration and Visualization

The plt.axis() method goes even beyond this, allowing you to do things like

automatically tighten the bounds around the current plot:

plt.plot(x, np.sin(x))

plt.axis('tight');

It allows even higher-level specifications, such as ensuring an equal aspect ratio

so that on your screen, one unit in x is equal to one unit in y:

plt.plot(x, np.sin(x))

plt.axis('equal');

Labeling Plots

As the last piece of this section, we'll briefly look at the labeling of plots: titles,

axis labels, and simple legends.

Titles and axis labels are the simplest such labels—there are methods that can be

used to quickly set them:

plt.plot(x, np.sin(x))

plt.title("A Sine Curve")

plt.xlabel("x")

plt.ylabel("sin(x)");

The position, size, and style of these labels can be adjusted using optional

arguments to the function. For more information, see the Matplotlib documentation

and the docstrings of each of these functions.

When multiple lines are being shown within a single axes, it can be useful to

create a plot legend that labels each line type. Again, Matplotlib has a built-in way of

quickly creating such a legend. It is done via the (you guessed it)plt.legend() method.

plt.plot(x, np.sin(x), '-g', label='sin(x)')

plt.plot(x, np.cos(x), ':b', label='cos(x)')

plt.axis('equal')

Visualizing using Matplotlib 2.7

plt.legend();

As you can see, the plt.legend() function keeps track of the line style and color,

and matches these with the correct label. More information on specifying and

formatting plot legends can be found in the plt.legend docstring

Another commonly used plot type is the simple scatter plot, a close cousin of the

line plot. Instead of points being joined by line segments, here the points are

represented individually with a dot, circle, or other shape. We‟ll start by setting up

the notebook for plotting and importing the functions we will use:

import matplotlib.pyplot as plt

plt.style.use('seaborn-whitegrid')

import numpy as np

Scatter Plots with plt.plot

In the previous section we looked at plt.plot/ax.plot to produce line plots. It turns

out that this same function can produce scatter plots as well:

x = np.linspace(0, 10, 30)

y = np.sin(x)

plt.plot(x, y, 'o', color='black');

The third argument in the function call is a character that represents the type of

symbol used for the plotting. Just as you can specify options such as '-', '--' to control

the line style, the marker style has its own set of short string codes. The full list of

available symbols can be seen in the documentation of plt.plot, or in Matplotlib's

online documentation. Most of the possibilities are fairly intuitive, and we'll show a

number of the more common ones here:

rng = np.random.RandomState(0)

for marker in ['o', '.', ',', 'x', '+', 'v', '^', '<', '>', 's', 'd']:

 plt.plot(rng.rand(5), rng.rand(5), marker,

 label="marker='{0}'".format(marker))

 2.8 Data Exploration and Visualization

plt.legend(numpoints=1)

plt.xlim(0, 1.8);

Additional keyword arguments to plt.plot specify a wide range of properties of the

lines and markers:

plt.plot(x, y, '-p', color='gray',

 markersize=15, linewidth=4,

 markerfacecolor='white',

 markeredgecolor='gray',

 markeredgewidth=2)

plt.ylim(-1.2, 1.2);

Scatter Plots with plt.scatter

A second, more powerful method of creating scatter plots is the plt.scatter

function, which can be used very similarly to the plt.plot function:

plt.scatter(x, y, marker='o');

The primary difference of plt.scatter from plt.plot is that it can be used to create

scatter plots where the properties of each individual point (size, face color, edge

color, etc.) can be individually controlled or mapped to data.

Let's show this by creating a random scatter plot with points of many colors and

sizes. In order to better see the overlapping results, we'll also use the alpha keyword

to adjust the transparency level:

rng = np.random.RandomState(0)

x = rng.randn(100)

y = rng.randn(100)

colors = rng.rand(100)

sizes = 1000 * rng.rand(100)

plt.scatter(x, y, c=colors, s=sizes, alpha=0.3,cmap='viridis')

plt.colorbar(); # show color scale

Visualizing using Matplotlib 2.9

Notice that the color argument is automatically mapped to a color scale (shown

here by the colorbar() command), and that the size argument is given in pixels. In

this way, the color and size of points can be used to convey information in the

visualization, in order to visualize multidimensional data.

For example, we might use the Iris data from Scikit-Learn, where each sample is

one of three types of flowers that has had the size of its petals and sepals carefully

measured:

import load_iris

iris = load_iris()

features = iris.data.T

plt.scatter(features[0],features[1],alpha=0.2,s=100*features[3],c=iris.target,

cmap='viridis')

plt.xlabel(iris.feature_names[0])

plt.ylabel(iris.feature_names[1]);

We can see that this scatter plot has given us the ability to simultaneously explore

four different dimensions of the data: the (x, y) location of each point corresponds to

the sepal length and width, the size of the point is related to the petal width, and the

color is related to the particular species of flower. Multicolor and multifeature scatter

plots like this can be useful for both exploration and presentation of data.

Plot Versus Scatter:

Aside from the different features available in plt.plot and plt.scatter, why might

you choose to use one over the other? While it doesn't matter as much for small

amounts of data, as datasets get larger than a few thousand points, plt.plot can be

noticeably more efficient than plt.scatter. The reason is that plt.scatter has the

capability to render a different size and/or color for each point, so the renderer must

do the extra work of constructing each point individually. In plt.plot, on the other

hand, the points are always essentially clones of each other, so the work of

determining the appearance of the points is done only once for the entire set of data.

For large datasets, the difference between these two can lead to vastly different

performance, and for this reason, plt.plot should be preferred over plt.scatter for large

datasets.

 2.10 Data Exploration and Visualization

For any scientific measurement, accurate accounting for errors is nearly as

important, if not more important, than accurate reporting of the number itself. In

visualization of data and results, showing these errors effectively can make a plot

convey much more complete information.

Basic Errorbars

A basic errorbar can be created with a single Matplotlib function call:

import matplotlib.pyplot as plt

plt.style.use('seaborn-whitegrid')

import numpy as np

x = np.linspace(0, 10, 50)

dy = 0.8

y = np.sin(x) + dy * np.random.randn(50)

plt.errorbar(x, y, yerr=dy, fmt='.k');

Here the fmt is a format code controlling the appearance of lines and points, and

has the same syntax as the shorthand used in plt.plot, outlined in Simple Line

Plots and Simple Scatter Plots.

In addition to these basic options, the errorbar function has many options to fine-

tune the outputs. Using these additional options you can easily customize the

aesthetics of your errorbar plot.

plt.errorbar(x, y, yerr=dy, fmt='o', color='black',

 ecolor='lightgray', elinewidth=3, capsize=0);

In addition to these options, you can also specify horizontal errorbars (xerr), one-

sided errorbars, and many other variants. For more information on the options

available, refer to the docstring of plt.errorbar.

Continuous Errors

In some situations it is desirable to show errorbars on continuous quantities.

Though Matplotlib does not have a built-in convenience routine for this type of

Visualizing using Matplotlib 2.11

application, it's relatively easy to combine primitives like plt.plot and

plt.fill_between for a useful result.

Here we'll perform a simple Gaussian process regression, using the Scikit-Learn

API This is a method of fitting a very flexible non-parametric function to data with a

continuous measure of the uncertainty. We won't delve into the details of Gaussian

process regression at this point, but will focus instead on how you might visualize

such a continuous error measurement:

Import Gaussian Process

define the model and draw some data

model = lambda x: x * np.sin(x)

xdata = np.array([1, 3, 5, 6, 8])

ydata = model(xdata)

Compute the Gaussian process fit

gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1E-

1,random_start=100)

gp.fit(xdata[:, np.newaxis], ydata)

xfit = np.linspace(0, 10, 1000)

yfit, MSE = gp.predict(xfit[:, np.newaxis], eval_MSE=True)

dyfit = 2 * np.sqrt(MSE) # 2*sigma ~ 95% confidence region

We now have xfit, yfit, and dyfit, which sample the continuous fit to our data. We

could pass these to the plt.errorbar function as above, but we don't really want to plot

1,000 points with 1,000 errorbars. Instead, we can use the plt.fill_between function

with a light color to visualize this continuous error:

Visualize the result

plt.plot(xdata, ydata, 'or')

plt.plot(xfit, yfit, '-', color='gray')

plt.fill_between(xfit, yfit - dyfit, yfit + dyfit,

 color='gray', alpha=0.2)

plt.xlim(0, 10);

 2.12 Data Exploration and Visualization

Note what we've done here with the fill_between function: we pass an x value,

then the lower y-bound, then the upper y-bound, and the result is that the area

between these regions is filled. The resulting figure gives a very intuitive view into

what the Gaussian process regression algorithm is doing: in regions near a measured

data point, the model is strongly constrained and this is reflected in the small model

errors. In regions far from a measured data point, the model is not strongly

constrained, and the model errors increase.

Sometimes it is useful to display three-dimensional data in two dimensions using

contours or color-coded regions. There are three Matplotlib functions that can be

helpful for this task: plt.contour for contour plots, plt.contourf for filled contour

plots, and plt.imshow for showing images. This section looks at several examples of

using these. We'll start by setting up the notebook for plotting and importing the

functions we will use:

import matplotlib.pyplot as plt

plt.style.use('seaborn-white')

import numpy as np

Visualizing a Three-Dimensional Function

We'll start by demonstrating a contour plot using a function z=f(x,y)z=f(x,y),

using the following particular choice for ff (we've seen this before in Computation on

Arrays: Broadcasting, when we used it as a motivating example for array

broadcasting):

def f(x, y):

return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)

A contour plot can be created with the plt.contour function. It takes three

arguments: a grid of x values, a grid of y values, and a grid of z values.

The x and y values represent positions on the plot, and the z values will be

represented by the contour levels. Perhaps the most straightforward way to prepare

Visualizing using Matplotlib 2.13

such data is to use the np.meshgrid function, which builds two-dimensional grids

from one-dimensional arrays:

x = np.linspace(0, 5, 50)

y = np.linspace(0, 5, 40)

X, Y = np.meshgrid(x, y)

Z = f(X, Y)

Now let's look at this with a standard line-only contour plot:

plt.contour(X, Y, Z, colors='black');

Notice that by default when a single color is used, negative values are represented

by dashed lines, and positive values by solid lines. Alternatively, the lines can be

color-coded by specifying a colormap with the cmap argument. Here, we'll also

specify that we want more lines to be drawn—20 equally spaced intervals within the

data range:

plt.contour(X, Y, Z, 20, cmap='RdGy');

Here we chose the RdGy (short for Red-Gray) colormap, which is a good choice

for centered data. Matplotlib has a wide range of colormaps available, which you can

easily browse in IPython by doing a tab completion on the plt.cm module:

plt.cm.<TAB>

Our plot is looking nicer, but the spaces between the lines may be a bit distracting.

We can change this by switching to a filled contour plot using

the plt.contourf() function (notice the f at the end), which uses largely the same

syntax as plt.contour().Additionally, we'll add a plt.colorbar() command, which

automatically creates an additional axis with labeled color information for the plot:

plt.contourf(X, Y, Z, 20, cmap='RdGy')

plt.colorbar();

The colorbar makes it clear that the black regions are "peaks," while the red

regions are "valleys."

One potential issue with this plot is that it is a bit "splotchy." That is, the color

steps are discrete rather than continuous, which is not always what is desired. This

 2.14 Data Exploration and Visualization

could be remedied by setting the number of contours to a very high number, but this

results in a rather inefficient plot: Matplotlib must render a new polygon for each

step in the level. A better way to handle this is to use the plt.imshow() function,

which interprets a two-dimensional grid of data as an image.

The following code shows this:

plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',cmap='RdGy')

plt.colorbar()

plt.axis(aspect='image');

There are a few potential gotchas with imshow(), however:

 plt.imshow() doesn't accept an x and y grid, so you must manually specify

the extent [xmin, xmax, ymin, ymax] of the image on the plot.

 plt.imshow() by default follows the standard image array definition where

the origin is in the upper left, not in the lower left as in most contour plots.

This must be changed when showing gridded data.

 plt.imshow() will automatically adjust the axis aspect ratio to match the

input data; this can be changed by setting, for

example, plt.axis(aspect='image') to make x and y units match.

 Finally, it can sometimes be useful to combine contour plots and image

plots. For example, here we'll use a partially transparent background image

(with transparency set via the alpha parameter) and overplot contours with

labels on the contours themselves (using the plt.clabel() function):

contours = plt.contour(X, Y, Z, 3, colors='black')

plt.clabel(contours, inline=True, fontsize=8)

plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',cmap='RdGy', alpha=0.5)

plt.colorbar();

The combination of these three functions—plt.contour, plt.contourf,

and plt.imshow—gives nearly limitless possibilities for displaying this sort of three-

dimensional data within a two-dimensional plot.

Visualizing using Matplotlib 2.15

A histogram is basically used to represent data provided in a form of some groups.

It is accurate method for the graphical representation of numerical data distribution.

It is a type of bar plot where X-axis represents the bin ranges while Y-axis gives

information about frequency.

Creating a Histogram

To create a histogram the first step is to create bin of the ranges, then distribute

the whole range of the values into a series of intervals, and count the values which

fall into each of the intervals. Bins are clearly identified as consecutive, non-

overlapping intervals of variables. The matplotlib.pyplot.hist() function is used to

compute and create histogram of x .

The following table shows the parameters accepted by matplotlib.pyplot.hist()

function :

Attribute Parameter

x array or sequence of array

bins optional parameter contains integer or sequence or

strings

density optional parameter contains boolean values

range optional parameter represents upper and lower range

of bins

histtype optional parameter used to create type of histogram

[bar, barstacked, step, stepfilled], default is “bar”

align optional parameter controls the plotting of histogram

[left, right, mid]

weights optional parameter contains array of weights having

same dimensions as x

bottom location of the baseline of each bin

rwidth optional parameter which is relative width of the bars

with respect to bin width

 2.16 Data Exploration and Visualization

Attribute Parameter

color optional parameter used to set color or sequence of

color specs

label optional parameter string or sequence of string to

match with multiple datasets

log optional parameter used to set histogram axis on log

scale

Let‟s create a basic histogram of some random values. Below code creates a

simple histogram of some random values:

import numpy as np

 # Creating dataset

a = np.array([22, 87, 5, 43, 56,73, 55, 54, 11,20, 51, 5, 79, 31,27])

 # Creating histogram

fig, ax = plt.subplots(figsize =(10, 7))

ax.hist(a, bins = [0, 25, 50, 75, 100])

 # Show plot plt.show()

Output :

Fig. 2.2.

Visualizing using Matplotlib 2.17

Customization of Histogram

Matplotlib provides a range of different methods to customize

histogram. matplotlib.pyplot.hist() function itself provides many attributes with the

help of which we can modify a histogram. The hist() function provide a patches

object which gives access to the properties of the created objects, using this we can

modify the plot according to our will.

Example 1:

import matplotlib.pyplot as plt

import numpy as np

from matplotlib import colors

from matplotlib.ticker import PercentFormatter

 # Creating dataset

np.random.seed(23685752)

N_points = 10000

n_bins = 20

 # Creating distribution

x = np.random.randn(N_points)

y = .8 ** x + np.random.randn(10000) + 25

 # Creating histogram

fig, axs = plt.subplots(1, 1,

 figsize =(10, 7),

 tight_layout = True)

 axs.hist(x, bins = n_bins)

 # Show plot

plt.show()

 2.18 Data Exploration and Visualization

Output :

Example 2:

The code below modifies the above histogram for a better view and accurate

readings.

import matplotlib.pyplot as plt

import numpy as np

from matplotlib import colors

from matplotlib.ticker import PercentFormatter

 # Creating dataset

np.random.seed(23685752)

N_points = 10000

n_bins = 20

 # Creating distribution

x = np.random.randn(N_points)

y = .8 ** x + np.random.randn(10000) + 25

legend = ['distribution']

Visualizing using Matplotlib 2.19

 # Creating histogram

fig, axs = plt.subplots(1, 1,

 figsize =(10, 7),

 tight_layout = True)

Remove axes splines

for s in ['top', 'bottom', 'left', 'right']:

 axs.spines[s].set_visible(False)

 # Remove x, y ticks

axs.xaxis.set_ticks_position('none')

axs.yaxis.set_ticks_position('none')

 # Add padding between axes and labels

axs.xaxis.set_tick_params(pad = 5)

axs.yaxis.set_tick_params(pad = 10)

 # Add x, y gridlines

 axs.grid(b = True, color ='grey',

 linestyle ='-.', linewidth = 0.5,

 alpha = 0.6)

Add Text watermark

fig.text(0.9, 0.15, 'Jeeteshgavande30',

 fontsize = 12,

 color ='red',

 ha ='right',

 va ='bottom',

 alpha = 0.7)

 # Creating histogram

N, bins, patches = axs.hist(x, bins = n_bins)

 # Setting color

fracs = ((N**(1 / 5)) / N.max())

 2.20 Data Exploration and Visualization

norm = colors.Normalize(fracs.min(), fracs.max())

 for thisfrac, thispatch in zip(fracs, patches):

 color = plt.cm.viridis(norm(thisfrac))

 thispatch.set_facecolor(color)

 # Adding extra features

plt.xlabel("X-axis")

plt.ylabel("y-axis")

plt.legend(legend)

plt.title('Customized histogram')

 # Show plot

plt.show()

Output :

Fig. 2.3.

A legend is basically an area in the plot which describes the elements present in

the graph. Matplotlib provides an inbuilt method named legend() for this purpose.

The syntax of the method is below :

Visualizing using Matplotlib 2.21

Example: Adding Simple legend

Import libraries

import matplotlib.pyplot as plt

 # Creating plot

 plt.plot([1, 2, 3, 4])

 plt.title('simple legend example ')

 # Creating legend

plt.legend(['simple legend example'])

 # Show plot

plt.show()

Output:

Fig. 2.4.

To create a legend with a color box, patches are used provided by

the matplotlib.patches module. A patch nothing but a 2D artist with face color and

edge color. Below is a simple example of this:

 2.22 Data Exploration and Visualization

Example 1:

Import libraries

import matplotlib.patches as mpatches

import matplotlib.pyplot as plt

 # Creating plot

plt.plot([1, 2, 3, 4], color='blue')

 plt.title('simple legend example ')

 # Creating legend with color box

blue_patch = mpatches.Patch(color='blue', label='blue legend')

plt.legend(handles=[blue_patch])

Show plot

plt.show()

Output:

Fig. 2.5.

Visualizing using Matplotlib 2.23

What is a Subplot?

There are many cases where you will want to generate a plot that contains several

smaller plots within it. That is exactly what a subplot is! A common version of the

subplot is the 4x4 subplot. An example of the 4x4 subplot is below:

Fig. 2.6.

Subplots can be very complicated to create when done properly. As an example,

consider the code that I used to create the above 4 4 subplot:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

from datetime import datetime

 2.24 Data Exploration and Visualization

tech_stocks_data =

pd.read_csv('https://raw.githubusercontent.com/nicholasmccullum/python-

visualization/master/tech_stocks/GOOG_MSFT_FB_AMZN_data.csv')

tech_stocks_data.sort_values('Period', ascending = True, inplace = True)

google = tech_stocks_data['Alphabet Inc Price']

amazon = tech_stocks_data['Amazon.com Inc Price']

facebook = tech_stocks_data['Facebook Inc Price']

microsoft = tech_stocks_data['Microsoft Corp Price']

dates = tech_stocks_data['Period']

x = []

for date in tech_stocks_data['Period']:

 x.append(datetime.strptime(date, '%Y-%m-%d %H:%M:%S').year)

plt.figure(figsize=(16,12))

#Plot 1

plt.subplot(2,2,1)

plt.xticks(np.arange(0, len(x) + 1)[::365], x[::365])

plt.plot(dates, google)

plt.title('Alphabet (GOOG) (GOOGL) Stock Price')

#Plot 2

plt.subplot(2,2,2)

plt.xticks(np.arange(0, len(x) + 1)[::365], x[::365])

plt.plot(dates, amazon)

plt.title('Amazon (AMZN)) Stock Price')

#Plot 3

plt.subplot(2,2,3)

Visualizing using Matplotlib 2.25

plt.xticks(np.arange(0, len(x) + 1)[::365], x[::365])

plt.plot(dates, facebook)

plt.title('Facebook (FB) Stock Price')

#Plot 4

plt.subplot(2,2,4)

plt.xticks(np.arange(0, len(x) + 1)[::365], x[::365])

plt.plot(dates, microsoft)

plt.title('Microsoft (MSFT) Stock Price')

How To Create Subplots in Python Using Matplotlib?

We can create subplots in Python using matplotlib with the subplot method, which

takes three arguments:

nrows: The number of rows of subplots in the plot grid.

ncols: The number of columns of subplots in the plot grid.

index: The plot that you have currently selected.

The nrows and ncols arguments are relatively straightforward, but

the index argument may require some explanation. It starts at 1 and moves through

each row of the plot grid one-by-one. When it reaches the end of a row, it will move

down to the first entry of the next row.

A few examples of selecting specific subplots within a plot grid are shown below:

plt.subplot(3,3,5)

#Selects the middle entry of the second row in the 3x3 subplot grid

plt.subplot(1,2,2)

#Selects the second entry in a 1x2 subplot grid

plt.subplot(4,4,16)

#Selects the last entry in a 4x4 subplot grid

We will work through two examples of how to create subplot grids before

concluding this lesson.

 2.26 Data Exploration and Visualization

Example #1: A 22 Subplot Grid

First, let's import the Iris data set:

iris_data =

pd.read_json('https://raw.githubusercontent.com/nicholasmccullum/python-

visualization/master/iris/iris.json')

Using the Iris data set, let's create a 2 2 subplot with a subplot for each of the

following variables (in the order they're listed):

sepalLength

sepalWidth

petalLength

petalWidth

Make each subplot a histogram with X bins. Make sure to give each subplot a

reasonable title so that an outside reader could understand the data.

Once you have attempted this on your own, you can view the code below for a

full solution:

plt.subplot(2,2,1)

plt.hist(iris_data['sepalLength'], bins = 15)

plt.title('A Histogram of Sepal Lengths from the Iris Data Set')

plt.subplot(2,2,2)

plt.hist(iris_data['sepalWidth'], bins = 15)

plt.title('A Histogram of Sepal Widths from the Iris Data Set')

plt.subplot(2,2,3)

plt.hist(iris_data['petalLength'], bins = 15)

plt.title('A Histogram of Petal Lengths from the Iris Data Set')

plt.subplot(2,2,4)

plt.hist(iris_data['petalWidth'], bins = 15)

plt.title('A Histogram of Petal Widths from the Iris Data Set')

Visualizing using Matplotlib 2.27

Fig. 2.7.

Example #2: A 2 3 Subplot Grid

Let's create a 2 3 subplot with the following plots (in the order they're listed):

chlorides

quality

alcohol

density

total sulfur dioxide

citric acid

 2.28 Data Exploration and Visualization

Let's make each subplot a scatterplot, with the x-variable for each scatterplot

being fixed acidity. Name each plot with an appropriate title for an outside reader to

understand it.

Give this a try yourself before proceeding!

Once you have attempted this on your own, you can view the code below for a

full solution:

x = wine_data['fixed acidity']

plt.subplot(2,3,1)

plt.scatter(x, wine_data['chlorides'])

plt.title('Chlorides plotted against Fixed Acidity')

plt.subplot(2,3,2)

plt.scatter(x, wine_data['quality'])

plt.title('Quality plotted against Fixed Acidity')

plt.subplot(2,3,3)

plt.scatter(x, wine_data['alcohol'])

plt.title('Alcohol plotted against Fixed Acidity')

plt.subplot(2,3,4)

plt.scatter(x, wine_data['density'])

plt.title('Density plotted against Fixed Acidity')

plt.subplot(2,3,5)

plt.scatter(x, wine_data['total sulfur dioxide'])

plt.title('Total Sulfur Dioxide plotted against Fixed Acidity')

plt.subplot(2,3,6)

plt.scatter(x, wine_data['citric acid'])

plt.title('Citric Acid plotted against Fixed Acidity')

Visualizing using Matplotlib 2.29

Fig. 2.8.

Annotate using text

Matplotlib offers the ability to place text within a chart. The only condition is it

requires the positioning co-ordinate of the x and y-axis to place the text.

1. Annotate graph: plt.annotate()

To input text using matplotlib‟s “plt.annotate()” we need to declare two things,

which is the “xy” coordinates which tells matplotlib where we want to input our text

and the “s” attribute.

There is also an added attribute aswell, this is called the “arrowprops” attribute,

which basically allows us to input an arrow pointing towards a specific point in our

graph.

 2.30 Data Exploration and Visualization

If arrows and texts are used within the “plt.annotate()” function, you can also use

two xy coordinates, one for the arrow and the other for the text. This can be declared

via “xy()” and “xytext()” respectively.

These are the following parameters used:

s : The text of the annotation

xy : The point (x,y) to annotate

xytext : The position (x,y) to place the text at (If None, defaults to xy)

arrowprops : The properties used to draw an arrow between the positions xy and

xytext

#input annotation

plt.annotate(

Label and coordinate

'My Money Goal Has been Reached!', xy=(2003, 14000), xytext=(2002, 20000),

#Arrow Pointer

arrowprops=dict(facecolor='red'))

Fig. 2.9.

!pip install matplotlib # install matplotlib

import matplotlib.pyplot as plt #import matplotlib

Visualizing using Matplotlib 2.31

#Create our x, y values and variance

year = [2001, 2002, 2003, 2004, 2005, 2006]

income = [1000, 5000, 13000, 14000. 15000, 26000]

#plot our graph

ax = plt.plot(year, income)

#input annotation

plt.annotate(

Label and coordinate

„My Money Goal Has been Reached!‟, xy=(2003, 14000), xytext=(2002, 20000),

#Arrow Pointer

arrowprops=dict(facecolor=‟red‟))

#output chart

plt.show()

2. Annotate graph: ax.text() or plt.text()

Another way to annotate text is to use the function “ax.text()” which is also

known as Axes.text(). This function is a much simpler way to input text, as

ax.text() only adds the text to the Axes at locations x, y in data coordinates. This

exact function can also be called using plt.text() as well.

x : The x axis position to place text

y : The y axis position to place text

s : String to input text

fontsize: change the size of the font

ha: horizontal alignment

va: vertical alignment

ax.text(0.5, 0.5, 'Hello World!', size=24, ha='center', va='center')

 2.32 Data Exploration and Visualization

Fig. 2.10.

!pip install matplotlib # install matplotlib

import matplotlib.pyplot as plt #import matplotlib

#create our graph

fig, ax = plt.subplots()

#create our annotations

ax.text(0.5, 0.5, „Hello World!‟, size=24, ha=‟center‟, va=‟center‟)

3. Placing a text box: ax.text()

Similarly, you can also place text boxes with our “ax.text()” function, the text

box is created through the use of the “bbox” function. The only difference between

our previous step and this current one is we require to create a new variable called

“textbox” which helps create our text box.

Below is the exact function to use for the current text box used.

Create our text box

textbox = dict(boxstyle='round', facecolor='wheat', alpha=0.5)

place a text box in upper left in axes coords input our text box

ax.text(0.05, 0.95, 'This is a histogram', transform=ax.transAxes, fontsize=14,

Visualizing using Matplotlib 2.33

 verticalalignment='top', bbox=textbox)

Fig. 2.11.

!pip install matplotlib #download matplotlib

import numpy as np

import matplotlib.pyplot as plt #import relevant packages

#create out graph

np.random.seed(19680801)

fig, ax = plt.subplots ()

ax.hist(x, 50)

Create out text box

textbox = dict(boxstyle=‟round‟, facecolor=‟wheat‟, alpha=0.5)

#place a text box in upper left in axes cords input out text box

ax.text(0.05, 0.95, „This is a histogram‟, transform=ax.transAxes, fontsize = 14,

 verticalalignment=‟top‟, bbox=textbox)

plt.show()

 2.34 Data Exploration and Visualization

Annotate using shapes

Another way to annotate your graph is to input shapes, this can include things

such as a vertical line, a rectangle and many more objects which highlight a spot

within a specific graph. Combining shapes with text annotations will definitely create

a better solution to annotating graphs.

4. Annotate using a vertical line: plt.axvline()

Matplotlib allows the ability to input a vertical line to highlight a specific spot of a

graph, by doing so we can identify key statistics such as in our current graph where I

used a line annotation and also a text annotation to visualize the significance of the

2008 Great financial crash.To create a vertical line annotation we can use the

function plt.axvline() this basically creates a vertical line from a specified x-axis

spot.

x : The x axis position to place vertical line

color : Color of the line graph

linestyle : Line graph style

plt.axvline(2007, color='r', linestyle='dashed')

Fig. 2.12.

!pip install matplotlib #download matplotlib

Visualizing using Matplotlib 2.35

import matplotlib.pyplot as plt #import relevant packages

#create a graph

year=[2005,2006, 2007, 2008, 2009, 2010, 2011]

income=[45000, 60000,70000,50000,60000,70000,80000]

plt.plot(year, income)

#Create our line graph

plt.axvline(2007, color=‟r‟, linestyle=‟dashed‟)

#input some text

plt.text(2007.5, 70000, s=‟great financial crash)

5. Annotate using a horizontal line: plt.axhline()

Similarly, you can also annotate using a horizontal line, this can simply be created

using the function plt.axhline(). The only difference in the parameters between this

function and the previous plt.axvline() is the requirement of the y axis position.

y : The y axis position to place vertical line

color : Color of the line graph

linestyle : Line graph style

plt.axhline(60000, color='r', linestyle='dashed')

Fig. 2.13.

 2.36 Data Exploration and Visualization

!pip install matplotlib #download matplotlib

import matplotlib.pyplot as plt #import relevant packages

#create a graph

year=[2005,2006, 2007, 2008, 2009, 2010, 2011]

income=[45000, 60000,70000,50000,60000,70000,80000]

plt.plot(year, income)

#Create our line graph

plt.axhline(60000, color=‟r‟, linestyle=‟dashed‟)

#input some text

plt.text(2007.5, 70000, s=break even price‟)

6. Highlight using a rectangle: ax.add_patch(Rectangle())

To input a rectangle in matplotlib we need to import our rectangle package, this

can be declared using the function “from matplotlib.patches import Rectangle“.

Afterwards, we can now use our function “ax.add_patch(Rectangle())”.

Fig. 2.14.

Visualizing using Matplotlib 2.37

These are the following parameters used in the function

xy : The xy axis starting point for the lower left side of the rectangle

width: the width span of the rectangle

height: the height span of the rectangle

color: the color of the rectangle

ax.add_patch(Rectangle((2005, 55000), 6, 5000, color="red"))

!pip install matplotlib #download matplotlib

import matplotlib.pyplot as plt #import relevant packages

from matplotlib.patches import Rectangle

#create a graph

year=[2005,2006, 2007, 2008, 2009, 2010, 2011]

income=[45000, 60000,70000,50000,60000,70000,80000]

fig, ax = plt.subplots()

ax.plot(year, income)

#input our rectangle

ax.add_patch(Rectangle((2005, 55000), 6, 5000, color=”red”))

7. Highlight using a circle: patches.Circle()

We can also create a „looking glass‟ effect using matplotlib. To do this we need to

import the package “matplotlib.patches as patches” this library stores our circle

function (patches.Circle()).

These are the following parameters of our function

xy : The xy axis of the center of the circle

radius: the size of the circle

fc: the color of the rectangle

alpha: transparency of the circle

 2.38 Data Exploration and Visualization

Fig. 2.15.

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.patches as patches

Creating out data

np.random.seed(19680801)

x, y = np.random.rand(2, 200)

#plotting our graph

fig, ax = plt.subplots()

ax.plot(x, y, alpha=0.2)

#creating our circle

circle = patches.Circle(0.5, 0.5), 0.25, alpha=0.8, fc=‟yellow‟)

ax.add_patch(circle)

Customizing Individual Plots

First import Matplotlib‟s pyplot module, as well as NumPy to generate the sample

data for the figures.

Visualizing using Matplotlib 2.39

from matplotlib import pyplot as plt

import numpy as np

Setting Tick Marks and Tick Labels

For the first plot, I‟ll use several trigonometric functions as sample data.

π = np.pi

x = 2 * π * np.linspace(-1, 1, 1000)_, ax = plt.subplots()

ax.plot(x, np.cos(x))

ax.plot(x, np.sin(x))

ax.plot(x, np.cos(x - π))

Using the defaults from the current version of Matplotlib (v. 3.0.2 at the time of

this writing) yields the following figure:

Since there is more than one line, let‟s add a legend. Here, I‟m using Matplotlib‟s

included miniature TeX distribution for the mathematical symbols. (Matplotlib can

also render text elements with an external LaTeX distribution; more on LaTeX

below.)

ax.plot(x, np.cos(x), label=r"$ \cos \left(x \right) $")

ax.plot(x, np.sin(x), label=r"$ \sin \left(x \right) $")

ax.plot(x, np.cos(x - π), label=r"$ \cos \left(x - \pi \right) $")

ax.legend(loc="upper right")

It‟s often helpful to set the ticks and labels in terms of ππ when dealing with

trigonometric functions. (You can define a custom tick formatter, but for this plot it‟s

simpler and more readable to list the ticks and labels explicitly.)

xticks = π * np.arange(-2, 3, 1)

ax.set_xticks(xticks)

xlabels = [r"-2π", r"$- \pi$", "0", r"π", r"2π"]

ax.set_xticklabels(xlabels)

ax.set_yticks([-1, 0, 1])

 2.40 Data Exploration and Visualization

Adding Fills

Fills are useful for (among other things) visualizing where multiple distributions

overlap.

Let‟s start with several Gaussian distributions for illustration. The probability

density for a Gaussian distribution is given by

p(x)=1√2πσ2e−(x−μ)22σ2p(x)=12πσ2e−(x−μ)22σ2

where μμ is the mean, and σσ is the standard deviation.

def gaussian(x, μ=0, σ=1, normalized=True):

 u = (x - μ) / σ

 g = np.exp(-u**2 / 2)

 if normalized:

 g /= np.sqrt(2 * π * σ**2)

 return g

Let‟s generate 3 Gaussian distributions for the plot.

z = np.linspace(-10, 10, 1000)

μ0, μ1, μ2 = -4, 0, 2

y0 = gaussian(z, μ=μ0, σ=1.25)

y1 = gaussian(z, μ=μ1, σ=1.0)

y2 = gaussian(z, μ=μ2, σ=1.5)

You can specify colors from Matplotlib‟s color cycler with a “CN” color

specification. Since this plot only has a few lines, it‟s simpler to explicitly match the

fill color to the color of the associated line. (If you have more than a few lines in

your plot, iterate over the lines and use line.get_color() to set the fill color.)_, ax =

plt.subplots()

ax.plot(z, y0, label=r"G_0", color="C0")

ax.plot(z, y1, label=r"G_1", color="C1")

ax.plot(z, y2, label=r"G_2", color="C2")

ax.legend(loc="upper right")

Next, place tick marks at the mean of each distribution.

Visualizing using Matplotlib 2.41

ax.set_xticks([μ0, μ1, μ2])

ax.set_xticklabels([r"μ_0", r"μ_1", r"μ_2"])

ax.set_yticks([])

Now shade the area between each distribution and the x axis.

ax.fill_between(z, y0, 0, color="C0", alpha=0.2)

ax.fill_between(z, y1, 0, color="C1", alpha=0.2)

ax.fill_between(z, y2, 0, color="C2", alpha=0.2)

Finally, remove unnecessary axis spines.

ax.spines["top"].set_visible(False)

ax.spines["left"].set_visible(False)

ax.spines["right"].set_visible(False)

Writing Your Own Style Sheets

Recall that styles are invoked with plt.style.use(<stylename>).

Style files in Matplotlib have the form <style_name>.mplstyle. If you place your

style files in the <mpl_configdir>/stylelib directory, Matplotlib will load them at

runtime. (You can also pass the full file path or URL to the style sheet.)

Style sheets can be chained together, e.g.

plt.style.use([style1, style2])

This means you can have one style file to set the margins, another to define line

properties, etc.

Rendering All Plot Elements with LaTeX

Let‟s create an example style sheet. The following configuration will render all

figure text (legend, axes labels, tick marks, etc.) with LaTeX‟s Computer

Modern font. This is useful for producing publication-quality figures.

Use LaTeX's Computer Modern font for everything

font.family : 'serif'

font.serif : 'Computer Modern'

text.usetex : True

 2.42 Data Exploration and Visualization

If you place the above code block in a file called LaTeX_everywhere.mplstyle (or

similar) in the stylelib directory (see above), you can then invoke it with

with plt.style.context("LaTeX_everywhere"):

Rendering the trigonometric plot from the first example with our custom LaTeX

style produces

The matplotlibrc File

Matplotlib takes the first matplotlibrc file it finds. To display the path to the

current matplotlibrc file, use

matplotlib.matplotlib_fname()

Matplotlib also provides a template matplotlibrc file. This is incredibly useful, not

just for writing your own style sheets or matplotlibrc file, but also for understanding

what customizations are available for individual plots.

Meta example: the matplotlibrc file I used to render the figures in this post was

savefig.format: svg

savefig.transparent: True

Then to render each figure as a transparent SVG, I could just use

plt.savefig("assets/figure1") rather than

plt.savefig("assets/figure1.svg", transparent=True) for each figure.

Matplotlib was introduced keeping in mind, only two-dimensional plotting. But at

the time when the release of 1.0 occurred, the 3d utilities were developed upon the 2d

and thus, we have 3d implementation of data available today! The 3d plots are

enabled by importing the mplot3d toolkit. In this article, we will deal with the 3d

plots using matplotlib.

Example:

import numpy as np

import matplotlib.pyplot as plt

Visualizing using Matplotlib 2.43

 fig = plt.figure()

ax = plt.axes(projection ='3d')

Output:

Fig. 2.16.

With the above syntax three -dimensional axes are enabled and data can be plotted

in 3 dimensions. 3 dimension graph gives a dynamic approach and makes data more

interactive. Like 2-D graphs, we can use different ways to represent 3-D graph. We

can make a scatter plot, contour plot, surface plot, etc. Let‟s have a look at different

3-D plots.

Plotting 3-D Lines and Points

Graph with lines and point are the simplest 3 dimensional graph. ax.plot3d and

ax.scatter are the function to plot line and point graph respectively.

Example 1: 3 dimensional line graph

importing mplot3d toolkits, numpy and matplotlib

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

 fig = plt.figure()

 # syntax for 3-D projection

ax = plt.axes(projection ='3d')

 2.44 Data Exploration and Visualization

 # defining all 3 axes

z = np.linspace(0, 1, 100)

x = z * np.sin(25 * z)

y = z * np.cos(25 * z)

 # plotting

ax.plot3D(x, y, z, 'green')

ax.set_title('3D line plot geeks for geeks')

plt.show()

Output:

Fig. 2.17.

Example 2: 3 dimensional scattered graph

 # importing mplot3d toolkits

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

 fig = plt.figure()

 # syntax for 3-D projection

ax = plt.axes(projection ='3d')

Visualizing using Matplotlib 2.45

 # defining axes

z = np.linspace(0, 1, 100)

x = z * np.sin(25 * z)

y = z * np.cos(25 * z)

c = x + y

ax.scatter(x, y, z, c = c)

 # syntax for plotting

ax.set_title('3d Scatter plot geeks for geeks')

plt.show()

Output:

Fig. 2.18.

One common type of visualization in data science is that of geographic data.

Matplotlib's main tool for this type of visualization is the Basemap toolkit, which is

one of several Matplotlib toolkits which lives under the mpl_toolkits namespace.

Admittedly, Basemap feels a bit clunky to use, and often even simple

visualizations take much longer to render than you might hope. More modern

solutions such as leaflet or the Google Maps API may be a better choice for more

intensive map visualizations. Still, Basemap is a useful tool for Python users to

 2.46 Data Exploration and Visualization

have in their virtual toolbelts. In this section, we'll show several examples of the

type of map visualization that is possible with this toolkit.

Installation of Basemap is straightforward; if you're using conda you can type

this and the package will be downloaded:

$ conda install basemap

We add just a single new import to our standard boilerplate:

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.basemap import Basemap

Once you have the Basemap toolkit installed and imported, geographic plots are

just a few lines away (the graphics in the following also requires the PIL package in

Python 2, or the pillow package in Python 3):

plt.figure(figsize=(8, 8))

m = Basemap(projection='ortho', resolution=None, lat_0=50, lon_0=-100)

m.bluemarble(scale=0.5);

The meaning of the arguments to Basemap will be discussed momentarily.

The useful thing is that the globe shown here is not a mere image; it is a fully-

functioning Matplotlib axes that understands spherical coordinates and which allows

us to easily overplot data on the map! For example, we can use a different map

projection, zoom-in to North America and plot the location of Seattle. We'll use an

etopo image (which shows topographical features both on land and under the ocean)

as the map background:

fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='lcc', resolution=None,

 width=8E6, height=8E6,

 lat_0=45, lon_0=-100,)

m.etopo(scale=0.5, alpha=0.5)

Map (long, lat) to (x, y) for plotting

Visualizing using Matplotlib 2.47

x, y = m(-122.3, 47.6)

plt.plot(x, y, 'ok', markersize=5)

plt.text(x, y, ' Seattle', fontsize=12);

This gives you a brief glimpse into the sort of geographic visualizations that are

possible with just a few lines of Python. We'll now discuss the features of Basemap

in more depth, and provide several examples of visualizing map data. Using these

brief examples as building blocks, you should be able to create nearly any map

visualization that you desire.

Map Projections

The first thing to decide when using maps is what projection to use. You're

probably familiar with the fact that it is impossible to project a spherical map, such

as that of the Earth, onto a flat surface without somehow distorting it or breaking its

continuity. These projections have been developed over the course of human history,

and there are a lot of choices! Depending on the intended use of the map projection,

there are certain map features (e.g., direction, area, distance, shape, or other

considerations) that are useful to maintain.

The Basemap package implements several dozen such projections, all referenced

by a short format code. Here we'll briefly demonstrate some of the more common

ones.

from itertools import chain

def draw_map(m, scale=0.2):

 # draw a shaded-relief image

 m.shadedrelief(scale=scale)

 # lats and longs are returned as a dictionary

 lats = m.drawparallels(np.linspace(-90, 90, 13))

 lons = m.drawmeridians(np.linspace(-180, 180, 13))

 # keys contain the plt.Line2D instances

 lat_lines = chain(*(tup[1][0] for tup in lats.items()))

 lon_lines = chain(*(tup[1][0] for tup in lons.items()))

 all_lines = chain(lat_lines, lon_lines)

 2.48 Data Exploration and Visualization

 # cycle through these lines and set the desired style

 for line in all_lines:

 line.set(linestyle='-', alpha=0.3, color='w')

Cylindrical Projections

The simplest of map projections are cylindrical projections, in which lines of

constant latitude and longitude are mapped to horizontal and vertical lines,

respectively. This type of mapping represents equatorial regions quite well, but

results in extreme distortions near the poles. The spacing of latitude lines varies

between different cylindrical projections, leading to different conservation

properties, and different distortion near the poles. In the following figure we show an

example of the equidistant cylindrical projection, which chooses a latitude scaling

that preserves distances along meridians. Other cylindrical projections are the

Mercator (projection='merc') and the cylindrical equal area (projection='cea')

projections.

Fi

g. 2.19.

fig = plt.figure(figsize=(8, 6), edgecolor='w')

m = Basemap(projection='cyl', resolution=None,

 llcrnrlat=-90, urcrnrlat=90,

 llcrnrlon=-180, urcrnrlon=180,)

draw_map(m)

Visualizing using Matplotlib 2.49

Pseudo-cylindrical Projections

Pseudo-cylindrical projections relax the requirement that meridians (lines of

constant longitude) remain vertical; this can give better properties near the poles of

the projection. The Mollweide projection (projection='moll') is one common example

of this, in which all meridians are elliptical arcs. It is constructed so as to preserve

area across the map: though there are distortions near the poles, the area of small

patches reflects the true area. Other pseudo-cylindrical projections are the sinusoidal

(projection='sinu') and Robinson (projection='robin') projections.

fig = plt.figure(figsize=(8, 6), edgecolor='w')

m = Basemap(projection='moll', resolution=None,

 lat_0=0, lon_0=0)

draw_map(m)

Fig. 2.20.

The extra arguments to Basemap here refer to the central latitude (lat_0) and

longitude (lon_0) for the desired map.

Perspective Projections

Perspective projections are constructed using a particular choice of perspective

point, similar to if you photographed the Earth from a particular point in space (a

point which, for some projections, technically lies within the Earth!). One common

example is the orthographic projection (projection='ortho'), which shows one side of

the globe as seen from a viewer at a very long distance. As such, it can show only

 2.50 Data Exploration and Visualization

half the globe at a time. Other perspective-based projections include the gnomonic

projection (projection='gnom') and stereographic projection (projection='stere').

These are often the most useful for showing small portions of the map.

fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='ortho', resolution=None,

 lat_0=50, lon_0=0)

draw_map(m);

Fig. 2.21.

Conic Projections

A Conic projection projects the map onto a single cone, which is then unrolled.

This can lead to very good local properties, but regions far from the focus point of

the cone may become very distorted. One example of this is the Lambert Conformal

Conic projection (projection='lcc'), which we saw earlier in the map of North

America. It projects the map onto a cone arranged in such a way that two standard

parallels (specified in Basemap by lat_1 and lat_2) have well-represented distances,

with scale decreasing between them and increasing outside of them. Other useful

conic projections are the equidistant conic projection (projection='eqdc') and the

Visualizing using Matplotlib 2.51

Albers equal-area projection (projection='aea'). Conic projections, like perspective

projections, tend to be good choices for representing small to medium patches of the

globe.

In [8]:

fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='lcc', resolution=None,

 lon_0=0, lat_0=50, lat_1=45, lat_2=55,

 width=1.6E7, height=1.2E7)

draw_map(m)

Fig. 2.22.

Drawing a Map Background

Earlier we saw the bluemarble() and shadedrelief() methods for projecting global

images on the map, as well as the drawparallels() and drawmeridians() methods for

drawing lines of constant latitude and longitude. The Basemap package contains a

range of useful functions for drawing borders of physical features like continents,

oceans, lakes, and rivers, as well as political boundaries such as countries and US

states and counties. The following are some of the available drawing functions that

you may wish to explore using IPython's help features:

 2.52 Data Exploration and Visualization

Physical boundaries and bodies of water

drawcoastlines(): Draw continental coast lines

drawlsmask(): Draw a mask between the land and sea, for use with projecting

images on one or the other

drawmapboundary(): Draw the map boundary, including the fill color for oceans.

drawrivers(): Draw rivers on the map

fillcontinents(): Fill the continents with a given color; optionally fill lakes with

another color

Political boundaries

drawcountries(): Draw country boundaries

drawstates(): Draw US state boundaries

drawcounties(): Draw US county boundaries

Map features

drawgreatcircle(): Draw a great circle between two points

drawparallels(): Draw lines of constant latitude

drawmeridians(): Draw lines of constant longitude

drawmapscale(): Draw a linear scale on the map

Whole-globe images

bluemarble(): Project NASA's blue marble image onto the map

shadedrelief(): Project a shaded relief image onto the map

etopo(): Draw an etopo relief image onto the map

warpimage(): Project a user-provided image onto the map

Plotting Data on Maps

Perhaps the most useful piece of the Basemap toolkit is the ability to over-plot a

variety of data onto a map background. For simple plotting and text, any plt function

works on the map; you can use the Basemap instance to project latitude and

Visualizing using Matplotlib 2.53

longitude coordinates to (x, y) coordinates for plotting with plt, as we saw earlier in

the Seattle example.

In addition to this, there are many map-specific functions available as methods of

the Basemap instance. These work very similarly to their standard Matplotlib

counterparts, but have an additional Boolean argument latlon, which if set

to True allows you to pass raw latitudes and longitudes to the method, rather than

projected (x, y) coordinates.

Some of these map-specific methods are:

contour()/contourf() : Draw contour lines or filled contours

imshow(): Draw an image

pcolor()/pcolormesh() : Draw a pseudocolor plot for irregular/regular meshes

plot(): Draw lines and/or markers.

scatter(): Draw points with markers.

quiver(): Draw vectors.

barbs(): Draw wind barbs.

drawgreatcircle(): Draw a great circle.

Example: California Cities

Recall that in Customizing Plot Legends, we demonstrated the use of size and

color in a scatter plot to convey information about the location, size, and population

of California cities. Here, we'll create this plot again, but using Basemap to put the

data in context.

We start with loading the data, as we did before:

import pandas as pd

cities = pd.read_csv('data/california_cities.csv')

Extract the data we're interested in

lat = cities['latd'].values

 2.54 Data Exploration and Visualization

lon = cities['longd'].values

population = cities['population_total'].values

area = cities['area_total_km2'].values

Next, we set up the map projection, scatter the data, and then create a colorbar and

legend:

1. Draw the map background

fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='lcc', resolution='h',

 lat_0=37.5, lon_0=-119,

 width=1E6, height=1.2E6)

m.shadedrelief()

m.drawcoastlines(color='gray')

m.drawcountries(color='gray')

m.drawstates(color='gray')

2. scatter city data, with color reflecting population

and size reflecting area

m.scatter(lon, lat, latlon=True,

 c=np.log10(population), s=area,

 cmap='Reds', alpha=0.5)

3.make legend with dummy points

for a in [100, 300, 500]:

 plt.scatter([], [], c='k', alpha=0.5, s=a,

 label=str(a) + ' km2')

plt.legend(scatterpoints=1, frameon=False,

 labelspacing=1, loc='lower left');

Visualizing using Matplotlib 2.55

Fig. 2.23.

This shows us roughly where larger populations of people have settled in

California: they are clustered near the coast in the Los Angeles and San Francisco

areas, stretched along the highways in the flat central valley, and avoiding almost

completely the mountainous regions along the borders of the state.

Data Visualization is the presentation of data in pictorial format. It is extremely

important for Data Analysis, primarily because of the fantastic ecosystem of data-

centric Python packages. And it helps to understand the data, however, complex it is,

the significance of data by summarizing and presenting a huge amount of data in a

 2.56 Data Exploration and Visualization

simple and easy-to-understand format and helps communicate information clearly

and effectively.

Pandas

Pandas offer tools for cleaning and process your data. It is the most popular

Python library that is used for data analysis. In pandas, a data table is called a

dataframe.

Example 1:

Python code demonstrate creating

 import pandas as pd

 # initialise data of lists.

data = {'Name':['Mohe' , 'Karnal' , 'Yrik' , 'jack'],

 'Age':[30 , 21 , 29 , 28]}

 # Create DataFrame

df = pd.DataFrame(data)

 # Print the output.

df

Output:

 Name Age

0

1

2

3

Mohe

Karnal

Yrik

Jack

30

21

29

28

Example 2:

Load the CSV data from the system and display it through pandas.

import module

import pandas

 # load the csv

Visualizing using Matplotlib 2.57

data = pandas.read_csv("nba.csv")

 # show first 5 column

data.head()

Output:

 Name Team Number Position Age Height Weight College Salary

0

1

2

3

4

Avery Bradley

Jae Crowder

John Holland

R.J. Hunter

Jonas Jerebko

Boston Celtics

Boston Celtics

Boston Celtics

Boston Celtics

Boston Celtics

0.0

99.0

30.0

28.0

8.0

PG

SF

SG

SG

PF

25.0

25.0

27.0

22.0

29.0

6-2

6-6

6-5

6-5

6-10

180.0

235.0

205.0

185.0

231.0

Texas

Marquette

Boston University

Georgia State

NaN

7730337.0

6796117.0

NaN

1148640.0

5000000.0

Seaborn

Seaborn is an amazing visualization library for statistical graphics plotting in

Python. It is built on the top of matplotlib library and also closely integrated into the

data structures from pandas.

Installation

For python environment :

pip install seaborn

Let‟s create Some basic plots using seaborn:

Importing libraries

import numpy as np

import seaborn as sns

 # Selecting style as white,

dark, whitegrid, darkgrid

or ticks

sns.set(style = "white")

 # Generate a random univariate

dataset

 2.58 Data Exploration and Visualization

rs = np.random.RandomState(10)

d = rs.normal(size = 50)

 # Plot a simple histogram and kde

with binsize determined automatically

sns.distplot(d, kde = True, color = "g")

Output:

Fig. 2.24.

Seaborn: statistical data visualization

Seaborn helps to visualize the statistical relationships, To understand how

variables in a dataset are related to one another and how that relationship is

dependent on other variables, we perform statistical analysis. This Statistical analysis

helps to visualize the trends and identify various patterns in the dataset.

These are the plot will help to visualize:

Line Plot

Scatter Plot

Box plot

Bar plot

KDE Plot

Visualizing using Matplotlib 2.59

Line plot:

Lineplot Is the most popular plot to draw a relationship between x and y with the

possibility of several semantic groupings.

Syntax : sns.lineplot(x=None, y=None)

Parameters:

x, y: Input data variables; must be numeric. Can pass data directly or reference

columns in data.

Let‟s visualize the data with a line plot and pandas:

Example 1:

import module

import seaborn as sns

import pandas

 # loading csv

data = pandas.read_csv("nba.csv")

plotting lineplot

sns.lineplot(data['Age'], data['Weight'])

Output:

Fig. 2.25.

 2.60 Data Exploration and Visualization

Scatter Plot:

Scatterplot Can be used with several semantic groupings which can help to

understand well in a graph against continuous/categorical data. It can draw a two-

dimensional graph.

Syntax: seaborn.scatterplot(x=None, y=None)

Parameters:

 y: Input data variables that should be numeric.

Returns: This method returns the Axes object with the plot drawn onto it.

Example 1:

import module

import seaborn

import pandas

 # load csv

data = pandas.read_csv("nba.csv")

 # plotting

seaborn.scatterplot(data['Age'],data['Weight'])

Output:

Fig. 2.26.

Visualizing using Matplotlib 2.61

Box Plot:

A box plot (or box-and-whisker plot) s is the visual representation of the depicting

groups of numerical data through their quartiles against continuous/categorical data.

A box plot consists of 5 things.

Minimum

First Quartile or 25%

Median (Second Quartile) or 50%

Third Quartile or 75%

Maximum

Syntax:

seaborn.boxplot(x=None, y=None, hue=None, data=None)

Parameters:

x, y, hue: Inputs for plotting long-form data.

data: Dataset for plotting. If x and y are absent, this is interpreted as wide-form.

Returns: It returns the Axes object with the plot drawn onto it.

Draw the box plot with Pandas:

Example 1:

Python3

import module

import seaborn as sns

import pandas

 # read csv and plotting

data = pandas.read_csv("nba.csv")

sns.boxplot(data['Age'])

Output:

 2.62 Data Exploration and Visualization

Fig. 2.27.

Bar Plot:

Barplot represents an estimate of central tendency for a numeric variable with the

height of each rectangle and provides some indication of the uncertainty around that

estimate using error bars.

Syntax : seaborn.barplot(x=None, y=None, hue=None, data=None)

Parameters :

x, y : This parameter take names of variables in data or vector data, Inputs for

plotting long-form data.

hue : (optional) This parameter take column name for colour encoding.

data : (optional) This parameter take DataFrame, array, or list of arrays, Dataset

for plotting. If x and y are absent, this is interpreted as wide-form. Otherwise it is

expected to be long-form.

Returns : Returns the Axes object with the plot drawn onto it.

Example 1:

import module

import seaborn

 seaborn.set(style = 'whitegrid')

 # read csv and plot

data = pandas.read_csv("nba.csv")

seaborn.barplot(x =data["Age"])

Visualizing using Matplotlib 2.63

Output:

Fig. 2.28.

KDE Plot:

KDE Plot described as Kernel Density Estimate is used for visualizing the

Probability Density of a continuous variable. It depicts the probability density at

different values in a continuous variable. We can also plot a single graph for multiple

samples which helps in more efficient data visualization.

Syntax: seaborn.kdeplot(x=None, *, y=None, vertical=False, palette=None,

**kwargs)

Parameters:

x, y : vectors or keys in data

vertical : boolean (True or False)

data : pandas.DataFrame, numpy.ndarray, mapping, or sequence

Draw the KDE plot with Pandas:

Example 1:

importing the required libraries

from sklearn import datasets

import pandas as pd

import seaborn as sns

 # Setting up the Data Frame

 2.64 Data Exploration and Visualization

iris = datasets.load_iris()

 iris_df = pd.DataFrame(iris.data, columns=['Sepal_Length',

 'Sepal_Width', 'Patal_Length', 'Petal_Width'])

 iris_df['Target'] = iris.target

 iris_df['Target'].replace([0], 'Iris_Setosa', inplace=True)

iris_df['Target'].replace([1], 'Iris_Vercicolor', inplace=True)

iris_df['Target'].replace([2], 'Iris_Virginica', inplace=True)

Plotting the KDE Plot

sns.kdeplot(iris_df.loc[(iris_df['Target'] =='Iris_Virginica'),

 'Sepal_Length'], color = 'b', shade = True, Label ='Iris_Virginica')

Output:

Fig. 2.29.

Bivariate and Univariate data using seaborn and pandas:

Bivariate data: This type of data involves two different variables. The analysis of

this type of data deals with causes and relationships and the analysis is done to find

out the relationship between the two variables.

Univariate data: This type of data consists of only one variable. The analysis of

univariate data is thus the simplest form of analysis since the information deals with

Visualizing using Matplotlib 2.65

only one quantity that changes. It does not deal with causes or relationships and the

main purpose of the analysis is to describe the data and find patterns that exist within

it.

Let‟s see an example of Bivariate data :

Example 1: Using the box plot.

import module

import seaborn as sns

import pandas

 # read csv and plotting

data = pandas.read_csv("nba.csv")

sns.boxplot(data['Age'], data['Height'])

Output:

Fig. 2.30.

Let‟s see an example of univariate data distribution:

Example: Using the dist plot

import module

import seaborn as sns

 2.66 Data Exploration and Visualization

import pandas

 # read top 5 column

data = pandas.read_csv("nba.csv").head()

 sns.distplot(data['Age'])

Output:

Fig. 2.31.

1. What is a Matplotlib?

Matplotlib is a low level graph plotting library in python that serves as a

visualization utility.Matplotlib is open source and we can use it freely.

Matplotlib is mostly written in python, a few segments are written in C,

Objective-C and Javascript for Platform compatibility. Matplotlib is a Python

library that helps to plot graphs. It is used in data visualization and graphical

plotting.

2. What is a simple line plot?

The simplest of all plots is the visualization of a single function y=f(x)y=f(x).

Here we will take a first look at creating a simple plot of this type. we'll start by

plotting and importing the packages we will use:

Visualizing using Matplotlib 2.67

import matplotlib.pyplot as plt

plt.style.use('seaborn-whitegrid')

import numpy as np

3. List down the steps involved in line plot

 Adjusting the Plot: Line Colors and Styles

 Adjusting the Plot: Axes Limits

 Labeling Plots

4. What is a simple scatter plot?

Another commonly used plot type is the simple scatter plot, a close cousin of

the line plot. Instead of points being joined by line segments, here the points are

represented individually with a dot, circle, or other shape.

import matplotlib.pyplot as plt

plt.style.use('seaborn-whitegrid')

import numpy as np

5. How do you visualize error?

For any scientific measurement, accurate accounting for errors is nearly as

important, if not more important, than accurate reporting of the number itself. In

visualization of data and results, showing these errors effectively can make a

plot convey much more complete information

6. What is a contour plot?

Sometimes it is useful to display three-dimensional data in two dimensions

using contours or color-coded regions. There are three Matplotlib functions that

can be helpful for this task: plt.contour for contour plots, plt.contourf for filled

contour plots, and plt.imshow for showing images.

import matplotlib.pyplot as plt

plt.style.use('seaborn-white')

import numpy as np

7. How will you create a histogram in matplotlib?

To create a histogram the first step is to create bin of the ranges, then

distribute the whole range of the values into a series of intervals, and count the

 2.68 Data Exploration and Visualization

values which fall into each of the intervals. Bins are clearly identified as

consecutive, non-overlapping intervals of variables. The matplotlib.pyplot.hist()

function is used to compute and create histogram of x.

8. What is a Subplot?

There are many cases where you will want to generate a plot that contains

several smaller plots within it. That is exactly what a subplot is! A common

version of the subplot is the 4x4 subplot. Subplots can be very complicated to

create when done properly.

9. How To Create Subplots in Python Using Matplotlib?

We can create subplots in Python using matplotlib with the subplot method,

which takes three arguments:

nrows: The number of rows of subplots in the plot grid.

ncols: The number of columns of subplots in the plot grid.

index: The plot that you have currently selected.

10. How do you annotate text and graph?

Annotate using text

Matplotlib offers the ability to place text within a chart. The only condition is

it requires the positioning co-ordinate of the x and y-axis to place the text.

Annotate using graph: plt.annotate()

To input text using matplotlib‟s “plt.annotate()” we need to declare two

things, which is the “xy” coordinates which tells matplotlib where we want to

input our text and the “s” attribute.

There is also an added attribute aswell, this is called the “arrowprops”

attribute, which basically allows us to input an arrow pointing towards a specific

point in our graph.

11. Brief three-dimensional Plotting in Python using Matplotlib

Matplotlib was introduced keeping in mind, only two-dimensional plotting.

But at the time when the release of 1.0 occurred, the 3d utilities were developed

upon the 2d and thus, we have 3d implementation of data available today! The

Visualizing using Matplotlib 2.69

3d plots are enabled by importing the mplot3d toolkit. In this article, we will

deal with the 3d plots using matplotlib.

Example:

 import numpy as np

import matplotlib.pyplot as plt

 fig = plt.figure()

ax = plt.axes(projection ='3d')

12. What is Geographic data with basemap

One common type of visualization in data science is that of geographic data.

Matplotlib's main tool for this type of visualization is the Basemap toolkit,

which is one of several Matplotlib toolkits which lives under

the mpl_toolkits namespace. Admittedly, Basemap feels a bit clunky to use, and

often even simple visualizations take much longer to render than you might

hope. More modern solutions such as leaflet or the Google Maps API may be a

better choice for more intensive map visualizations. Still, Basemap is a useful

tool for Python users to have in their virtual toolbelts.

13. What is Visualization with seaborn

Data Visualization is the presentation of data in pictorial format. It is

extremely important for Data Analysis, primarily because of the fantastic

ecosystem of data-centric Python packages. And it helps to understand the data,

however, complex it is, the significance of data by summarizing and presenting

a huge amount of data in a simple and easy-to-understand format and helps

communicate information clearly and effectively

14. Define a KDE plot?

KDE Plot described as Kernel Density Estimate is used for visualizing the

Probability Density of a continuous variable. It depicts the probability density at

different values in a continuous variable. We can also plot a single graph for

multiple samples which helps in more efficient data visualization.

Syntax: seaborn.kdeplot(x=None, *, y=None, vertical=False, palette=None,

**kwargs)

 2.70 Data Exploration and Visualization

15. Differentiate Bivariate and Univariate data using seaborn and pandas:

Bivariate data: This type of data involves two different variables. The

analysis of this type of data deals with causes and relationships and the analysis

is done to find out the relationship between the two variables.

Univariate data: This type of data consists of only one variable. The

analysis of univariate data is thus the simplest form of analysis since the

information deals with only one quantity that changes. It does not deal with

causes or relationships and the main purpose of the analysis is to describe the

data and find patterns that exist within it.

16. What is a Box plot?

A box plot (or box-and-whisker plot) s is the visual representation of the

depicting groups of numerical data through their quartiles against

continuous/categorical data.

A box plot consists of 5 things.

Minimum

First Quartile or 25%

Median (Second Quartile) or 50%

Third Quartile or 75%

Maximum

17. What are the different map projections available?

Cylindrical projections

Pseudo-cylindrical projections

Perspective projections

Conic projections

18. Define Customization

Customization challenges the boundaries of business analytics by constantly

reinventing the delicate configurations between a user‟s creativity and

fundamental design principles. For that reason, it aims to showcase better

pictorial representations with more flexible and interactive use of the underlying

data.

Visualizing using Matplotlib 2.71

19. Distinguish plot vs scatter

As datasets get larger than a few thousand points, plt.plot can be noticeably

more efficient than plt.scatter. The reason is that plt.scatter has the capability to

render a different size and/or color for each point, so the renderer must do the

extra work of constructing each point individually. In plt.plot, on the other hand,

the points are always essentially clones of each other, so the work of

determining the appearance of the points is done only once for the entire set of

data. For large datasets, the difference between these two can lead to vastly

different performance, and for this reason, plt.plot should be preferred

over plt.scatter for large datasets.

20. How do you Install Matplotlib?

Matplotlib can be installed using pip. The following command is run in the

command prompt to install Matplotlib.

pip install matplotlib

This command will start downloading and installing packages related to the

matplotlib library.

1. Explain the simple line plot using matplotlib

2. Elaborate the simple scatter plot in matplotlib

3. Detail the process of visualizing errors in matplotlib

4. What is a sub-plot. Explain using mat plot lib

5. Explain geographic data three dimensional plotting with base map

6. Elucidate visualization with sea-born

UNIT III

UNIVARIATE ANALYSIS

SYLLABUS

Introduction to Single variable: Distributions and Variables - Numerical

Summaries of Level and Spread - Scaling and Standardizing –

Inequality - Smoothing Time Series.

 Introduction to Single Variable

 Distributions and Variables

 Numerical Summaries of Level and Spread

 Scaling and Standardizing

 Inequality

 Smoothing Time Series

UNIT III
UNIVARIATE ANALYSIS

3.1.1. DISTRIBUTIONS AND VARIABLES

How many households have no access to a car? What is a typical household

income in Britain? Which country in Europe has the longest working hours? To

answer these kinds of questions we need to collect information from a large number

of people, and we need to ensure that the people questioned are broadly

representative of the population we are interested in.

Conducting large-scale surveys is a time-consuming and costly business.

However, increasingly information or data from survey research in the social

sciences are available free of charge to researchers and students. The development of

the worldwide web and the ubiquity and power of computers makes accessing these

types of data quick and easy.

The aim is to explore data. We can use the 'Statistical Package for the Social

Sciences' (SPSS) package to start analysing data and answering the questions posed

above.

Preliminaries

Two organizing concepts have become the basis of the language of data analysis:

cases and variables. The cases are the basic units of analysis, the things about which

information is collected. The word variable expresses the fact that this feature varies

across different cases.

We will look at some useful techniques for displaying information about the

values of single variables, and will also introduce the differences between interval

level and ordinal level variables.

Variables on Household Survey

It is a multipurpose survey carried out by the social survey division of the Office

for National Statistics (ONS). The main aim of the survey is to collect data on a

 3.2 Data Exploration and Visualization

range of core topics, covering household, family and individual information.

Government departments and other organizations use this information for planning,

policy and monitoring purposes, and to present a picture of households, family and

people in Great Britain.

Person-id Age Sex
Units of alcohol

per week

Drinking

Classification
NC-SEC5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

27

27

27

6

5

77

65

51

33

25

49

16

66

65

47

42

15

13

47

44

1

2

2

1

1

1

2

2

1

1

1

1

1

2

2

1

1

2

2

1

24

8

27

.

.

8

14

3

9

9

352

2

0

0

0

6

.

.

0

5

4

3

3

.

.

2

3

2

3

2

5

1

1

1

–9

1

.

.

1

1

5

1

4

–6

–6

1

2

2

5

5

3

97

4

5

2

2

–6

–6

1

1

Fig. 3.1. Specimen data from the 2005GHS (Individual file)

Univariate Analysis 3.3

Column 5 contains a variable that indicates individuals classification of

themselves in terms of the amount of alcohol they usually drink. It has five ranked

categories:

1. hardly drink at all

2. drink a little

3. drink a moderate amount

4. drink quite a lot

5. drink heavily

Column 5 indicates the social class of individual based on the occupation.

1. Managerial and professional occupations

2. Intermediate occupations

3. Small employers and own account workers

4. Lower supervisory and technical occupations

5. Semi-routine occupations

Bar Charts and Pie Charts

Fig. 3.2. Amount of alcohol respondent drinks

 3.4 Data Exploration and Visualization

One simple device is the bar chart, a visual display in which bars are drawn to

represent each category of a variable such that the length of the bar is proportional to

the number of cases in the category.

A pie chart can also be used to display the same information. It is largely a matter

of taste whether data from a categorical variable are displayed in a bar chart or a pie

chart. In general, pie charts are to be preferred when there are only a few categories

and when the sizes of the categories are very different.

Fig. 3.3.

Bar charts and pie charts can be an effective medium of communication if they are

well drawn.

Histograms

Charts that are somewhat similar to bar charts can be used to display interval level

variables grouped into categories and these are called histograms. They are

constructed in exactly the same way as bar charts except that the ordering of the

categories is fixed, and care has to be taken to show exactly how the data were

grouped.

Let focus on the topic of working hours to demonstrate how simple descriptive

statistics can be used to provide numerical summaries of level and spread. The

chapter will begin by examining data on working hours in Britain taken from the

Univariate Analysis 3.5

General Household Survey discussed in the previous chapter. These data are used to

illustrate measures of level such as the mean and the median and measures of spread

or variability such as the standard deviation and the midspread.

Working hours of couples in Britain

The histograms of the working hours distributions of men and women in the 2005

General Household Survey are shown in figures 3.1 and 3.2. We can compare these

two distributions in terms of the four features introduced in the previous chapter,

namely level, spread, shape and outliers. We can then see that:

 The male batch is at a higher level than the female batch

 The two distributions are somewhat similarly spread out

 The female batch is bimodal suggesting there are two rather different

underlying populations

 The male batch is uni-modal

Summaries of level

The level expresses where on the scale of numbers found in the dataset the

distribution is concentrated

Residuals

Another way of expressing this is to say that the residual is the observed data

value minus the predicted value and in this case 45 – 40 = 5. Any data value such as

a measurement of hours worked or income earned can be thought of as being

composed of two components: a fitted part and a residual part. This can be expressed

as an equation:

 Data = Fit + Residual

The median

The value of the case at the middle of an ordered distribution would seem to have

an intuitive claim to typicality. Finding such a number is easy when there are very

few cases. In the example of hours worked by a small random sample of 15 men

(figure 3.4), the value of 48 hours per week fits the bill. There are six men who work

fewer hours and seven men who work more hours while two men work exactly 48

 3.6 Data Exploration and Visualization

hours per week. Similarly, in the female data, the value of the middle case is 3 7

hours. The data value that meets this criterion is called the median: the value of the

case that has equal numbers of data points above and below it. The median hours

worked by women in this very small sample is 11 hours less than the median for

men. This numeric summary of the level of the data therefore confirms our first

impressions from simply looking at the histograms in figures 3.1 and 3.2 that women

generally work shorter hours than men.0020

Men’s working hours (ranked)

30

37

39

40

45

47

48

Median value 48

50

54

55

55

67

70

80

Fig. 3.4. Men’s working hours ranked to show the median

Univariate Analysis 3.7

The arithmetic mean

Another commonly used measure of the centre of a distribution is the arithmetic

mean. Indeed, it is so commonly used that it has even become known as the average.

It is conventionally written as A (pronounced 'A bar'). To calculate it, first all of the

values are summed, and then the total is divided by the number of data points. In

more mathematical terms:

1

N

N

 i = 1

 i

We have come across N before. The symbol Y is conventionally used to refer to

an actual variable. The subscript i is an index to tell us which case is being referred

to. So, in this case, Y; refers to all the values of the hours variable. The Greek letter

2, pronounced 'sigma', is the mathematician's way of saying 'the sum of'.

Summaries of Spread

The second feature of a distribution visible in a histogram is the degree of

variation or spread in the variable.

Once again, there are many candidates we could think of to summarize the spread.

One might be the distance between the two extreme values (the range). Or we might

work out what was the most likely difference between any two cases drawn at

random from the dataset.

The midspread

The range of the middle 5 0 per cent of the distribution is a commonly used

measure of spread because it concentrates on the middle cases. It is quite stable from

sample to sample. The points which divide the distribution into quarters are called

the quartiles (or sometimes 'hinges' or 'fourths'). The lower quartile is usually

denoted QL and the upper quartile Q0. (The middle quartile is of course the median.)

The distance between QL and Q0 is called the midspread (sometimes the

'interquartile range'), or the dQ for short.

 3.8 Data Exploration and Visualization

 Men’s working hours (ranked)

30

37

39

40

45

47

48

48

50

54

55

55

67

70

80

QL = 42.5

QU = 55

Fig. 3.5. Men’s working hours ranked and showing the upper and lower quartiles

There is a measure of spread which can be calculated from these squared distances

from the mean. The standard deviation essentially calculates a typical value of these

distances from the mean. It is conventionally denoted s , and defined as:

 s =

 (Y i – Y

–
)2

(N – 1)

Univariate Analysis 3.9

The deviations from the mean are squared, summed and divided by the sample

size and then the square root is taken to return to the original units. The order in

which the calculations are performed is very important. As always, calculations

within brackets are performed first, then multiplication and division, then addition

(including summation) and subtraction. Without the square root, the measure is

called the variance, s2• The layout for a worksheet to calculate the standard deviation

of the hours worked by this small sample of men is shown in figure 3.6.

Y Y – Y (Y – Y)2

54

30

47

39

50

48

45

40

37

48

67

55

55

80

70

Sum = 765

3

–21

–4

–12

–1

–3

–6

–11

–14

–3

16

4

4

29

19

9

441

16

144

1

9

36

121

196

9

256

16

16

841

361

Sum of squared residuals = 2472

Fig. 3.6. Worksheet for standard deviation of men’s weekly working hours

 s =

 (Y i – Y

–
)2

(N – 1)
 =

2472

14
 = 13.29

 3.10 Data Exploration and Visualization

Interpreting Locational Summaries

In the examples discussed above the locational statistics for only a very small

subsample of data of 15 cases from the GHS 2005 have been calculated by hand. It is

useful to experiment with calculating locational statistics in this way in order to reach

a better understanding of the meaning of these summary statistics. However, with

larger batches of data the median, quartiles (and deciles) can be calculated very

easily using a package such as Excel or SPSS.

Total Work Hours (Men)

N

Median

Minimum

Maximum

Percentiles

Valid

Missing

25

50

75

6392

8188

39. 000

.00

97.00

37.0000

39.0000

42.8750

Total Work Hours (Women)

N

Median

Minimum

Maximum

Percentiles

Valid

Missing

25

50

75

6127

9362

35.0000

.00

97.00

20.0000

35.0000

37.5000

Univariate Analysis 3.11

We can see that on average men tend to work more hours per week than women

(39.2 hours vs 29.6 hours) and also the higher standard deviation for women, 12.3 vs

11.6 for men indicates that there is more variation among women in terms of the

hours they usually work per week. It should also be noted that the figures for the

means and standard deviations are pasted directly from the SPSS output. We can see

that in each case the number of decimal places provided is four for the mean and five

for the standard deviation.

Total Work Hours (Men)

N

Mean

Std. Deviation

Valid

Missing

6392

8188

39.2268

11.64234

Total Work Hours (Women)

N

Mean

Std. Deviation

Valid

Missing

6127

9362

29.5977

12.31122

Data are produced not given

The word 'data' must be treated with caution. Literally translated, it means 'things

that are given'.

There are often problems with using official statistics, especially those which are

the by-products of some administrative process like, for example, reporting deaths to

the Registrar-General or police forces recording reported crimes. Data analysts have

to learn to be critical of the measures available to them, but in a constructive manner.

As well as asking 'Are there any errors in this measure?' we also have to ask 'Is there

anything better available?' and, if not, 'How can I improve what I've got?'

 3.12 Data Exploration and Visualization

Improvements can often be made to the material at hand without resorting to the

expense of collecting new data.

We must feel entirely free to rework the numbers in a variety of ways to achieve

the following goals:

 to make them more amenable to analysis

 to promote comparability

 to focus attention on differences.

Fig. 3.7. Histogram

Consider various manipulations that can be applied to the data to achieve the

above goals:

(i) Adding or subtracting a constant

One way of focusing attention on a particular feature of a dataset is to add or

subtract a constant from every data value.

Univariate Analysis 3.13

For example, in a set of data on weekly family incomes, it would be possible to

subtract the median from each of the data values, thus drawing attention to which

families had incomes below or above a hypothetical typical family.

The change made to the data by adding or subtracting a constant is fairly trivial.

Only the level is affected; spread, shape and outliers remain unaltered. The reason for

doing it is usually to force the eye to make a division above and below a particular

point. A negative sign would be attached to all those incomes which were below the

median in the example above. However, we sometimes add or subtract a constant to

bring the data within a particular range.

(ii) Mu1uItipIying or dividing by a constant

Instead of adding a constant, we could change each data point by multiplying or

dividing it by a constant.

Fig. 3.8.(a) Histogram of weekly alcohol consumption of men who describe themselves as

‘drinking quite a lot’ or ‘heavy drinkers’

A common example of this is the re-expression of one currency in terms of

another. For example, in order to convert pounds to US dollars, the pounds are

multiplied by the current exchange rate. Multiplying or dividing each of the values

 3.14 Data Exploration and Visualization

has a more powerful effect than adding or subtracting. The result of multiplying or

dividing by a constant is to scale the entire variable by a factor, evenly stretching or

shrinking the axis like a piece of elastic. To illustrate this, let us see what happens if

data from the General Household Survey on the weekly alcohol consumption of men

who classify themselves as moderate or heavy drinkers are divided by seven to give

the average daily alcohol consumption.

Fig. 3.8. (b) Histogram of daily alcohol consumption of men who describe themselves as

‘drinking quite a lot’ or ‘heavy drinkers’

The overall shape of the distributions in figures 3.8 (a) and 3.8 (b) are the same.

The data points are all in the same order, and the relative distances between them

have not been altered apart from the effects of rounding. The whole distribution has

simply been scaled by a constant factor.

In SPSS it is very straightforward to multiply or divide a set of data by a constant

value. For example, using syntax, the command to create the variable drday ‘Average

Univariate Analysis 3.15

daily alcohol consumption’ from the variable drating ‘Average weekly alcohol

consumption’ is as follows:

COMPUTE DRDAY — DRATING/7.

Alternatively, to create a new variable ‘NEWVAR’ by multiplying an existing

variable ‘OLDVAR’ by seven the syntax would be:

COMPUTE NEWVAR = OLDVAR*7.

The ‘Compute’ command can also be used to add or subtract a constant,

for example:

COMPUTE NEWVAR = OLDVAR + 100.

COMPUTE NEWVAR = OLDVAR – 60.

The value of multiplying or dividing by a constant is often to promote

comparability between datasets where the absolute scale values are different. For

example, one way to compare the cost of a loaf of bread in Britain and the United

States is to express the British price in dollars. Percentages are the result of dividing

frequencies by one particular constant - the total number of cases.

(iii) Standardized Variables

In sections 3.2 and 3.3, we saw that subtracting a constant from every data value

altered the level of the distribution and dividing by a constant scaled the values by a

factor. In this section we will look at how these two ideas may be combined to

produce a very powerful tool which can render any variable into a form where it can

be compared with any other. The result is called a standardized variable.

To standardize a variable, a typical value is first subtracted from each data point,

and then each point is divided by a measure of spread. It is not crucial which

numerical summaries of level and spread are picked. The mean and standard

deviation could be used, or the median and midspread:

Y i – Y
–

s or
Y i – M(Y)

dQ

A variable which has been standardized in this way is forced to have a mean or

median of 0 and a standard deviation or midspread of 1.

Two different uses of variable standardization are found in social science

literature. The first is in building causal models, where it is convenient to be able to

compare the effect that two different variables have on a third on the same scale.

 3.16 Data Exploration and Visualization

The second use which is more immediately intelligible: standardized variables are

useful in the process of building complex measures based on more than one

indicator. In order to illustrate this, we will use some data drawn from the National

Child Development Study (NCDS). This is a longitudinal survey of all children born

in a single week of 1958.

There is a great deal of information about children’s education in this survey.

Information was sought from the children’s schools about their performance at state

examinations, but the researchers also decided to administer their own tests of

attainment.

Rather than attempt to assess knowledge and abilities across the whole range of

school subjects, the researchers narrowed their concern down to verbal and

mathematical abilities. Each child was given a reading comprehension test which

was constructed by the National Foundation for Educational Research for use in the

study, and a test of mathematics devised at the University of Manchester.

The two tests were administered at the child’s school and had very different

methods of scoring. As a result they differed in both level and spread. As can be seen

from the descriptive statistics in figure 3.4, the sixteen-year-olds in the National

Child Development Study apparently found the mathematics test rather more

difficult than the reading comprehension test. The reading comprehension was scored

out of a total of 35 and sixteen-year- olds gained a mean score of 25.37, whereas the

mathematics test was scored out of a possible maximum of 31, but the 16-year-olds

only gained a mean score of 12.75.

Descriptive Statistics

 N Minimum Maximum Mean Std.Deviation

Age 16 Test 1–reading

Comprehension

Age 16 Test 2-

Mathematics

Comprehension

Valid N (listwise)

11920

11920

11920

0

0

35

31

25.37

12.75

7.024

6.997

Fig. 3.9. Descriptive statistics for reading comprehension and mathematics test scores

from NCDS age 16

Univariate Analysis 3.17

The first two columns of figure 3.11 show the scores obtained on the reading and

mathematics test by fifteen respondents in this study. There is nothing inherently

interesting or intelligible about the raw numbers. The first score of 31 for the reading

test can only be assessed in comparison with what other children obtained. Both tests

can be thought of as indicators of the child’s general attainment at school. It might be

useful to try to turn them into a single measure of that construct.

1

Raw reading

score

2

Raw maths

score

3

Standardized

reading score

4

Standardized

maths score

5

Composite

score of

attainment

31

33

31

30

28

31

29

28

23

25

19

32

31

29

30

17

20

21

14

14

11

8

17

8

13

8

25

22

8

17

0.8

1.09

0.8

0.66

0.37

0.8

0.52

0.37

–0.34

–0.05

–0.91

0.94

0.80

0.52

0.66

0.61

1.04

1.18

0.18

0.18

–0.25

–0.68

0.61

–0.68

0.04

–0.68

1.75

1.32

–0.68

0.61

1.41

2.12

1.98

0.84

0.55

0.55

–0.16

0.98

–1.02

–0.02

–1.59

2.69

2.12

–0.16

1.27

Fig. 3.10. Scores of reading and mathematics tests at age 16

 3.18 Data Exploration and Visualization

In order to create such a summary measure of attainment at age 16, we want to

add the two scores together. But this cannot be done as they stand, because as we

saw before, the scales of measurement of these two tests are different. If this is not

immediately obvious try the following thought experiment. A 16-year-old who is

average at reading but terrible at mathematics will perhaps score 25.4 (i.e. the mean

score) on the reading comprehension test and 0 on the mathematics test. If these were

summed the total is 25.4. However, a 16-year-old who is average at mathematics but

can’t read is likely to score 12.7 (i.e. the mean score) on the maths score and 0 on the

reading comprehension. If these are summed the total would only be 12.7. If the two

tests can be forced to take the same scale, then they can be summed.

This is achieved by standardizing each score. One common way of standardizing

is to first subtract the mean from each data value, and then divide the result by the

standard deviation. This process is summarized by the following formula, where the

original variable ‘Y’ becomes the standardized variable ‘Z’

 Z = (Y i – Y

) / St.Dev.

For example, the first value of 31 in the reading test becomes:

 (31 – 25.37) / 7 or 0.8

The same individual’s mathematics score becomes (17 – 12.75) / 7, or 0.61. This

first respondent is therefore above average in both reading and maths. To summarize,

we can add these two together and arrive at a score of 1.41 for attainment in general.

Similar calculations for the whole batch are shown in columns 3 and 4 of figure

3.11. We can see that the sixth person in this extract of data is above average in

reading but slightly below average (by a quarter of a standard deviation) in

mathematics. It should also be noted that any individual scoring close to the mean for

both their reading comprehension and their mathematics test will have a total score

close to zero. For example, the tenth case in figure 3.11 has a total score of – 0.02.

The final column of figure 3.11 now gives a set of summary scores of school

attainment, created by standardizing two component scores and summing them, so

attainment in reading and maths have effectively been given equal weight.

Univariate Analysis 3.19

It is very straightforward to create standardized variables using SPSS. by using

the Descriptives command, the SPSS package will automatically save a standardized

version of any variable.

First select the menus.

Analyze > Descriptive Statistics > Descriptives

The next stage is to select the variables that you wish to standardize, in this case

N2928 and N2930, and check the box next to ‘Save standardized values as

variables.’ The SPSS package will then automatically save new standardized

variables with the suffix Z. In this example, two new variables ZN2928 and ZN2930

are created.

Fig. 3.11. Creating standardized variables using SPSS

The syntax to achieve this is as follows:

DESCRIPTIVES

VARIABLES = n2928 n2930 /

SAVE /STATISTICS = MEAN

STDDEV MIN MAX.

 3.20 Data Exploration and Visualization

Standardizing the variables was a necessary, but not a sufficient condition for

creating a simple summary score. It is also important to have confidence that the

components are both valid indicators of the underlying construct of interest.

Fig. 3.12. Selecting variables to standardize

 (iv) The Gaussian distribution

We are now ready to turn to the third feature of distributions, their shape. With

level and spread taken care of, the shape of the distribution refers to everything that

is left. In order to summarize the shape of a distribution, it would need to be simple

enough to be able to specify how it should be drawn in a very few statements. For

example, if the distribution were completely flat (a uniform distribution), this would

be possible. We would only need to specify the value of the extremes an the number

of cases for it to be reproduced accurately, and it would be possible to say exactly

what proportion of the cases fell above and below a certain level.

However, many distributions do have a characteristic shape — a lump in the

middle and tails straggling out at both ends. How convenient it would be if there was

an easy way to define a more complex shape like this and to know what proportion

of the distribution would lie above and below different levels.

One such shape, investigated in the early nineteenth century by the German

mathematician and astronomer, Gauss, and therefore referred to as the Gaussian

Univariate Analysis 3.21

distribution, is commonly used. It is possible to define a symmetrical, bell-shaped

curve which looks like those in figure 3.14, and which contains fixed proportions of

the distribution at different distances from the centre. The two curves in figure 3.14

look different — (a) has a smaller spread than (b) — but in fact they only differ by a

scaling factor.

Fig. 3.13. The Gaussian distribution

Any Gaussian distribution has a very useful property: it can be defined uniquely

by its mean and standard deviation. Given these two pieces of information, the exact

shape of the curve can be reconstructed, and the proportion of the area under the

curve falling between various points can be calculated.

This bell-shaped curve is often called ‘the normal distribution’. Its discovery was

associated with the observation of errors of measurement. If sufficient repeated

measurements were made of the same object, it was discovered that most of them

centred around one value (assumed to be the true measurement), quite a few were

fairly near the centre, and measurements fairly wide of the mark were unusual but

did occur. The distribution of these errors of measurement often approximated to the

bell-shape in figure 3.14.

 3.22 Data Exploration and Visualization

(v)) Standardizing with respect to an appropriate base

In the scaling and standardizing techniques considered up to now, the same

numerical adjustment has been made to each of the values in a batch of data.

Sometimes, however, it can be useful to make the same conceptual adjustment to

each data value, which may involve a different number in each case.

A batch of numbers may be reworked in several different ways in order to reveal

different aspects of the story they contain. A dataset which can be viewed from

several angles is shown in figure 3.15: the value of the lower quartile, the median and

the upper quartile of male and female earnings in the period between 1990 and 2000.

The data are drawn from the New Earnings Survey that collects information about

earnings in a fixed period each year from the employers of a large sample of

employees.

Year Male Earnings Female Earnings

QL M Qu QL M Qu

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

193.4

206.9

219.3

226.0

231.1

237.1

245.2

256.4

265.3

274.5

284.7

258.2

277.5

295.9

304.6

312.8

323.2

334.9

349.7

362.8

374.3

389.7

347.5

376.5

401.9

417.3

427.3

442.7

460.7

480.0

499.0

517.3

537.7

136.2

150.6

161.4

168.2

174.6

179.5

186.8

196.1

203.6

213.3

223.6

177.5

195.7

211.3

221.6

229.4

237.2

248.1

260.5

270.0

284.0

296.7

244.7

271.6

295.9

309.1

320.1

332.5

347.3

364.7

379.1

398.2

417.6

Fig. 3.14. Male and female earnings 1990-2000 gross earnings in pounds per week for

full-time workers on adult rates whose pay was not affected by absence

Univariate Analysis 3.23

As the figures stand, the most dominant feature of the dataset is a rather

uninteresting one: the change in the value of the pound. While the median and mid-

spreads of the money incomes each year have increased substantially in this period,

real incomes and differentials almost certainly have not. How could we present the

data in order to focus on the trend in real income differentials over time?

One approach would be to treat the distribution of incomes for each sex in each

year as a separate distribution, and express each of the quartiles relative to the

median. The result of doing this is given in figure 3.16.

Year Male Earnings Female Earnings

QL M Qu QL M Qu

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

75

75

74

74

74

73

73

73

73

73

73

100

100

100

100

100

100

100

100

100

100

100

135

136

136

137

137

137

138

137

138

138

138

77

77

76

76

76

76

75

75

75

75

75

100

100

100

100

100

100

100

100

100

100

100

138

139

140

139

140

140

140

140

140

140

141

Fig. 3.15. Male and female earnings relative to medians for each sex

Prosperity and Inequality :

There are a number of reasons why we might want to reduce inequality in society.

For example, as Layard (2005) argues, if we accept that extra income has a bigger

impact on increasing the happiness of the poor than the rich, this means that if some

 3.24 Data Exploration and Visualization

money is transferred from the rich to the poor this will increase the happiness of the

poor more than it diminishes the happiness of the rich. This in turn suggests that the

overall happiness rating of a country will go up if income is distributed more equally.

Of course, as Layard acknowledges, the problem with this argument is that it only

works if it is possible to reduce inequality without raising taxes to such an extent that

there is no longer an incentive for individuals to strive to make money so that the

total income is reduced as a result of policies aimed at redistribution. It is clearly

important to understand the principal ways of measuring inequality if we are to

monitor the consequences of changing levels of inequality in society. This chapter

will focus on how we can measure inequality in such a way as to make it possible to

compare levels of inequality in different societies and to look at changes in levels of

inequality over time.

Income and Wealth :

Considered at the most abstract level, income and wealth are two different ways

of looking at the same thing. Both concepts try to capture ways in which members of

society have different access to the goods and services that are valued in that society.

Wealth is measured simply in pounds, and is a snapshot of the stock of such valued

goods that any person owns, regardless of whether this is growing or declining.

Income is measured in pounds per given period, and gives a moving picture, telling

us about the flow of revenue over time.

For the sake of simplicity, we restrict our focus to the distribution of income. We

will look in detail at the problems of measuring income and then consider some of

the distinctive techniques for describing and summarizing inequality that have

evolved in the literature on economic inequality.

There are four major methodological problems encountered when studying the

distribution of income:

1. How should income be defined?

2. What should be the unit of measurement?

3. What should be the time period considered?

4. What sources of data are available?

Univariate Analysis 3.25

Definition of Income

To say that income is a flow of revenue is fine in theory, but we have to choose

between two approaches to making this operational. One is to follow accounting and

tax practices, and make a clear distinction between income and additions to wealth.

With this approach, capital gains in a given period, even though they might be used

in the same way as income, would be excluded from the definition. This is the

approach of the Inland Revenue, which has separate taxes for income and capital

gains. In this context a capital gain is defined as the profit obtained by selling an

asset that has increased in value since it was obtained. However, interestingly, in

most cases this definition (for the purposes of taxation) does not include any profit

made when you sell your main home.

The second approach is to treat income as the value of goods and services

consumed in a given period plus net changes in personal wealth during that period.

This approach involves constantly monitoring the value of assets even when they do

not come to the market. That is a very hard task.

So, although the second approach is theoretically superior, it is not very practical and

the first is usually adopted.

The definition of income usually only includes money spent on goods and

services that are consumed privately. But many things of great value to different

people are organized at a collective level: health services, education, libraries, parks,

museums, even nuclear warheads.

The benefits which accrue from these are not spread evenly across all members of

society. If education were not provided free, only families with children would need

to use their money income to buy schooling.

Sources of income are often grouped into three types:

 earned income, from either employment or self-employment;

 unearned income which increases from ownership of investments,

property, rent and so on;

 transfer income, that is benefits and pensions transferred on the basis of

entitlement, not on the basis of work or ownership, mainly by the

government but occasionally by individuals .

 3.26 Data Exploration and Visualization

Lower boundary of group

(₤ per week gross income)

2003/4

2
nd

 decile

3
rd

 decile

4
th

 decile

5
th

 decile

6
th

 decile

7
th

 decile

8
th

 decile

9
th

 decile

10
th

 decile

₤ 124

₤ 193

₤ 263

₤ 351

₤ 445

₤ 558

₤ 673

₤ 828

₤ 1092

Fig. 3.16. Lower boundaries of each gross income decile group

Measuring inequality: quantiles and quantileshares :

Figure 3.17 illustrates one method for summarizing data on the income received

by households. It displays the gross income of different deciles of the distribution

(gross income is defined as income from employment, self-employment,

investments, pensions, etc. plus any cash benefits or tax credits). For example, figure

3.17 shows that in 2003/4 the poorest ten per cent of households had a gross income

of less than 124 pounds per week, while the richest ten per cent of households had a

gross income of over 1,092 pounds per week. The median gross income is 445

pounds per week.

An alternative technique for examining the distribution of incomes is to adopt the

quantile shares approach. This is illustrated in figure 3.18, which is a modified

version of a table produced as part of the annual report from the Office for National

Statistics ’The effects of taxes and benefits on household:1 income’. The income of

all units falling in a particular quantile group — for example, all those with income

above the top decile, is summed and expressed as a proportion of the total income

received by everyone.

Univariate Analysis 3.27

 Percentage shares of equivalized income for ALL

households

Original

income
Gross income

Disposable

Income

Post-tax

income

Quintile group

Bottom

2
nd

3
rd

4
th

Top

All households

Decile group

Bottom

Top

3

7

15

24

51

7

11

16

22

44

8

12

17

22

42

7

12

16

22

44

100 100 100 100

1

33

3

29

3

27

2

29

Fig. 3.17. Percentage shares of household income, 2003-4

Cumulative income shares and Lorenz curves :

Neither quantiles nor quantile shares lend themselves to an appealing way of

presenting the distribution of income in a graphical form. This is usually achieved by

making use of cumulative distributions. The income distribution is displayed by

plotting cumulative income shares against the cumulative percentage of the

population.

The cumulative distribution is obtained by counting in from one end only. Income

distributions are traditionally cumulated from the lowest to the highest incomes. To

see how this is done, consider the worksheet in figure 3.19. The bottom 5 percent

receive 0.47 percent of the total original income, and the next 5 percent receive 0.51

percent. In summing these, we can say that the bottom 10 per cent receive 0.98 per

cent of the total original income. We work our way up through the incomes in this

 3.28 Data Exploration and Visualization

fashion. It can be noted that the first two columns of this table are simply a more

detailed version of the data presented in figure 3.18. For example, from figure 3.18

we can see that the top quintile group receives 51 per cent of original income; this

figure is also obtained if you sum the first three numbers in the first column of figure

3.19.

The cumulative percentage of the population is then plotted against the

cumulative share of total income. The resulting graphical display is known as a

Lorenz curve. It was first introduced in 1905 and has been repeatedly used for visual

communication of income and wealth inequality. The Lorenz curve for pre-tax

income in 2003/4 in the UK is shown in figure 3.20.

 Percentage of total income

received by the quantile

Cumulative share of

total income

Cumulative share

of population

Original

income

Post-tax

income

Original

income

Post-tax

income

100

95

90

80

70

60

50

40

30

20

10

5

21.6

11.8

17.6

13.5

10.5

8.5

6.3

4.6

2.9

1.72

0.51

0.47

18.9

9.8

15

12.1

10

8.6

7.4

6.3

5.3

4.3

1.76

0.54

100

78.4

66.6

49

35.5

25

16.5

10.2

5.6

2.7

0.98

0.47

100

81.1

71.3

56.3

44.2

34.2

25.6

18.2

11.9

6.6

2.3

0.54

Fig. 3.18. Cumulative income shares : 2003-4

Univariate Analysis 3.29

Lorenz curves have visual appeal because they portray how near total equality or

total inequality a particular distribution falls. If everyone in society had the same

income, then the share received by each decile group, for example, would be 10 per

cent, and the Lorenz curve would be completely straight, described by the diagonal

line.

Fig. 3.19. Lorenz curves of income: 2003-4

Desirable properties in a summary measure of inequality

Scale independence

However, it is important that the measure be sensitive to the level of the

distribution. Imagine a hypothetical society containing three individuals who earned

5,000, 10,000 and 15,000 pounds respectively. If they all had an increase in their

incomes of l million pound, we would expect a measure of inequality to decline,

since the differences between these individuals would have become trivial. The

standard deviation and midspread would be unaffected. A popular approach is to log

income data before calculating the numerical summaries of spread. If two

distributions differ by a scaling factor, the logged distributions will differ only in

 3.30 Data Exploration and Visualization

level. However, if they differ by an arithmetic constant, they will have different

spreads when logged. The existence of units with zero incomes leads to problems,

since the log of zero cannot be defined mathematically. An easy technical solution to

this problem is to add a very small number to each of the zeros. If a numerical

summary of spread in a logged distribution met the other desirable features of a

measure of inequality, we could stop here. Unfortunately, it does not.

The principle of transfers

It makes intuitive sense to require that a numerical summary of inequality should

decline whenever money is given by a rich person to a poor person, regardless of

how poor or how rich, and regardless of how much money is transferred (provided of

course that the amount is not so big that the previously poor person becomes even

richer than the previously rich person).One numerical summary — the income share

of a selected quantile group — fails to meet this principle. By focusing on one part of

the distribution only, perhaps the top 5 per cent, it would fail to record a change if a

transfer occurred elsewhere in the distribution. Similar objections apply to another

commonly used summary, the decile ratio, which simply expresses the ratio of the

upper decile to the lower decile. Other inequality measures meet this principle, and

so are to be preferred.

However, they unfortunately still fail to agree on an unambiguous ranking of

different societies in terms of income inequality, because they are sensitive in

different ways to transfers of varying amounts and at different points in the income

scale. Cowell (1977) argues that the principle of transfers should be strengthened to

specify that the measure of inequality should be sensitive only to the distance on the

income scale over which the transfer is made, not to the amount transferred.

He also adds a third principle to the two considered here, that of decomposition: a

decline in inequality in part of a distribution should lead to a decline in inequality

overall. We shall return to these more stringent criteria below.

Time series such as that shown in the second column of figure 3.21 are displayed

by plotting them against time, as shown in figure 3.22. When such trend lines are

smoothed, the jagged edges are sawn off. A smoothed version of the total numbers of

Univariate Analysis 3.31

recorded crimes over the thirty years from the mid 1960s to the mid 1990s is

displayed in figure 3.23.

Year Total Recorded Crimes Year Total Recorded Crimes

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1,133,882

1,199,859

1,207.354

1,289,090

1,488,638

1,555,995

1,646,081

1,690,219

1,657,669

1,963,360

2,105,631

2,135,713

2,636,517

2,561,499

2,536,737

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

2,688,235

2,963,764

3,262,422

3,247,030

3,499,107

3,611,883

3,847,410

3,892,201

3,715,767

3,870,748

4,543,611

5,276,173

5,591,717

5,526,255

5,252,980

Fig. 3.20. Total numbers of recorded crimes:1965-94

Most people, if asked to smooth the data by eye, would probably produce a curve

similar to that in figure 3.23, which has been derived using a well-defined arithmetic

procedure described later in the chapter. However, smoothing by an arithmetic

procedure can sometimes reveal patterns not immediately obvious to the naked eye.

The aim of smoothing

Figure 3.22 was constructed by joining points together with straight lines. Only

the points contain real information of course. The lines merely help the reader to see

 3.32 Data Exploration and Visualization

the points. The result has a somewhat jagged appearance. The sharp edges do not

occur because very sudden changes really occur in numbers of recorded crimes.

They are an artefact of the method of constructing the plot, and it is justifiable to

want to remove them. According to Tukey (1977, p. 205), the value of smoothing is

'the clearer view of the general, once it is unencumbered by detail'. The aim of

smoothing is to remove any upward or downward movement in the series that is not

part of a sustained trend.

Sharp variations in a time series can occur for many reasons. Part of the variation

across time may be error. For example, it could be sampling error. The opinion-poll

data used later in this chapter were collected in monthly sample surveys, each of

which aimed to interview a cross-section of the general public, but each of which

will have deviated from the parent population to some extent. Similarly, repeated

measures may each contain a degree of measurement error. In such situations,

smoothing aims to remove the error component and reveal the underlying true trend.

But the variable of interest may of course genuinely swing around abruptly. For

example, the monthly count of unemployed people rises very sharply when school-

leavers come on to the register. In these cases, we may want to smooth to remove the

effect of events which are unique, or which are simply not the main trend in which

we are interested. It is good practice to plot the rough as well as the smooth values, to

inspect exactly what has been discarded.

In engineering terms we want to recover the signal from a message by filtering out

the noise. The process of smoothing time series also produces such a decomposition

of the data. In other words, what we might understand in engineering as

 Message = Signal +Noise

 becomes

 Data = Smooth+ Rough

This choice of words helps to emphasize that we impose no a priori structure on

the form of the fit. The smoothing procedure may be determined in advance, but this

is not the case for the shape and form of the final result: the data are allowed to speak

for themselves. Put in another way, the same smoothing recipe applied to different

Univariate Analysis 3.33

time series will produce different resulting shapes for the smooth, which, as we will

see in, is not the case when fitting straight lines.

As so often, this greater freedom brings with it increased responsibility. The

choice of how much to smooth will depend on judgement and needs. If we smooth

too much, the resulting rough will itself exhibit a trend. Of course, more work is

required to obtain smoother results, and this is an important consideration when

doing calculations by hand. The smoothing recipe described later in the chapter

generally gives satisfactory results and involves only a limited amount of

computational effort.

Most time series have a past, a present and a future. For example, the rising crime

figures plotted in figure 3.22 and figure 3.23 are part of a story that begins well

before the 1960s and continues to the present day. However, the goal of the

smoothing recipes explained in this chapter is not the extrapolation of a given series

into the future. The following section provides the next instalment in this story and

discusses what happened after the very dramatic increases in total recorded crime in

the early 1990s.

Fig. 3.21. Total number of recorded crimes: unsmoothed

 3.34 Data Exploration and Visualization

Fig. 3.22. Total recorded crimes 1965-94: smoothed

1. What is a Univariate analysis

Among all the forms of analytical methods that data analysts practice,

univariate analysis is considered one of the basic forms of analysis. It is typically

the first step to understanding a dataset. The idea of univariate analysis is to first

understand the variables individually. Then, you move into analyzing two or

more variables simultaneously.

2. What is the basis for data analysis?

Two organizing concepts have become the basis of the language of

data analysis: cases and variables. The cases are the basic units of analysis,

the things about which information is collected. The word variable expresses

the fact that this feature varies across different cases.

Univariate Analysis 3.35

3. Distinguish Bar charts and pie charts

One simple device is the bar chart, a visual display in which bars are drawn to

represent each category of a variable such that the length of the bar is

proportional to the number of cases in the category.

A pie chart can be used to display the above said information but in a

different perspect as whether data from a categorical variable are displayed in a

bar chart or a pie chart. In general, pie charts are to be preferred when there are

only a few categories and when the sizes of the categories are very different.

4. Define level and spread in data exploration

We will focus on the working hours to demonstrate how simple descriptive

statistics can be used to provide numerical summaries of level and spread. We

begin by examining data on working hours in Britain taken from the General

Household Survey. These data are used to illustrate measures of level such as the

mean and the median and measures of spread or variability such as the standard

deviation and the midspread.

5. What is a mid-spread?

The points which divide the distribution into quarters are called the quartiles

(or sometimes 'hinges' or 'fourths'). The lower quartile is usually denoted QL and

the upper quartile Q0. (The middle quartile is of course the median.) The

distance between QL and Q0 is called the midspread (sometimes the

'interquartile range'), or the dQ for short.

6. Differentiate scaling and standardizing.

Subtracting a constant from every data value altered the level of the

distribution and dividing by a constant scaled the values by a factor. These two

ideas may be combined to produce a very powerful tool which can render any

variable into a form where it can be compared with any other. The result is

called a standardized variable.

7. Define a Gaussian Distribution.

Many distributions do have a characteristic shape a lump in the middle and

tails straggling out at both ends. One such shape, investigated in the early

 3.36 Data Exploration and Visualization

nineteenth century by the German mathematician, Gauss, and therefore referred

to as the Gaussian distribution, is commonly used. It is possible to define a

symmetrical, bell-shaped curve which contains fixed proportions of the

distribution at different distances from the centre.

8. Why there is a need to reduce in-equality?

If we accept that extra income has a bigger impact on increasing the

happiness of the poor than the rich, this means that if some money is transferred

from the rich to the poor this will increase the happiness of the poor more than it

diminishes the happiness of the rich. This in turn suggests that the overall

happiness rating of a country will go up if income is distributed more equally.

9. What Is a Lorenz Curve?

A Lorenz curve, developed by American economist Max Lorenz in 1905, is a

graphical representation of income inequality or wealth inequality. The graph

plots percentiles of the population on the horizontal axis according to income

or wealth and plots cumulative income or wealth on the vertical axis.

10. Define smoothing time series

Smoothing is usually done to help us better see patterns, trends for example,

in time series. Generally smooth out the irregular roughness to see a clearer

signal. For seasonal data, we might smooth out the seasonality so that we can

identify the trend. Smoothing doesn’t provide us with a model, but it can be a

good first step in describing various components of the series. The term filter is

sometimes used to describe a smoothing procedure. For instance, if the

smoothed value for a particular time is calculated as a linear combination of

observations for surrounding times, it might be said that we’ve applied a linear

filter to the data

11. What is the Gini Coefficient?

The Gini coefficient (Gini index or Gini ratio) is a statistical measure of

economic inequality in a population. The coefficient measures the dispersion

of income or distribution of wealth among the members of a population. What is

the Gini Coefficient?

Univariate Analysis 3.37

The Gini coefficient (Gini index or Gini ratio) is a statistical measure of

economic inequality in a population. The coefficient measures the dispersion

of income or distribution of wealth among the members of a population.

1. Categorize variables and explain its distribution.

2. Define level and summarize in detail.

3. Summarize spread depicting an example.

4. Elaborate scaling and standardizing with an example.

5. Clarify in-equality with a proper example.

6. Explain the concept smoothing time series with an example.

UNIT IV

BIVARIATE ANALYSIS

SYLLABUS

Relationships between two Variables - Percentage Tables - Analyzing

Contingency Tables - Handling Several Batches - Scatterplots and

Resistant Lines – Transformations.

 Relationships between two Variables

 Percentage Tables

 Analyzing Contingency Tables

 Handling Several Batches

 Scatterplots and Resistant Lines

 Transformations

UNIT IV

BIVARIATE ANALYSIS

Relationships between two variables (bivariate relationships) are of interest

because they can suggest hypotheses about the way in which the world works. In

particular, they are interesting when one variable can be considered a cause and the

other an effect. It is customary to call these variables by different names. We shall call

the variable that is presumed to be the cause the explanatory variable (and denote it

X) and the one that is presumed to be the effect the response variable (denoted Y);

they are termed independent and dependent variables respectively.

Causal reasoning is often assisted by the construction of a schematic model of the

hypothesized causes and effects: a causal path model. If we believe that the social

class a child comes from is likely to have an effect on its school performance, we

could model the relationship as in the sketch.

Fig. 4.1.

Such models are drawn up according to a set of conventions:

1. The variables are represented inside boxes or circles and labelled; in this

example the variables are class background and performance at school.

2. Arrows run from the variables which we consider to be causes to those we

consider to be effects; class background is assumed to have a causal effect

on school performance.

 4.2 Data Exploration and Visualization

3. Positive effects are drawn as unbroken lines and negative effects are drawn

as dashed lines.

4. A number is placed on the arrow to denote how strong the effect of the

explanatory variable is.

5. An extra arrow is included as an effect on the response variable, often

unlabelled, to act as a reminder that not all the causes have been specified

in the model.

Fig. 4.2.

Proportions, Percentages and Probabilities

To express a variable in proportional terms, the number in each category is divided

by the total number of cases N. Percentages are proportions multiplied by 100.

Figure 4.1 shows the proportions of young people aged 19 from different social

class backgrounds, measured using family's socio-economic classification. The data

were collected in 2005 and from the eleventh cohort of the Youth Cohort Study.

Parental Occupation (NS-SEC) Number of Cases Proportion Percentage

Higher professional

Lower professional

Intermediate

Lower supervisory

Routine

Other/unclassified

Total

1036

1708

1384

687

900

465

6180

0.168

0.276

0.224

0.111

0.146

0.075

1.000

16.8

27.6

22.4

11.1

14.6

7.5

100.0

Fig. 4.3. Social class (NS-SEC) background of individuals ages 19 in 2005

Bivariate Analysis 4.3

Proportions and percentages are bounded numbers, in that they have a floor of

zero, below which they cannot go, and a ceiling of 1.0 and 100 respectively.

Proportions can be used descriptively as in figure 4.1 to represent the relative size

of different subgroups in a population. But they can also be thought of as

probabilities. For example, we can say that the probability of an individual aged 19 in

2005 having a parent in a 'Higher professional' occupation is 0.168.

Contingency Tables

A contingency table does numerically what the three-dimensional bar chart does

graphically. The Concise Oxford Dictionary defines contingent as 'true only under

existing or specified conditions'. A contingency table shows the distribution of each

variable conditional upon each category of the other. The categories of one of the

variables form the rows, and the categories of the other variable form the columns.

Each individual case is then tallied in the appropriate pigeonhole depending on its

value on both variables. The pigeonholes are given the more scientific name cells, and

the number of cases in each cell is called the cell frequency. Each row and column

can have a total presented at the right-hand end and at the bottom respectively; these

are called the marginals, and the univariate distributions can be obtained from the

marginal distributions. Figure 4.4 shows a schematic contingency table with four rows

and four columns.

Fig. 4.4. Anatomy of a contingency table

 4.4 Data Exploration and Visualization

Parental Occupation

(NS-SEC)

Main activity at age 19

Full-time

education

Govt.

supported

training

Full-

time

job

Part-

time

Job

Out

of

work

Lookin

g after

home/

family

Other Total

Higher professional

Lower professional

Intermediate

Lower supervisory

Routine

Other/unclassified

Total

663

854

498

158

189

149

2511

41

102

97

69

90

19

418

249

529

554

330

369

144

2175

41

85

69

55

72

56

378

21

85

83

41

99

65

394

0

17

42

27

36

28

150

21

34

28

7

36

9

135

1036

1706

1371

687

891

470

6161

Fig. 4.5. Main activity by class background (frequencies)

The contingency table in figure 4.5 depicts the bivariate relationship between the

two variables, but it is hard to grasp.

The common way to make contingency tables readable is to cast them in

percentage form. There are three different ways in which this can be done, as shown

in the three panels of figure 4.6.

The first table, shown in panel (a) of figure 4.6, was constructed by dividing each

cell frequency by the grand total. We now know that the 663 respondents with higher

professional parents who were in full-time education at age 19 represented 10.8 per

cent of the total population aged time education at age 19 represented 10.8 per cent of

the total population aged 19 in 2005. But the table as a whole is scarcely more

readable than the raw frequencies were, because there is nothing we can compare this

19 per cent with. For this reason, total percentage tables are not often constructed.

Bivariate Analysis 4.5

Panel (b) of figure 4.6 shows the percentage of young people within each category

of social class background who are in each main activity grouping at age 19. The table

was constructed by dividing each cell frequency by its appropriate row total. We can

see that whereas nearly two-thirds of those with a parent in a higher professional

occupation are still in full-time education at age 19, less than a quarter of those with

parents in Lower supervisory or Routine occupations are still in full-time education by

this age. Tables that are constructed by percentaging the rows are usually read down

the columns (reading along the rows would probably only confirm two things we

already know: the broad profile of the marginal distribution and the fact that the

percentages sum to 100). This is sometimes called an 'outflow' table. The row

percentages show the different outcomes for individuals with a particular social class

background.

It is also possible to tell the story in a rather different way, and look at where

people who ended up doing the same main activity at age 19 came from: the 'inflow

table'. This is shown in panel (c) of figure 4.6.

(a) Total Percentages

Parental

Occupation

(NS-SEC)

Main activity at age 19

Full-time

education

Govt.

supported

training

Full-

time

job

Part-

time

Job

Out

of

work

Looking

after

home/family

Other Total

Higher

professional

Lower

professional

Intermediate

Lower

supervisory

Routine

Other/unclassified

Total

10.8

13.9

8.1

2.6

3.1

2.4

40.8

0.7

1.7

1.6

1.1

1.5

0.3

6.8

4.0

8.6

9.0

5.4

6.0

2.3

35.3

0.7

1.4

1.1

0.9

1.2

0.9

6.1

0.3

1.4

1.3

0.7

1.6

1.1

6.4

0.0

0.3

0.7

0.4

0.6

0.5

2.4

0.3

0.6

0.5

0.1

0.6

0.1

2.2

16.8

27.7

22.3

11.2

14.5

7.6

100.0

 4.6 Data Exploration and Visualization

(b)Row Percentages

Parental

Occupation

(NS-SEC)

Main activity at age 19

Full-time

education

Govt.

supported

training

Full-

time

job

Part-

time

Job

Out

of

work

Looking

after

home/family

Other Total

Higher

professional

Lower

professional

Intermediate

Lower

supervisory

Routine

Other/unclassified

64

50

36

23

21

32

4

6

7

10

10

4

24

31

40

48

41

31

4

5

5

8

8

12

2

5

6

6

11

14

-

1

3

4

4

6

2

2

2

1

4

2

100.0

100.0

100.0

100.0

100.0

100.0

 (c) Column Percentages

Parental

Occupation

(NS-SEC)

Main activity at age 19

Full-time

education

Govt.

supported

training

Full-

time

job

Part-

time

Job

Out of

work

Looking after

home/family
Other Total

Higher

professional

Lower professional

Intermediate

Lower supervisory

Routine

Other/unclassified

Total

26.4

34.0

19.8

6.3

7.5

5.9

100.0

9.8

24.4

23.2

16.5

21.5

4.5

100.0

11.4

24.3

25.5

15.2

17.0

6.6

100.0

10.8

22.5

18.3

14.6

19.0

14.8

100.0

5.3

21.6

21.1

10.4

25.1

16.5

100.0

0.0

11.3

28.0

18.0

24.0

18.7

100.0

15.6

25.2

20.7

5.2

26.7

6.7

100.0

16.8

27.7

22.3

11.2

14.5

7.6

100.0

Fig. 4.6. Main activity at age 19 by class background

Bivariate Analysis 4.7

Good Table Manners

A well-designed table is easy to read, but takes effort, time and perhaps many

drafts to perfect. Clear display of data not only aids the final consumer of the research

but also helps the data analyst. It pays to take care over the presentation of your own

working and calculations, however preliminary. This can help reveal patterns in the

data, and can save time at a later stage. Here are some guidelines on how to construct

a lucid table of numerical data.

(i) Reproducibility versus Clarity

We are often trying to do two jobs at once when we present data: to tell a story

while also allowing readers to check the conclusions by inspecting the data for

themselves. These two jobs tend to work against one another, although the techniques

of exploratory data analysis allow the researcher to pursue both at once to a much

greater extent than more traditional techniques. For clarity we prefer visual displays,

and we leave out extraneous detail to focus attention on the story line. To allow others

to inspect and possibly reinterpret the results we want to leave as much of the original

data as possible in numerical form. Think hard about which job any particular table is

aiming to achieve. Dilemmas can often be solved by simplifying a table in the text

and placing fuller details in an appendix, although in general it is desirable to place a

table as near as possible to the text which discusses it. There are some elementary

details which must always appear.

(ii) Labelling

The title of a table should be the first thing the reader looks at. A clear title should

summarize the contents. It should be as short as possible, while at the same time

making clear when the data were collected, the geographical unit covered, and the

unit of analysis.

(iii) Sources

The reader needs to be told the source of the data. It is not good enough to say that

it was from Social Trends. The volume and year, and either the table or page, and

sometimes even the column in a complex table must be included. When the data are

first collected from a published source, all these things should be recorded, or a return

trip to the library will be needed.

 4.8 Data Exploration and Visualization

(iv) Sample Data

If data are based on a sample drawn from a wider population, it always needs

special referencing. The reader must be given enough information to assess the

adequacy of the sample. The following details should be available somewhere: the

method of sampling, the achieved sample size, the response rate or refusal rate, the

geographical area which the sample overs and the frame from which it was drawn.

(v) Missing data

Providing details of the overall response rate in a survey does not usually tell the

whole story about missing information. Many particular items in a survey attract

refusals or responses that cannot be coded, and the extent of such item non response

should be reported.

(vi) Definitions

There can be no hard and fast rule about how much definitional information to

include in your tables. They could become unreadable if too much were included. If

complex terms are explained elsewhere in the text, include a precise section or page

reference.

(vii) Opinion Data

When presenting opinion data, always give the exact wording of the question put

to respondents, including the response categories if these were read out. There can be

big differences in replies to open questions such as: 'Who do you think is the most

powerful person in Britain today?'

(viii) Ensuring frequencies can be reconstructed

It should always be possible to convert a percentage table back into the raw cell

frequencies. To retain the clarity of a percentage table, present the minimum number

of base Ns needed for the entire frequency table to be reconstructed.

(ix) Layout

The effective use of space and grid lines can make the difference between a table

that is easy to read and one which is not. In general, white space is preferable, but grid

lines can help indicate how far a heading or subheading extends in a complex table.

Bivariate Analysis 4.9

Tables of monthly data can be broken up by spaces between every December and

January, for example. Labels must not be allowed to get in the way of the data. Set

variable headings off from the table, and further set off the category headings.

Make a decision about which variable to put in the rows and which in the columns

by combining the following considerations:

1. Closer figures are easier to compare

2. Comparisons are more easily made down a column

3. A variable with more than three categories is best put in the rows so that

there is plenty of room for category labels.

In the previous topic, we introduced percentage tables as a way of making

contingency data more readable. The properties of percentages and proportions will

be scrutinized more closely, and other ways of analysing contingency data considered

in the quest for a summary measure of the effect of one variable upon another. First,

however we must come back to the question of how to read a contingency table when

one variable can be considered a likely cause of the other i.e. when one variable is

interpreted as the explanatory variable and the other as the response or outcome

variable.

(i) Which way should proportions run?

When we have a hypothesis about the possible causal relationship between

variables, this can be conveyed by the choice of which proportions one uses in the

analysis. Over the last two decades researchers have consistently found age to be

associated with whether individuals feel safe walking alone after dark: older people,

and particularly older women, are more likely to feel unsafe than younger individuals.

In this example, the explanatory variable must be old age and the response or outcome

variable is feeling unsafe, we would not suggest that feeling unsafe causes people to

be old. This means that in a cross-tabulation of age by feeling unsafe, it is more

natural to examine the proportion of each age group who feel unsafe, rather than the

 4.10 Data Exploration and Visualization

proportion of each category of a 'feeling safe walking alone after dark' variable who

are old. This can be formalized into a rule when dealing with contingency data:

Construct the proportions so that they sum to one within the categories of the

explanatory variable.

The rule is illustrated by the following diagram.

Fig. 4.7.

Note that it cannot be formulated as 'always calculate proportions along the rows'.

This would only work if the explanatory variable was always put in the rows, and no

such convention has been established.

(ii) The base for comparison

One category is picked to act as the base for comparison with all other categories.

By making comparisons with this base, quantitative estimates of the likely causal

effect of one variable on another can be made, and positive and negative relationships

between nominal level variables can be distinguished.

Example:

Age

group

Very safe / fairly

safe / a bit unsafe
Very unsafe Total

p N p N p N

16-39

40-59

60+

Total

0.93

0.93

0.84

13,589

13,861

12,722

40,172

0.07

0.07

0.16

1083

1099

2432

4614

1

1

1

14,672

14,960

15,154

44,786

Fig. 4.8. How safe do you feel walking alone after dark? 2004-05

Bivariate Analysis 4.11

Which categories should be selected as bases for comparison among age groups

feeling unsafe walking alone after dark? An important rule of thumb is to choose a

category with a relatively large number of individuals within it. In this case, since the

age-groups are all of similar size, any one of them could be used as the base category

for the age-group variable.

If we select the youngest age group as the base and then pick feeling very unsafe as

the base for comparison in the fear of walking alone after dark variable, we will

almost certainly avoid too many negative relationships. In summary, each age group

can be compared with those aged 16-39 in their feeling very unsafe when walking

alone after dark.

In order to represent one three-category variable, like age group, in a causal path

model, we have to present it as two dichotomous variables. Instead of coding the age

of respondents as 1, 2 or 3 to denote 60 and over, 40-59, or 16-39, for example, the

information is effectively presented as two dichotomous variables - whether someone

is aged 60 and over or not, and aged 40-59 or not.

Someone who was in neither of these age groups would, by elimination, be in the

youngest age group.

Age group as a three-category variable
Age group as two dichotomies

Aged 60+ or not Aged 40-59 or not

60+

40-59

16-39

1

2

3

1

0

0

0

1

0

Choosing one category as a base effectively turns any polytomous variable into a

series of dichotomous variables known as dummy variables. Figure 4.9 shows how

the effect of a three - category explanatory variable on a dichotomous response

variable can be portrayed in a causal path model. Age group is represented by two

dummy variables. The effect of the first is denoted b1 and the effect of the second b2.

A line is drawn under which the base category of the explanatory variable is noted;

the fact that some young people are afraid of walking alone after dark (path a)

 4.12 Data Exploration and Visualization

reminds us that there are some factors influencing feeling very unsafe that this

particular model does not set out to explain.

Fig. 4.9. Casual path model of age group and feeling unsafe walking alone after dark

(iii) Summarizing effects by Subtracting Proportions

In figure 4.9, the effect of being in the oldest age group on feeling unsafe when

walking alone after dark is denoted b1 and the effect of being in the middle age group

is denoted b2. How are these to be quantified? There is no answer to this question that

commands universal acceptance. In this section we will consider d, the difference in

proportions (Davis, 1976). This measure of effect has two virtues: it is simple and

intuitively appealing.

The effect d is calculated by subtracting this proportion in the base category of the

explanatory variable from this proportion in the non-base category of the explanatory

variable.

In this particular example, path b represents the effect of being in the oldest age

group as opposed to being in the youngest age group on the chances of feeling very

unsafe walking alone after dark. It is found by subtracting the proportion of the

youngest age group feeling very unsafe from the proportion of the oldest age group

class giving the same response. If we look back at figure 7 .1, in this case, d = 0.16 -

0.07, or +0.09. The result is positive, as we expected: older people are more likely to

be afraid of walking alone after dark than are the youngest age group.

lf we had selected different base categories, we could have ended up with negative

values of d. For example, if we were trying to explain feeling safe when walking

Bivariate Analysis 4.13

alone after dark, the d for the oldest age group would have been 0.84 - 0.93, or -0.09.

The magnitude of effect would not have altered but the sign would have been

reversed.

Path b2 represents the effect of being in the middle age group on feeling very

unsafe walking alone after dark. We might expect this to be lower than the effect of

being in the oldest age group. It is. In fact, d = 0.07 - 0.07, or O; the younger two age

groups are extremely similar in their fear of walking alone after dark. While the paths

b1 and b2 are the focus of our attention, it is also important to remember the other

factors which lead to people being afraid to walk alone after dark: age group is not a

complete determinant of who is fearful, since some in the youngest age group report

feeling very unsafe about walking alone after dark. Path a reminds us of this.

The value of path a is given by the proportion of cases in the base category of the

explanatory variable who fall in the non-base category of the response variable.

The quantified model is shown in figure 4.10. The model allows us to decompose

the proportion of older people who are fearful of walking alone after dark (0.16) into a

fitted component (0.07) and an effect (+0.09).

Fig. 4.10. Quantifying model in figure 4.5

A simple relationship between an explanatory variable X and a response variable Y

as Y = a + bX. Lf the idea is familiar to you, you may like to note here that

proportions can also be expressed in this way. The overall proportion Y who feel very

unsafe when walking alone after dark is 4,614/44, 786, or 0.103 (figure 4.9).

 4.14 Data Exploration and Visualization

Calculating the Chi-square Statistic

In order to understand how the chi-square statistic is calculated and how its value

should be interpreted, it is helpful to refer to a concrete example, but one in which the

numbers are very straightforward. Therefore let's start with an imaginary piece of

research in which 100 men and 100 women are asked about their fear of walking

alone after dark. Until we conduct the survey we have no information other than the

number of men and women in our sample and therefore we have figure 4.11.

 Very safe / fairly

safe / a bit unsafe
Very unsafe Total

p N p N p N

Male

Female

Total

?

?

?

?

?

?

?

?

?

?

?

?

1

1

1

100

100

200

Fig. 4.11. Feeling safe walking alone after dark by gender (hypothetical survey of 200

individuals)

Once we carry out the survey let us imagine that we find that in total 20 individuals

i.e. 0.1 of the sample state that they feel very unsafe when walking alone after dark.

We therefore now have some more information that we can add to our table and this is

entered as the column marginals in figure 4.12 below.

 Very safe / fairly

safe / a bit unsafe
Very unsafe Total

p N p N p N

Male

Female

Total

?

?

0.9

?

?

180

?

?

0.1

?

?

20

1

1

100

100

200

Fig. 4.12. Feeling safe walking alone after dark by gender

(hypothetical survey of 200 individuals)

Bivariate Analysis 4.15

If, in the population as a whole, the proportion of men who feel very unsafe

walking alone after dark is the same as the proportion of women who feel very unsafe

walking alone after dark, we would expect this to be reflected in our sample survey.

The expected proportions and frequencies would then be as shown in figure 4.13.

 Very safe / fairly

safe / a bit unsafe
Very unsafe Total

p N p N p N

Male

Female

Total

0.9

0.9

0.9

90

90

180

0.1

0.1

0.1

10

10

20

1

1

100

100

200

Fig. 4.13. Feeling safe walking alone after dark by gender-expected values if men and

women in the population are equally likely to feel unsafe

(hypothetical survey of 200 individuals)

Once we have carried out our survey and cross-tabulated fear of walking alone

after dark by gender we will have 'observed' values that we are able to put in our table

as shown in figure 4.14.

 Very safe / fairly

safe / a bit unsafe
Very unsafe Total

p N p N p N

Male

Female

Total

0.95

0.85

0.9

95

85

180

0.05

0.15

0.1

5

15

20

1

1

100

100

200

Fig. 4.14. Feeling safe walking alone after dark by gender – observed values following the

survey (hypothetical survey of 200 individuals)

In order to be able to judge whether there is a relationship between gender and fear

of walking alone after dark we need to compare the values we actually observed,

following our survey, with the values that we would expect if there were no

differences between men and women. The chi-square statistic provides a formalized

 4.16 Data Exploration and Visualization

way of making this comparison. The equation for chi-square is given below. In

practical terms we need to find the difference between the observed and expected

frequencies for each cell of the table. We then square this value before dividing it by

the expected frequency for that cell. Finally we sum these values over all the cells of

the table.

Fig. 4.15.

For the previous example, the computational details are provided in figure 4.16.

The total chi-square value is calculated as 5.56. Although this provides a measure of

the difference between all the observed and expected values in the table.

Observed Expected O-E (O – E)2 (O – E)2 / E

95

5

85

15

200

90

10

90

10

200

5

– 5

– 5

5

25

25

25

25

0.28

2.5

0.28

2.5

Total sum: 5.56

Fig. 4.16. Computation of chi-square from figure 4.13 and 4.14

Type I and Type 2 Errors

Clearly, using the method described above for deciding whether a result is

statistically significant or not can never give us a definitive answer as to whether the

relationship we observe in our sample reflects what we would observe if we could

collect data on the population as a whole. However, the level of probability associated

with a particular chi-square gives us a measure of how likely we are to be mistaken.

Bivariate Analysis 4.17

This probability is sometimes thought of as the likelihood that we will make what is

called a 'Type 1' error.

In some surveys, particularly where the sample size is small, we may obtain what

looks like an interesting difference between two groups, but find that the probability

associated with the chi- square is above the conventional cut-off of 0.05. It is in this

situation that we run the risk of making a 'Type 2' error.

Degrees of Freedom

A table with two rows and two columns is said have one degree of freedom

because only one cell is known (e.g. once we know how many women are afraid to

walk alone after dark) the values in the other cells can be calculated based on the row

and column marginals. Similarly, a table with two columns and three rows is said to

have two degrees of freedom. In formal terms the number of degrees of freedom for a

table with r rows and c columns is given by the equation below:

 Degrees of freedom(Df) = (r – 1) (c – 1)

In this, a new graphical method the boxplot, will be presented which facilitates

comparisons between distributions, and the idea of an unusual data value will be

given more systematic treatment than previously.

Boxplots

Most people agree that it is important to display data well when communicating it

to others. Pictures are better at conveying the story line than numbers. However,

visual display also has a role that is less well appreciated in helping researchers

themselves understand their data and in forcing them to notice features that they did

not suspect. We have already looked at one pictorial representation of data, the

histogram. Its advantage was that it preserved a great deal of the numerical

information. For some purposes, however, it preserves too much.

The boxplot is a device for conveying the information in the five number

summaries economically and effectively. The important aspects of the distribution are

represented schematically as shown in figure 4.17.

 4.18 Data Exploration and Visualization

Fig. 4.17. Anatomy of a boxplot

The middle 50 per cent of the distribution is represented by a box. The median is

shown as a line dividing that box. Whiskers are drawn connecting the box to the end

of the main body of the data. They are not drawn right up to the inner fences because

there may not be any data points that far out. They extend to the adjacent values, the

data points which come nearest to the inner fence while still being inside or on them.

The outliers are drawn in separately. They can be coded with symbols (such as those

in figure 4.17) to denote whether they are ordinary or far outliers, and are often

identified by name. Outliers are points that are unusually distant from the rest of the

data. They are discussed in more detail in the next section. To identify the outliers in a

particular dataset, a value 1.5 times the dQ, or a step, is calculated; as usual, fractions

other than one-half are ignored. Then the points beyond which the outliers fall (the

Bivariate Analysis 4.19

inner fences) and the points beyond which the far outliers fall (the outer fences) are

identified; inner fences lie one step beyond the quartiles and outer fences lie two steps

beyond the quartiles.

The boxplot of unemployment in the East Midlands is shown in figure 4.18. It

contains the same data as figure 8.4:

Fig. 4.18. Unemployment in the East Midlands in 2005 boxplot

Outliers

Some datasets contain points which are a lot higher or lower than the main body of

the data. These are called outliers. They are always point that require the data

analyst’s special attention. They are important and arise for one of four reasons:

1. They may just result from a fluke of the particular sample that was

drawn. The probability of this kind of fluke can be assessed by

traditional statistical tests, if sensible assumptions can be made about the

shape of the distribution.

2. They may arise through measurement or transcription errors, which can

occur in official statistics as well as anywhere else. We always want to

be alerted to such errors, so that they can be corrected, or so that the

points can be omitted from the analysis.

3. They may occur because the whole distribution is strongly skewed. In

this case they point to the need to transform the data. As we will see in,

transformations such as logging or squaring the values may remove these

outliers.

 4.20 Data Exploration and Visualization

4. Most interesting of all, they may suggest that these particular data

points do not really belong substantively to the same data batch.

Moving to the individual as a unit of analysis and using a statistical test

It is possible to use boxplots to carry out exploratory analysis of how

unemployment rates vary between and within region.

Example: Comparing the mathematics scores of boys and girls

Let us now turn to a rather different topic, but use the same approach to examine

whether there are any differences between the mathematics scores of boys and girls.

Figure 4.19 displays two boxplots, one for girls' mathematics score and one for boys'

mathematics score at age eleven.

Fig. 4.19. Boxplots comparing girls and boys mathematics scores at age 11

In the example above, mathematics score is an interval level variable and we

therefore need a different statistical test to check whether the results are significant. In

this specific example we have two groups (boys and girls) defined by a dichotomous

variable and we are comparing them on an interval level variable (mathematics score).

In these circumstances the statistical test that we need to use is called the T-test.

The T-Test

T-Test provide a measure of the difference between the means of two groups.

Bivariate Analysis 4.21

T-test Formula

The formula for a two-sample t-test where the samples are independent as in the

example of boys and girls mathematics test scores) is

 t =
X1

––
 – X2

––

S
X1 X2

1

n1
 +

1

n2

where X1 and X2 are the means of the two samples and S
X1 X2

 is known as the

pooled standard deviation and is calculated as follows:

 S
X1 X2

 =

(n1 – 1) S2
X1

 + (n2 – 1) S2
X2

n1 + n2 – 2

here S
X1

 is the standard deviation of one sample and S
X2

 is the standard deviation

of the other sample. In these formulae n1 is the sample size of the first sample and n2

is the sample size of the second sample. In simple terms therefore the size of the t-

statistic depends on the size of the difference between the two means adjusted for the

amount of spread and the sample sizes of the two samples.

Scatterplots

To depict the information about the value of two interval level variables at once,

each case is plotted on a graph known as a scatterplot, such as figure. Visual

inspection of well-drawn scatterplots of paired data can be one of the most effective

ways of spotting important features of a relationship.

A scatterplot has two axes – a vertical axis, conventionally labeled Y and a

horizontal axis, labeled X. The variable that is thought of as a cause (the explanatory

variable) is placed on the X-axis and the variable that is thought of as an effect (the

response variable) is placed on the Y-axis. Each case is entered on the plot at the

point representing its X and Y values.

Scatterplots depict bivariate relationships. To show a third variable would require

a three-dimensional space, and to show four would be impossible.

 4.22 Data Exploration and Visualization

Fig. 4.20. A Scatterplot showing a moderately strong relationship

Scatterplots are inspected to see if there is any sort of pattern visible, to see if the

value of Y could be predicted from the value of X, or if the relationship is patternless.

If there does appear to be something interesting going on, there are several further

useful questions that we can ask:

1. Is the relationship monotonic? In other words, does Y rise or fall

consistently as X rises? The relationship in figure 9.1 is monotonic. A U-

shaped relationship would not be.

2. Are the variables positively or negatively related? Do the points slope

from bottom left to top right (positive) or from top left to bottom right

(negative)?

3. Can the relationship be summarized as a straight line or will it need a

curve?

4. How much effect does X have on Y? In other words, how much does Y

increase (or decrease) for every unit increase of X?

5. How highly do the variables correlate? In other words, how tightly do the

points cluster around a fitted line or curve?

6. Are there any gaps in the plot? Do we have examples smoothly ranged

across the whole scale of X and Y, or are there gaps and discontinuities?

Bivariate Analysis 4.23

Caution may need to be exercised when one is making statements about

the relationship in the gap.

7. Are there any obvious outliers? One of the major goals of plotting is to

draw attention to any unusual data points.

Lone Parents

The data in figure 4.21 relate to the percentage of households that are headed by a

lone parent and contain dependent children, and the percentage of households that

have no car or van.

Government Office

Region (2001)

% Lone parent

households

% Households with no

car or van

North East

North West

Yorkshire/Humber

East Midlands

West Midlands

Eastern

London

South East

South West

Wales

7.35

7.67

6.58

6.08

6.73

5.29

7.60

5.22

5.42

7.28

35.94

30.21

30.31

24.25

26.77

19.80

37.49

19.43

20.21

25.95

Fig. 4.21. Lone parent households and households with no car or van, % by region

Linear Relationships

 Y = a + bX

always describe lines. In this equation, Y and X are the variables, and a and b are

coefficients that quantify any particular line; figure shows this diagrammatically.

 4.24 Data Exploration and Visualization

Fig. 4.22. Lone parent households with no car or van scatterplot

Fig. 4.23. Anatomy of a straight line

The degree of slope or gradient of the line is given by the coefficient b; the steeper

the slope, the bigger the value of b. As we can see from figure 9.4, the coefficient b

gives a measure of how much Y increases for a unit increase in the value of X. The

slope is usually the item of scientific interest, showing how much change in Y is

associated with a given change in X. The intercept a is the value of Y when X is zero,

or where the line starts. Frequently, the intercept makes little substantive sense - for

Bivariate Analysis 4.25

example, a mortality rate of zero is an impossibility. This value is also sometimes

described as the constant.

The slope of a line can be derived from any two points on it. If we choose two

points on the line, one on the left-hand side with a low X value (called XL, YL), and

one on the right with a high X value (called XR, YR), then the slope is

YR – YL

XR – XL

If the line slopes from top left to bottom right, YR - YL will be negative and thus

the slope will be negative.

We will consider a family of transformations of the scale of measurement which

help make the variables easier to handle in data analysis.

Log Transformation

One method for transforming data or re-expressing the scale of measurement is to

rake the logarithm of each data point. This keeps all the data points in the same order

but stretches or shrinks the scale by varying amounts at different points.

GNI per capita in

2000 ($US)
Log GNI per capita

Australia

Benin

Burundi

China

Czech Republic

Estonia

Germany

Haiti

Israel

Korea, Rep.

20060

340

120

930

5690

4070

25510

490

17090

9790

4.3

2.53

2.08

2.97

3.76

3.61

4.41

2.69

4.23

3.99

 4.26 Data Exploration and Visualization

GNI per capita in

2000 ($US)
Log GNI per capita

Lithuania

Malta

Mozambique

Nigeria

Philippines

Sudan

United States

Togo

Zimbabwe

Tanzania

3180

9590

210

280

1040

310

34400

270

460

260

3.5

3.98

2.32

2.45

3.02

2.49

4.54

2.43

2.66

2.41

Fig. 4.24. Logging the numbers in figure

Fig. 4.25. Logging GNI per capita in 2000 in 20 selected countries

Bivariate Analysis 4.27

You will notice that all the GNI per capita figures between 100 and 1000 have

been transformed, by taking logs, to lie between 2 and 3 (e.g. Benin with a GNI per

capita of 340 has a log GNI per capita of 2.53). While all the data lying between

10,000 and 100,000 have been transformed to lie between 4 and 5 (e.g. Australia with

a GNI per capita of 20,060 has a log GNI per capita of 4.3). The higher values have

therefore been pulled down towards the centre of the batch, bringing the United States

and Germany into the main body of the data, and the bottom of the scale has been

stretched out correspondingly. The shape is now more symmetrical.

The Ladder of Powers

There are an infinite number of possible powers to which data can be raised. The

commonest values are shown in figure 4.26, placed, as Tukey (1977) suggests, on a

'ladder' in terms of their effect on distributions. There are many other points besides

the ones on this ladder of powers, both in between the values shown and above and

beneath them, but we shall rarely have any need to go beyond those shown.

Fig. 4.26. The ladder of powers

 4.28 Data Exploration and Visualization

Going up the ladder of powers corrects downward straggle, whereas going down

corrects upward straggle.

The goals of transformation

1. Data batches can be made more symmetrical.

2. The shape of data batches can be made more Gaussian.

3. Outliers that arise simply from the skewness of the distribution can be

removed, and previously hidden outliers may be forced into view'.

4. Multiple batches can be made to have more similar spreads.

5. Linear, additive models may be fitted to the data.

Promoting Equality of Spread

It is important for the spread to be independent of level in data analysis, whether

fitting lines, smoothing, or dealing with multiple boxplots. No simple statement can

be made summarizing typical differences in GNI between the country groups in figure

10.3, for example, because they differ systematically in spread as well as in level.

Fig. 4.27. Logged GNI per capita in 2000 by country group

Bivariate Analysis 4.29

Figure 10.9 shows the effect of taking logs on the distribution of GNI in the

different country groups. Logging GNI per capita goes a long way towards holding

the midspreads constant by making them similar in size. This means that statements

can be made describing typical differences in wealth between the country groups

without needing to mention the differences in spread in the same breath. But, by

transforming, progress has also been made towards the first three goals: the batches

are more symmetrical and bell-shaped, and some of the outliers in the original batch

were not really unusual values, but merely a product of the upward straggle of the raw

numbers.

1. What is a bivariate analysis?

Bivariate analysis is one of the statistical analysis where two variables are

observed. One variable here is dependent while the other is independent. These

variables are usually denoted by X and Y. So, here we analyse the changes

occured between the two variables and to what extent.

2. What is a causal path model?

Causal reasoning is often assisted by the construction of a schematic model of

the hypothesized causes and effects: a causal path model. If we believe that the

social class a child comes from is likely to have an effect on its school

performance, we could model the relationship as in the sketch.

Fig. 4.28.

3. What is Proportions, percentages and probabilities.

To express a variable in proportional terms, the number in each category is

divided by the total number of cases N. Percentages are proportions multiplied by

 4.30 Data Exploration and Visualization

100. Proportions and percentages are bounded numbers, in that they have a floor

of zero, below which they cannot go, and a ceiling of 1.0 and 100 respectively.

Proportions can be used descriptively to represent the relative size of different

subgroups in a population. But they can also be thought of as probabilities.

4. Define a contingency table

A contingency table does numerically what the three-dimensional bar chart

does graphically. A contingency table shows the distribution of each variable

conditional upon each category of the other. The categories of one of the

variables form the rows, and the categories of the other variable form the

columns. Each individual case is then tallied in the appropriate pigeonhole

depending on its value on both variables. The pigeonholes are given the more

scientific name cells, and the number of cases in each cell is called the cell

frequency. Each row and column can have a total presented at the right-hand end

and at the bottom respectively; these are called the marginals, and the univariate

distributions can be obtained from the marginal distributions.

5. What is a percentage table?

The common way to make contingency tables readable is to cast them in

percentage form. There are three different ways in which this can be done. The

table was constructed by dividing each cell frequency by its appropriate row total.

Tables that are constructed by percentaging the rows are usually read down the

columns. This is sometimes called an 'outflow' table.

6. What are the guidelines for a well designed table?

(i) Reproducibility versus clarity

(ii) Labelling

(iii) Sources

(iv) Sample data

(v) Missing data

(vi) Opinion data

(vii) Layout

Bivariate Analysis 4.31

7. What is a chi-square test?

The chi-square statistic provides a formalized way of making this comparison.

The equation for chi-square is given below. In practical terms we need to find the

difference between the observed and expected frequencies for each cell of the

table. We then square this value before dividing it by the expected frequency for

that cell. Finally we sum these values over all the cells of the table.

Fig. 4.29.

8. Define degree of freedom

A table with two rows and two columns is said have one degree of freedom

because only one cell is known (e.g. once we know how many women are afraid to

walk alone after dark) the values in the other cells can be calculated based on the

row and column marginals. Similarly, a table with two columns and three rows is

said to have two degrees of freedom. In formal terms the number of degrees of

freedom for a table with r rows and c columns is given by the equation below:

9. What is a Box plot?

The method to summarize a set of data that is measured using an interval scale is

called a box and whisker plot. These are maximum used for data analysis. We use

these types of graphs or graphical representation to know:

 Distribution Shape

 Central Value of it

 Variability of it

10. What is an outlier?

In data analytics, outliers are values within a dataset that vary greatly from the

others - they’re either much larger, or significantly smaller. Outliers may indicate

 4.32 Data Exploration and Visualization

variabilities in a measurement, experimental errors, or a novelty. When going

through the process of data analysis, outliers can cause anomalies in the results

obtained. This means that they require some special attention and, in some cases,

will need to be removed in order to analyze data effectively.

11. What is a T-test?

T-test Formula

The formula for a two-sample t-test where the samples are independent as in the

example of boys and girls mathematics test scores) is

 t =
X1

––
 – X2

––

S
X1 X2

1

n1
 +

1

n2

where X1 and X2 are the means of the two samples and S
X1 X2

 is known as the

pooled standard deviation and is calculated as follows:

 S
X1 X2

 =

(n1 – 1) S2
X1

 + (n2 – 1) S2
X2

n1 + n2 – 2

here S
X1

 is the standard deviation of one sample and S
X2

 is the standard deviation

of the other sample. In these formulae n1 is the sample size of the first sample and n2

is the sample size of the second sample. In simple terms therefore the size of the t-

statistic depends on the size of the difference between the two means adjusted for the

amount of spread and the sample sizes of the two samples.

12. What are scatter plots?

Scatter plots are the graphs that present the relationship between two

variables in a data-set. It represents data points on a two-dimensional plane or on

a Cartesian system. The independent variable or attribute is plotted on the X-

axis, while the dependent variable is plotted on the Y-axis. These plots are often

called scatter graphs or scatter diagrams.

13. What is a resistant line?

We explore paired data where you suspect a relationship between xx and yy.

The focus here on how to fit a line to data in a “resistant” fashion, so the fit is

relatively insensitive to extreme points. The first step to fitting a line,

Bivariate Analysis 4.33

 divides the data into three groups and then

 finds a summary point in each group

14. What is meant by log transformation?

One method for transforming data or re-expressing the scale of

measurement is to rake the logarithm of each data point. This keeps all the

data points in the same order but stretches or shrinks the scale by varying

amounts at different points.

15. What are the goals of transformation

1. Data batches can be made more symmetrical.

2. The shape of data batches can be made more Gaussian.

3. Outliers that arise simply from the skewness of the distribution can be

removed, and previously hidden outliers may be forced into view'.

4. Multiple batches can be made to have more similar spreads.

5. Linear, additive models may be fitted to the data.

1. Explain the concept percentage table with a clear picture.

2. What are the process involved in analyzing contingency tables.

3. Explain scatter plots and resistant lines with a clear example.

4. Describe Box plots with an appropriate example

5. Explain the idea transformation in bi-variate analysis.

UNIT V

MULTIVARIATE AND TIME

SERIES ANALYSIS

SYLLABUS

Introducing a Third Variable - Causal Explanations - Three-Variable

Contingency Tables and Beyond - Longitudinal Data – Fundamentals

of TSA – Characteristics of time series data – Data Cleaning – Time-

based indexing – Visualizing – Grouping – Resampling.

 Introducing a Third Variable

 Causal Explanations

 Three-Variable Contingency Tables and Beyond

 Longitudinal Data

 Fundamentals of TSA

 Characteristics of time series data

 Data Cleaning

 Time-based Indexing

 Visualizing

 Grouping

 Resampling

UNIT V

MULTIVARIATE AND TIME

SERIES ANALYSIS

We consider ways of holding a third variable constant while assessing the

relationship between two others.

5.1.1. CAUSAL EXPLANATIONS

We will now developed some experience of handling batches of data,

summarizing features of their distributions, and investigating relationships between

variables. We must now change gear somewhat and ask what it would take for such

relationships to be treated as satisfactory explanations. Hume suggested that 'We may

define a cause to be an object followed by another, and where all the objects, similar

to the first, are followed by objects similar to the second. Or, in other words, where,

if the first object had not been, the second never had existed'.

Direct and Indirect Effects

Causality should not necessarily be understood as a simple process in which one

factor or variable has an impact on another. For example, it is likely in many cases

that two or more factors will tend to work together to produce an effect. Moreover,

the factors or variables contributing to the effect may themselves be causally

related. For this reason, we have to keep a clear idea in our heads of the relationships

between the variables in the whole causal process. In investigating the causes

of absenteeism from work, for example, researchers have found different

contributory factors. We will consider two possible causal factors: being female

and being in a low status job. Let us construct a causal path diagram depicting one

possible set of relationships between these variables.

 5.2 Data Exploration and Visualization

Fig. 5.1. Causes of absenteeism

The diagram in figure 11.1 represents a simple system of multiple causal paths.

There is an arrow showing that those in low status jobs are more likely to go absent.

Being female has a causal effect in two ways. There is an arrow straight to absentee

behaviour; this says that women are more likely to be absent from work than men,

regardless of the kind of job they are in. This is termed a direct effect of gender on

absenteeism. There is also another way in which being female has an effect; women

are more likely to be in the kind of low status, perhaps unpleasant, jobs where

absenteeism is more likely, irrespective of gender. We can say that being female

therefore also has an indirect effect on absenteeism, through the type of work

performed. Without some empirical evidence we cannot be sure that this 'model' of

the relationships between the variables is correct.

Controlling the world to learn about causes

It is one thing to declare confidently that causal chains exist in the world out there.

However, it is quite another thing to find out what they are. Causal processes are not

obvious. They hide in situations of complexity, in which effects may have been

produced by several different causes acting together. When investigated, they will

reluctantly shed one layer of explanation at a time, but only to reveal another deeper

level of complexity beneath. For this reason, something that is accepted as a

satisfactory causal explanation at one point in time can become problematic at

another.

Researchers investigating the causes of psychological depression spent a long

time carefully documenting how severe, traumatizing events that happen to people,

such as bereavement or job loss, can induce it. Now that the causal effect of such life

events has been established, the research effort is turning to ask how an event such as

unemployment has its effect: is it through the loss of social esteem, through the

decline of self evaluation and self-esteem, through lack of cash or through the

sheer effect of inactivity?

Multivariate and Time Series Analysis 5.3

Do opinion polls influence people?

Let us take an example to illustrate the different inferences which can be drawn

from experiments and non-experiments.

Some people believe that hearing the results of opinion polls before an election

always individuals towards the winning candidate. Imagine two ways in which

empirical evidence could be collected for this proposition. An experiment could be

conducted by taking a largish group of electors, splitting them into two at random,

telling half that the polls indicated one candidate would win and telling the other half

that they showed a rival would win. As long as there were a substantial number of

people in each group, the groups would start the experiment having the same

political preferences on average, since the groups were formed at random. If they

differed substantially in their subsequent support for the candidates, then we could be

almost certain that the phony poll information they were fed contributed to which

candidate they supported.

Alternatively, the proposition could be researched in a non-experimental way. A

survey could be conducted to discover what individuals believed recent opinion polls

showed, and to find out which candidates the individuals themselves supported.

The preferences of those who believed that one candidate was going to win would

be compared with those who believed that the rival was going to win. The

hypothesis would be that the former would be more sympathetic to the candidate

than the latter.

If the second survey did reveal a strong relationship between individuals'

perception of the state of public opinion and their own belief, should this be taken as

evidence that opinion polls have a causal effect on people's voting decisions? Should

policy-makers consider banning polls in pre-election periods as a result? Anyone

who tried this line of argument would be taken to task by the pollsters, who have a

commercial interest in resisting such reasoning. They would deny that the effect in

any way proves that polls influence opinion; it could, for instance, be that supporters

of a right-wing candidate are of a generally conservative predisposition, and

purchase newspapers which only report polls sympathetic to their candidate.

In short, comparing individuals in a survey who thought that candidate A would

win with those who believed that candidate B would win, would not be

comparing two groups similar in all other possible respects, unlike the

 5.4 Data Exploration and Visualization

experiment discussed above. An experiment would have a better chance of

persuading people that the publication of opinion polls affected individual views.

Assumptions required to infer causes

Imagine a common situation. A survey is conducted and an interesting statistical

association between X and Y is discovered. There are two basic assumptions that

have to be made if we wish to infer from this that X may cause Y. These involve the

relationship between X and Y and other variables which might be operating. They

are designed to ensure that when we compare groups which differ on X, we are

comparing like with like. Before giving an exposition of these assumptions, we need

a bit more terminology: other variables can be causally prior to both X and Y,

intervene between X and Y, or ensue from X and Y, as shown in figure 5.2. These

terms are only relative to the particular causal model in hand: in a different model we

might want to explain what gave rise to the prior variable.

Fig. 5.2. Different casual relationships between variables

Let us discuss each of the two core assumptions in turn.

Assumption 1

X is casually prior to Y

There is nothing in the data to tell us whether X causes Y or Y causes X, so we

have to make the most plausible assumption we can, based on our knowledge of the

subject matter and our theoretical framework.

Assumption 2

Related prior variables have been controlled

All other variables which affect both X and Y must be held constant. In an

experiment, we can be sure that there are no third variables which give rise to both X

Multivariate and Time Series Analysis 5.5

and Y because the only way in which the randomized control groups are allowed to

vary is in terms of X. No such assumption can be made with non-experimental data.

Assumption 3

All variables intervening between X and Y have been controlled.

This assumption is not required before you can assume that there is a causal link

between X and Y, but it is required if you aim to understand how X is causing Y.

Let us first consider a hypothetical example drawn from the earlier discussion of

the causes of absenteeism. Suppose previous research had shown a positive bivariate

relationship between low social status jobs and absenteeism. The question arises: is

there something about such jobs that directly causes the people who do them to go

off sick more than others? Before we can draw such a conclusion, two assumptions

have to be made.

There are many possible outcomes once the relationship between all three

variables is considered at once, four of which are shown in figure 5.3.

Fig. 5.3. The effect of job status on absenteeism: controlling a prior variable

 5.6 Data Exploration and Visualization

Fig. 5.4. Outcome I from figure 5.3

Fig. 5.5. Outcome II from figure 5.3

Fig. 5.6. Outcome III from figure 5.3

If the relationship between two variables entirely disappears when a causally prior

variable is brought under control, we say that the original relationship was spurious.

By this we do not mean that the bivariate effect did not really exist, but rather that

any causal conclusions drawn from it would be incorrect. We can now introduce

another meaning for that verb 'to explain': in this situation, many researchers say that

the proportion of females in a job 'explains' the relationship between the status of the

job and absenteeism, in the sense that it accounts for it entirely.

But what of the fourth situation which is actually the most likely outcome? It was

the situation portrayed in figure 5.1.

Fig. 5.7. Outcome IV from figure 5.3

Simpson's Paradox

In some cases the relationship between two variables is not simply reduced when

a third, prior, variable is taken into account but indeed the direction of the

relationship is completely reversed. This is often known as Simpson's paradox

Multivariate and Time Series Analysis 5.7

(named after Edward Simpson who wrote a paper describing the phenomenon that

was published by the Royal Statistical Society in 1951). However, the insight that a

third variable can be vitally important for understanding the relationship between two

other variables is also credited to Karl Pearson in the late nineteenth century.

Simpson's paradox can be succinctly summarized as follows: every statistical

relationship between two variables may be reversed by including additional factors in

the analysis.

Department

Men Women

Accepted Rejected Accepted Rejected

N % N % N % N %

A

B

C

D

E

F

Total

512

353

121

138

53

16

3714

62%

63%

37%

33%

28%

6%

44%

311

207

204

279

138

256

4728

38%

37%

63%

67%

72%

94%

56%

89

17

202

131

94

24

1512

82%

68%

34%

35%

24%

7%

35%

19

8

391

244

299

317

2809

18%

32%

66%

65%

76%

93%

65%

Fig. 5.8. Success of application to graduate school by gender and department: an example

of Simpson’s paradox

The set of paths of causal influence, both direct and indirect, that we want to

begin to consider are represented in figure 12.5. In this causal model we are trying to

explain social trust, the base is therefore the belief that 'You can't be too careful'. The

base categories selected for the explanatory variables are having lower levels of

qualifications and not being a member of a voluntary organization, to try and avoid

negative paths. Each arrow linking two variables in a causal path diagram represents

 5.8 Data Exploration and Visualization

the direct effect of one variable upon the other, controlling all other relevant

variables. The rule for identifying the relevant variables was given in chapter 11:

when we are assessing the direct effect of one variable upon another, any third

variable which is likely to be causally connected to both variables and prior to one of

them should be controlled. Coefficient b in figure 12.5 shows the direct effect of

being in a voluntary association on the belief that most people can be trusted. To find

its value, we focus attention on the proportion who say that most people can be

trusted, controlling for level of qualifications.

Fig. 5.9. Social trust by membership of voluntary association and level of qualifications:

casual path diagram

More complex models: going beyond three variables

Clearly there are likely to be many other factors or 'variables' that will have an

influence, both on volunteering behaviour and on social trust. For example, in the

model discussed above we have not considered gender or age, and both of these may

have an impact on all of the variables in our model.

As can be seen from the discussion above, it becomes quite complicated even to

calculate the direct and indirect causal paths when we have a simple model with

three variables. We therefore need to go beyond these paper and pencil techniques if

we are going to build more complex models that aim to compare the impact of a

number of different explanatory variables on an outcome variable such as social

Multivariate and Time Series Analysis 5.9

trust. The following section describes the conceptual foundations that underlie

models to examine the factors influencing a simple dichotomous (two-category)

variable.

Logistic Regression Models

Regression analysis is a method for predicting the values of a continuously

distributed dependent variable from an independent, or explanatory, variable. The

principles behind logistic regression are very similar and the approach to building

models and interpreting the models is virtually identical. However, whereas

regression (more properly termed Ordinary Least Squares regression, or OLS

regression) is used when the dependent variable is continuous, a binary logistic

regression model is used when the dependent variable can only take two values. In

many examples this dependent variable indicates whether an event occurs or not and

logistic regression is used to model the probability that the event occurs. In the

example we have been discussing above, therefore, logistic regression would be used

to model the probability that an individual believes that most people can be trusted.

When we are just using a single explanatory variable, such as volunteering, the

logistic regression can be written as

It is important to distinguish longitudinal data from the time series data. Although

time series data can provide us with a picture of aggregate change, it is only

longitudinal data that can provide evidence of change at the level of the individual.

Time series data could perhaps be understood as a series of snapshots of society,

whereas longitudinal research entails following the same group of individuals over

time and linking information about those individuals from one time point to another.

For example, in a study such as the British Household Panel Survey, individuals

are interviewed each year about a range of topics including income, political

preferences and voting. This makes it possible to link data about individuals over

time and examine, for example, how an individual's income may rise (or fall) year on

year and how their political preferences may change.

 5.10 Data Exploration and Visualization

The first part provides a brief introduction to longitudinal research design and

focuses on some of the issues in collecting longitudinal data and problems of

attrition. The second part then provides a brief conceptual introduction to the analysis

of longitudinal data.

Collecting longitudinal data

Prospective and retrospective research designs

Longitudinal data are frequently collected using a prospective longitudinal

research design, i.e. the participants in a research study are contacted by researchers

and asked to provide information about themselves and their circumstances on a

number of different occasions. This is often referred to as a panel study. However, it

is not necessary to use a longitudinal research design in order to collect longitudinal

data and there is therefore a conceptual distinction between longitudinal data and

longitudinal research. Indeed, the retrospective collection of longitudinal data is very

common.

 Prob(event) =
1

1 + e
–X

or more specifically Prob (trust) =
1

1 + e
– volunteering

In particular, it has become an established method for obtaining basic information

about the dates of key life events such as marriages, separations and divorces and the

birth of any children (i.e. event history data). This is clearly an efficient way of

collecting longitudinal data and obviates the need to re-contact the same group of

individuals over a period of time.

A potential problem is that people may not remember the past accurately enough

to provide good quality data. While some authors have argued that recall is not a

major problem for collecting information about dates of significant life events, other

research suggests that individuals may have difficulty remembering dates accurately,

or may prefer not to remember unfavourable episodes or events in their lives. Large-

scale quantitative surveys often combine a number of different data collection

strategies so they do not always fit neatly into the classification of prospective or

retrospective designs. In particular, longitudinal event history data are frequently

collected retrospectively as part of an ongoing prospective longitudinal study.

Multivariate and Time Series Analysis 5.11

Time series data is a collection of quantities that are assembled over even

intervals in time and ordered chronologically. The time interval at which data is

collected is generally referred to as the time series frequency.

Fig. 5.10. Yellowstone Park

For example, the time series graph above plots the visitors per month to

Yellowstone National Park with the average monthly temperatures. The data ranges

from January 2014 to December 2016 and is collected at a monthly frequency.

Time series analysis is a specific way of analyzing a sequence of data points

collected over an interval of time. In time series analysis, analysts record data points

at consistent intervals over a set period of time rather than just recording the data

points intermittently or randomly. However, this type of analysis is not merely the

act of collecting data over time.

 Time-series data

 Structured data

 No updates on data

 Single data source

 The ratio of read/write is smaller

 5.12 Data Exploration and Visualization

 The trend is more important

 Retention policy

 Aggregation over time or a set of devices

 Real-time computing or analysis is required

 Traffic is stable

 Special computing is needed

 Data volume is huge

Data cleaning is the process of fixing or removing incorrect, corrupted, incorrectly

formatted, duplicate, or incomplete data within a dataset. When combining multiple

data sources, there are many opportunities for data to be duplicated or mislabeled. If

data is incorrect, outcomes and algorithms are unreliable, even though they may look

correct. There is no one absolute way to prescribe the exact steps in the data cleaning

process because the processes will vary from dataset to dataset. But it is crucial to

establish a template for your data cleaning process so you know you are doing it the

right way every time.

How to clean data

While the techniques used for data cleaning may vary according to the types of

data your company stores, you can follow these basic steps to map out a framework

for your organization.

Step 1: Remove duplicate or irrelevant observations

Remove unwanted observations from your dataset, including duplicate

observations or irrelevant observations. Duplicate observations will happen most

often during data collection. When you combine data sets from multiple places,

scrape data, or receive data from clients or multiple departments, there are

opportunities to create duplicate data. De-duplication is one of the largest areas to be

considered in this process. Irrelevant observations are when you notice observations

that do not fit into the specific problem you are trying to analyze. For example, if you

Multivariate and Time Series Analysis 5.13

want to analyze data regarding millennial customers, but your dataset includes older

generations, you might remove those irrelevant observations. This can make analysis

more efficient and minimize distraction from your primary target—as well as creating

a more manageable and more performant dataset.

Step 2: Fix structural errors

Structural errors are when you measure or transfer data and notice strange naming

conventions, typos, or incorrect capitalization. These inconsistencies can cause

mislabeled categories or classes. For example, you may find ―N/A‖ and ―Not

Applicable‖ both appear, but they should be analyzed as the same category.

Step 3: Filter unwanted outliers

Often, there will be one-off observations where, at a glance, they do not appear to

fit within the data you are analyzing. If you have a legitimate reason to remove an

outlier, like improper data-entry, doing so will help the performance of the data you

are working with. However, sometimes it is the appearance of an outlier that will

prove a theory you are working on. Remember: just because an outlier exists, doesn‘t

mean it is incorrect. This step is needed to determine the validity of that number. If

an outlier proves to be irrelevant for analysis or is a mistake, consider removing it.

Step 4: Handle missing data

You can‘t ignore missing data because many algorithms will not accept missing

values. There are a couple of ways to deal with missing data. Neither is optimal, but

both can be considered.

1. As a first option, you can drop observations that have missing values, but

doing this will drop or lose information, so be mindful of this before you

remove it.

2. As a second option, you can input missing values based on other

observations; again, there is an opportunity to lose integrity of the data

because you may be operating from assumptions and not actual

observations.

3. As a third option, you might alter the way the data is used to effectively

navigate null values.

 5.14 Data Exploration and Visualization

Step 5: Validate and QA

At the end of the data cleaning process, you should be able to answer these

questions as a part of basic validation:

 Does the data make sense?

 Does the data follow the appropriate rules for its field?

 Does it prove or disprove your working theory, or bring any insight to

light?

 Can you find trends in the data to help you form your next theory?

 If not, is that because of a data quality issue?

False conclusions because of incorrect or ―dirty‖ data can inform poor business

strategy and decision-making. False conclusions can lead to an embarrassing moment

in a reporting meeting when you realize your data doesn‘t stand up to scrutiny.

Before you get there, it is important to create a culture of quality data in your

organization. To do this, you should document the tools you might use to create this

culture and what data quality means to you.

Advantages and Benefits of Data Cleaning

Having clean data will ultimately increase overall productivity and allow for the

highest quality information in your decision-making. Benefits include:

 Removal of errors when multiple sources of data are at play.

 Fewer errors make for happier clients and less-frustrated employees.

 Ability to map the different functions and what your data is intended to do.

 Monitoring errors and better reporting to see where errors are coming

from, making it easier to fix incorrect or corrupt data for future

applications.

 Using tools for data cleaning will make for more efficient business

practices and quicker decision-making.

A time series is a series of data points indexed in time order. If you index the

dataset by date, you can easily carry out a time series analysis.

Multivariate and Time Series Analysis 5.15

There are three index types of time series:

1. DatetimeIndex - The index type for timestamped data is DatetimeIndex.

2. PeriodIndex - The index type for period data, which shows the fixed

interval date data, is PeriodIndex

3. TimedeltaIndex - The index type for the Timedelta data, which shows the

time between two dates, is TimedeltaIndex

Creating a time series

To show how to create a time series, first, let me import pandas and numpy.

In [1]: 1 import pandas as pd ; import numpy as np.

Let‘s create a variable named date with the start date and end date.

In [2]: 1

2

date = pd.date_range(

 start =”2018”,end =”2019”, freq=”BM”)

Let‘s create a time series named ts using the date variable.

In [3]:

1

2

3

ts = pd.Series(

 np.random.randn(len(date)),index = date)

ts

 Out [3]: 2018-01-31 – 1.977003

 2018-02-28 – 0.339459

 2018-03-30 – 0.587687

 2018-04-30 1.141997

 2018-05-31 – 0.125199

 2018-06-29 – 1.090406

 2018-07-31 – 0.435640

 2018-08-31 0.181651

 2018-09-28 – 2.518869

 2018-10-31 1.428868

 2018-11-30 – 0.357551

 2018-12-31 0.612771

 5.16 Data Exploration and Visualization

 Freq: BM, dtype: float64

Let‘s take a look at the index of this data.

In [4]: 1 ts.index

 Out [4]: DatetimeIndex([‗2018-01-31‘, ‗2018-02-28‘, ‗2018

 -03-30‘, ‗2018-04-30‘,

 ‗2018-05-31‘, ‗2018-06-29‘, ‗2018‘

 -07-31‘, ‗2018-08-31‘,

 ‗2018-09-28‘, ‗2018-10-31‘, ‗2018

 -11-30‘, ‗2018-12-31‘],

 dtype=‘datetime64[ns]‘, freq=‘BM‘)

As you can see, the index structure of the ts is DatetimeIndex. With these indexes,

we can play like a ball. To slice indexes, let‘s print the first 5 of the indexes.

In [5]: 1 ts [:5] .index

 Out [5]: DatetimeIndex([‗2018-01-31‘, ‗2018-02028‘, 2018

 -03-30‘, ‗2018-04-30‘,

 ‗2018-05-31‘],

 dtype=‘datetime64[ns]‘, freq=‘BM‘)

Reading a time series dataset

Now, let‘s use a real-world dataset showing the stock market values of Facebook.

Let me read this dataset with the read_csv method.

In [6]: 1 fb=pd.read_csv(“FB.csv”)

You can find this dataset here. Let‘s see the first 5 rows of the dataset with the

head method.

In [7]: 1 fb.head ()

Multivariate and Time Series Analysis 5.17

Out [7]: Date Open High Low Close

 0 2018-

07-30

175.300003 175.300003 166.559998 171.059998 1

 1 2018-

07-31

170.669998 174.240005 170.000000 172.580002 1

 2 2018-

08-01

173.929993 175.080002 170.899994 171.649994 1

 3 2018-

08-02

170.679993 176.789993 170.270004 176.369995 1

 4 2018-

08-03

177.690002 178.850006 176.149994 177.779999 1

Converting dates into indexes

Let‘s take a look at the column types.

In [8]: 1 fb.dtypes

Out [8]: Date object

 Open float64

 High float64

 Low float64

 Close float64

 Adj Close float64

 Volume int64

 dtype: object

As you can see, the type of the date column is an object. Let‘s convert this date

column to the DateTime type. To do this, I‘m going to use the parse_dates parameter

when reading the dataset.

 5.18 Data Exploration and Visualization

In [9]: 1

2

fb=pd.read_csv(

 “FB.csv”,parse_dates=[“Date”])

Let‘s convert the date column into the index with the index_col parameter.

In [10]: 1

2

3

4

fb=pd.read_csv(

 “FB.csv”,

 parse_dates=[―Date‖],

 index_col=‖Date‖)

Let‘s take a look at the indexes of the dataset.

In [11]: 1 fb.index

 Out [11]: DatetimeIndex([‗2018-07-30‘, ‗2018-07-31‘, ‗2018

 -08-01‘, ‗2018-08-02‘,

 ‗2018-08-03‘,‗2018-08-06‘, ‗2018

 -08-07‘, ‗2018-08-08‘,

 ‗2018-08-09‘, ‗2018-08-10‘,

 ‗2019-07-16‘, ‗2019-07-17‘, ‗2019

 -07-18‘, ‗2019-07-19‘,

 ‗2019-07-22‘, ‗2019-07-23‘, ‗2019

 - 07-24‘, ‗2019-07-25‘,

 ‗2019-07-26‘, ‗2019-07-29‘],

 dtype=‘datetime64[ns]‘, name=‘Dat

 e‘, ‗length=251, freq=None)

As you can see, the index structure has changed and turned into a DatetimeIndex

object. Let‘s see the first rows of the dataset.

In [12]: 1 fb.head ()

Multivariate and Time Series Analysis 5.19

Out [12]: Date Open High Low Close Adj

 2018-

07-30

175.300003 175.300003 166.559998 171.059998 171.0

 2018-

07-31

170.669998 174.240005 170.000000 172.580002 172.5

 2018-

08-01

173.929993 175.080002 170.899994 171.649994 171.6

 2018-

08-02

170.679993 176.789993 170.270004 176.369995 176.3

 2018-

08-03

177.690002 178.850006 176.149994 177.779999 177. 7

In [13]: 1 fb[“2019-06”]

Out [13]: Date Open High Low Close Adj

 2019-

06-03

175.000000 175.050003 161.009995 164.149994 164.1

 2019-

06-04

163.710007 168.279999 160.839996 167.500000 167.5

 2019-

06-05

167.479996 168.720001 164.630005 168.169998 168.1

 2019-

06-06

168.300003 169.699997 167.229996 168.330002 168.3

 2019-

06-07

170.169998 173.869995 168.839996 173.350006 173.3

 2019-

06-10

174.750000 177.860001 173.800003 174.820007 174.8

 2019-

06-11

178.479996 179.979996 176.789993 178.100006 178.1

 5.20 Data Exploration and Visualization

It is very useful to convert the dates into the DatetimeIndex structure. For

example, you can easily select the values of the 6 months of 2019.

Working with Indexes

To see the mean of the closing prices for a date, you first write the Close column

and then use the mean function.

In [14]: 1 fb[“2019-06”].Close.mean()

 Out[14]: 181.27450025000002

In [15]: 1 fb[“2019-07-05” :”2019-07-10”]

Out [15]: Date Open High Low Close Adj

 2019-

07-05

196.179993 197.070007 194.169998 196.399994 196.3

 2019-

07-08

195.190002 196.679993 193.639999 195.759995 195.7

 2019-

07-09

194.970001 199.460007 194.889999 199.210007 199.2

 2019-

07-10

100.000000 202.960007 199669996 202.729996 202.7

Since dates are indexes, you can slice them as follows:

You can convert a date into the timestamp.

In [16]: 1

2

t=pd.to_datetime(“7/22/2019”)

t

 Out[16]: Timestamp(‗2019-07-22 00:00:00‘)

You can compare this date with the dates in the dataset with the loc method.

In [17]: 1 fb.loc]fb.index>=t,:]

Multivariate and Time Series Analysis 5.21

Out [17]: Date Open High Low Close Adj

 2019-

07-22

199.910004 202.570007 198.809996 202.320007 202.3

 2019-

07-23

202.839996 204.240005 200.960007 202.360001 202.3

 2019-

07-24

197.630005 204.809998 197.220004 204.660004 204.6

 2019-

07-25

206.699997 208.660004 198.259996 200.710007 200.7

 2019-

07-26

200.190002 202.880005 196.250000 199.750000 199.7

 2019-

07-29

199.000000 199.590302 197.880005 198.059998 198.0

Dating a Dataset

To perform a time series analysis, you need to assign date values. To show this,

I‘m going to use a dataset without dates. Let‘s read this dataset.

In [18]: 1 fb1=pd.read_csv(“FB-no-date.csv”,sep=”;”)

Let‘s have a look at the first rows of the dataset.

In [19]: 1 fb1.head()

Out [19]: Open High Low Close Adj Close

 0 162600006 163130005 161690002 162279999 162279999

 1 163899994 167500000 163830002 167369995 167369995

 2 167369995 171880005 166550003 171259995 171259995

 3 172899994 173570007 171270004 172509995 172509995

 4 171500000 171740005 167610001 169130005 169130005

 5.22 Data Exploration and Visualization

Notice that there is no date column in the dataset. Let‘s add a date column to this

dataset. To do this, let me generate a date with the date_range function. I‘m going to

use the start, end, and freq parameters. Here, B represents business days.

In [20]: 1

2

3

4

dates=pd.date_range(start=”03/01/2019”,

 end=”03/29/2019”,

 freq=”B”)

dates

 Out [20]: DatetimeIndex([‗2019-03-01‘, ‗2019-03-04‘, ‗2019

 -03-05‘, ‗2019-03-06‘,

 ‗2019-03-07‘,‗2019-03-08‘, ‗2019

 -03-11‘, ‗2019-03-12‘,

 ‗2019-03-13‘, ‗2019-03-14‘, ‗2019

 -03-15‘, ‗2019-03-18‘,

 ‗2019-03-19‘, ‗2019-03-20‘, ‗2019

 -03-21‘, ‗2019-03-22‘,

 ‗2019-03-25‘, ‗2019-03-26‘, ‗2019

 -03-27‘, ‗2019-03-28‘,

 ‗2019-03-29‘]

 dtype=‘datetime64[ns]‘, freq=‘B‘)

Now, let‘s assign this created date variable to the dataset as an index.

Let‘s see the first five rows of the dataset.

In [22]: 1 fb1.head()

Multivariate and Time Series Analysis 5.23

Out [22]: Open High Low Close
Adj

Close

 2019-

03-01

162600006 163130005 161690002 162279999 162279

 2019-

03-04

163899994 167500000 163830002 167369995 167369

 2019-

03-05

167369995 171880005 166550003 171259995 17259

 2019-

03-06

172899994 173570007 171270004 172509995 172509

 2019-

03-07

171500000 171740005 167610001 169130005 16913

As you can see, working days have been added to the dataset. Let‘s look at the

index of the dataset

Since the dataset is indexed with time, you can easily work with time series.

In [23]: 1 fb1.index

 Out [23]: DatetimeIndex([‗2019-03-01‘, ‗2019-03-04‘, ‗2019

 -03-05‘, ‗2019-03-06‘,

 ‗2019-03-07‘,‗2019-03-08‘, ‗2019

 -03-11‘, ‗2019-03-12‘,

 ‗2019-03-13‘, ‗2019-03-14‘, ‗2019

 -03-15‘, ‗2019-03-18‘,

 ‗2019-03-19‘, ‗2019-03-20‘, ‗2019

 -03-21‘, ‗2019-03-22‘,

 ‗2019-03-25‘, ‗2019-03-26‘, ‗2019

 -03-27‘, ‗2019-03-28‘,

 ‗2019-03-29‘]

 dtype=‘datetime64[ns]‘, freq=‘B‘)

 5.24 Data Exploration and Visualization

Let‘s draw a graph showing closing prices. First, I‘m going to use the %

matplotlib inline magic command to see the graph between lines.

In [24]: 1 %matplotlib inline

In [25]: 1 1 fb1.close.plot()

 Out[25]: <AxesSubplot:>

Fig. 5.11.

Let‘s draw a line plot.

How to use the asfreq method?

There are no stock values for holidays in our dataset since stock values are fixed

during holidays. If you want to add these holidays to the dataset, you can use the as

freq method. This method is optionally used to fill missing values.

In [26]: 1 fb1.asfreq(“H”,method=”pad”).head()

Multivariate and Time Series Analysis 5.25

Out

[26]:
 Open High Low Close

Adj

Close

 2019-03-01

00:00:00

162600006 163130005 161690002 162279999 1622

 2019-03-01

01:00:00

162600006 163130005 161690002 162279999 1622

 2019-03-01

02:00:00

162600006 163130005 161690002 162279999 1622

 2019-03-01

03:00:00

162600006 163130005 161690002 162279999 1622

 2019-03-01

04:00:00

162600006 163130005 161690002 162279999 1622

Let‘s fill in the missing values weekly

In [27]: 1 fb1.asfreq(“W”,method=”pad”)

Out

[27]:

Open High Low Close

Adj

Close

 2019-

03-03

162600006 163130005 161690002 162279999 162279

 2019-

03-10

166199997 169619995 165970001 169600006 169600

 2019-

03-17

167160004 167580002 162509995 165979996 165979

 2019-

03-24

165649994 167419998 164089996 164339996 164339

 5.26 Data Exploration and Visualization

Creating time series the date range method

Let‘s generate dates with the start, periods, and freq parameters.

In [29]: 1

2

3

z=pd.date_range(start=”3/1/2019”,

 periods=60 , freq=”B”)

z

 Out [29]: DatetimeIndex([‗2019-03-01‘, ‗2019-03-04‘, ‗2019

 -03-05‘, ‗2019-03-06‘,

 ‗2019-03-07‘, ‗2019-03-08‘, ‗2019

 -03-11‘, ‗2019-03-12‘,

 ‗2019-03-13‘, ‗2019-03-14‘, ‗2019

 -03-15‘, ‗2019-03-18‘,

 ‗2019-03-19‘, ‗2019-03-20‘, ‗2019

 -03-21‘, ‗2019-03-22‘,

 ‗2019-03-25‘, ‗2019-03-26‘, ‗2019

 -03-27‘, ‗2019-03-28‘,

 ‗2019-03-29‘, ‗2019-04-01‘, ‗2019

 -04-02‘, ‗2019-04-03‘,

 ‗2019-04-04‘, ‗2019-04-05‘, ‗2019

 -04-08‘, ‗2019-04-09‘,

 ‗2019-04-10‘, ‗2019-04-11‘, ‗2019

 -04-12‘, ‗2019-04-15‘,

You can set the frequency as hourly the H value.

In [30]: 1

2

3

z=pd.date_range

 (start=”3/1/2019”, periods=30 , freq=”H”)

z

Multivariate and Time Series Analysis 5.27

 Out [30]: DatetimeIndex([‗2019-03-01 00:00:00‘, ‗2019-03-0

 1 01:00:00‘,

 ‗2019-03-01 02:00:00‘, ‗2019-03-0

 1 03:00:00‘,

 ‗2019-03-01 04:00:00‘, ‗2019-03-0

 1 05:00:00‘,

 ‗2019-03-01 06:00:00‘, ‗2019-03-0

 1 07:00:00‘,

 ‗2019-03-01 08:00:00‘, ‗2019-03-0

 1 09:00:00‘,

 ‗2019-03-01 10:00:00‘, ‗2019-03-0

 1 11:00:00‘,

 ‗2019-03-01 12:00:00‘, ‗2019-03-0

 1 13:00:00‘,

 ‗2019-03-01 14:00:00‘, ‗2019-03-0

 1 15:00:00‘,

 ‗2019-03-01 16:00:00‘, ‗2019-03-0

 1 17:00:00‘,

 ‗2019-03-01 18:00:00‘, ‗2019-03-0

Let‘s create a time series with the z variable.

In [31]: 1

2

3

ts=pd.Series(

 np.random.randint(1,10,len(z)),index=z)

ts.head()

 Out [31]: 2019-03-01 00:00:00 7

 2019-03-01 01:00:00 1

 2019-03-01 02:00:00 6

 2019-03-01 03:00:00 2

 2019-03-01 04:00:00 7

 Freq: H, dtype: int32

 5.28 Data Exploration and Visualization

Group Time Series (GTS) reports contain raw or aggregated data for a group of

resources over a particular reporting period.

Raw data can be displayed for daily and weekly reporting periods only.

Aggregated data can be displayed for any reporting period, but different reporting

periods support different granularity values.

GTS reports support the following features:

 Near Real Time (NRT) data points. NRT data is raw data collected during

the current hour that has not yet been written to the database.

 Access to all branches of a group hierarchy. Subelement groups are

organized within a tree structure. When a GTS report is deployed against a

particular group in a group tree, resources in that group and in groups at all

levels of the tree below it are included in the aggregation. If a particular

resource appears in multiple groups within the group tree, that resource is

included in the aggregation only once.

Reports on GTS

 Spatial aggregation - Spatial aggregation is the aggregation of all data

points for a group of resources over a specified period (the granularity).

Data aggregations in Group Time Series reports are of the spatial

aggregation type.

 Sum of Average Reports - A Sum of Average (sumOfAvg) report is an

extension of the Group Time Series report. It calculates two data points for

each granularity period.

While dealing with time-Series data analysis we need to combine data into certain

intervals like with each day, a week, or a month.

We will solve these using only 2 Pandas APIs i.e. resample() and GroupBy().

Multivariate and Time Series Analysis 5.29

The resample() function is used to resample time-series data. Convenience method

for frequency conversion and resampling of time series. The object must have a

DateTime-like index(DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass

DateTime-like values to the on or level keyword.

If one wants to arrange the time series data in patterns like monthly, weekly, daily,

etc., this function is very useful. This function is available in Pandas library.

Resampling

Resampling is for frequency conversion and resampling of time series. So, if one

needs to change the data instead of daily to monthly or weekly etc. or vice versa. For

this, we have resample option in pandas library[2]. In the resampling function, if we

need to change the date to datetimeindex there is also an option of parameter ―on‖

but the column must be datetime-like.

 df.resample(„w‟, on=‟LastUpdated‟).mean ()

LastUpdated Capacity Occupancy

2016-10-09

2016-10-16

2016-10-23

2016-10-30

2016-11-06

2016-11-10

2016-11-20

2016-11-27

2016-12-04

2016-12-11

2016-12-18

2016-12-25

1363.275862

1395.311828

1406.956522

1391.326531

1405.492228

1396.000000

1391.530612

1402.783505

1392.357143

1436.475410

1383.288645

1420.153846

546.699234

612.520908

597.105878

628.676871

600.865285

609.621368

627.790533

678.044674

713.621825

712.380996

696.309159

844.256410

 5.30 Data Exploration and Visualization

Below from resampling with option ―D‖, the data got changed into daily data, i.e.,

all the dates will be taken into account. 375717 records downsampled to 77 records.

 df3.resample(“D”).mean() # daily option

LastUpdated Occupancy

2016-10-04

2016-10-05

2016-10-06

2016-10-07

2016-10-08

-

2016-12-15

2016-12-16

2016-12-17

2016-12-18

2016-12-19

655.543651

655.185185

636.942130

576.282407

428.036232

-

736.445110

675.021073

726.115385

613.589583

844.256410

77 rows 1 columns

A resample option is used for two options, i.e., upsampling and downsampling.

Upsampling: In this, we resample to the shorter time frame, for example monthly

data to weekly/biweekly/daily etc. Because of this, many bins are created with NaN

values and to fill these there are different methods that can be used as pad method

and bfill method. For example, changing weekly data to daily data and using bfill

method following results are obtained, so bfill filling backward the new missing

values in the resampled data:

 dd.resample („D‟).pad () [:15]

Multivariate and Time Series Analysis 5.31

LastUpdated Capacity Occupancy

2016-10-09

2016-10-10

2016-10-11

2016-10-12

2016-10-13

2016-10-14

2016-10-15

2016-10-16

2016-10-17

2016-10-18

2016-10-19

2016-10-20

2016-10-21

2016-10-22

2016-10-23

1363.275862

1363.275862

1363.275862

1363.275862

1363.275862

1363.275862

1363.275862

1395.311828

1395.311828

1395.311828

1395.311828

1395.311828

1395.311828

1395.311828

1406.956522

546.699234

546.699234

546.699234

546.699234

546.699234

546.699234

546.699234

612.520908

612.520908

612.520908

612.520908

612.520908

612.520908

612.520908

597.105878

 dd.resample („D‟).bfill () [:15]

LastUpdated Capacity Occupancy

2016-10-09

2016-10-10

2016-10-11

2016-10-12

2016-10-13

2016-10-14

2016-10-15

1363.275862

1395.311828

1395.311828

1395.311828

1395.311828

1395.311828

1395.311828

546.699234

612.520908

612.520908

612.520908

612.520908

612.520908

612.520908

 5.32 Data Exploration and Visualization

LastUpdated Capacity Occupancy

2016-10-16

2016-10-17

2016-10-18

2016-10-19

2016-10-20

2016-10-21

2016-10-22

2016-10-23

1395.311828

1406.956522

1406.956522

1406.956522

1406.956522

1406.956522

1406.956522

1406.956522

612.520908

597.105878

597.105878

597.105878

597.105878

597.105878

597.105878

597.105878

Other method is pad method, it forward fills the values as above right:

We can also use asfreq() or fillna() methods in upsamling.

Downsampling: In this we resample to the wider time frame, for example

resample daily data to weekly/biweekly/monthly etc. For this we have options like

sum(), mean(), max() etc. For example, daily data got resampled to month start data

and mean function is used as below:

 df3.resample(“MS”).mean() [:]

LastUpdated Occupancy

2016-10-01

2016-11-01

2016-12-01

600.6633861

637.142419

714.497266

Graphical Representation of Resampling

After resampling data by four different rules, i.e., hourly, daily, weekly, and

monthly, following graphs are obtained. We can clearly see the difference in shorter

vs wider time frames. In the hourly plot, more noise is there and it is decreasing from

daily to weekly to monthly. As per study objective, we can decide which option for

rule would be best.

Multivariate and Time Series Analysis 5.33

Fig. 5.12.

 5.34 Data Exploration and Visualization

1. Define a multivariate analysis.

Multivariate data analysis is a type of statistical analysis that involves more

than two dependent variables, resulting in a single outcome. Many problems in

the world can be practical examples of multivariate equations as whatever

happens in the world happens due to multiple reasons.

 One such example of the real world is the weather. The weather at any

particular place does not solely depend on the ongoing season, instead many

other factors play their specific roles, like humidity, pollution, etc. Just like this,

the variables in the analysis are prototypes of real-time situations, products,

services, or decision-making involving more variables.

2. Differentiate longtidudinal data and time series data.

It is important to distinguish longitudinal data from the time series data.

Although time series data can provide us with a picture of aggregate change, it is

only longitudinal data that can provide evidence of change at the level of the

individual. Time series data could perhaps be understood as a series of snapshots

of society, whereas longitudinal research entails following the same group of

individuals over time and linking information about those individuals from one

time point to another.

3. What are the fundamentals of TSA?

Time series data is a collection of quantities that are assembled over even

intervals in time and ordered chronologically. The time interval at which data is

collected is generally referred to as the time series frequency.

4. Write in brief the characteristics of time series data.

 Single data source

 The ratio of read/write is smaller

 The trend is more important

 Retention policy

 Aggregation over time or a set of devices

 Real-time computing or analysis is required

 Traffic is stable

Multivariate and Time Series Analysis 5.35

 Special computing is needed

 Data volume is huge

5. List down the steps in data cleaning.

 Remove duplicate or irrelevant observations

 Fix structural errors

 Filter unwanted outliers

 Handle missing data

 Validate and QA

6. Write down the benefits of data cleaning.

 Removal of errors when multiple sources of data are at play.

 Fewer errors make for happier clients and less-frustrated employees.

 Ability to map the different functions and what your data is intended to do.

 Monitoring errors and better reporting to see where errors are coming

from, making it easier to fix incorrect or corrupt data for future

applications.

 Using tools for data cleaning will make for more efficient business

practices and quicker decision-making.

7. State Time-based indexing.

A time series is a series of data points indexed in time order. If you index the

dataset by date, you can easily carry out a time series analysis. There are three

index types of time series:

DatetimeIndex - The index type for timestamped data is DatetimeIndex.

PeriodIndex - The index type for period data, which shows the fixed interval

date data, is PeriodIndex

TimedeltaIndex - The index type for the Timedelta data, which shows the

time between two dates, is TimedeltaIndex

8. What do you mean by Grouping?

Group Time Series (GTS) reports contain raw or aggregated data for a group

of resources over a particular reporting period. Raw data can be displayed for

 5.36 Data Exploration and Visualization

daily and weekly reporting periods only. Aggregated data can be displayed for

any reporting period, but different reporting periods support different granularity

values.

9. List the featutes of GTS.

 Near Real Time (NRT) data points. NRT data is raw data collected during

the current hour that has not yet been written to the database.

 Access to all branches of a group hierarchy. Subelement groups are

organized within a tree structure. When a GTS report is deployed against a

particular group in a group tree, resources in that group and in groups at all

levels of the tree below it are included in the aggregation. If a particular

resource appears in multiple groups within the group tree, that resource is

included in the aggregation only once.

10. What is Resampling.

While dealing with time-Series data analysis we need to combine data into

certain intervals like with each day, a week, or a month. We will solve these

using only 2 Pandas APIs i.e. resample() and GroupBy().

The resample() function is used to resample time-series data. Convenience

method for frequency conversion and resampling of time series. The object must

have a DateTime-like index(DatetimeIndex, PeriodIndex, or TimedeltaIndex), or

pass DateTime-like values to the on or level keyword.

1. Explain three variable contingency table with example.

2. Elaborate the term longitudinal data.

3. Define TSA, Explain broadly.

4. Explain the concept data cleaning and its steps involved.

5. Describe time based indexing.

6. Explain the methods of visualizing time series data.

1. Install the data Analysis and Visualization tool: R/ Python /Tableau Public/

Power BI.

Program 1:

importing the pands package

import pandas as pd

creating rows

hafeez = ['Hafeez', 19]

aslan = ['Aslan', 21]

kareem = ['Kareem', 18]

pass those Series to the DataFrame

passing columns as well

data_frame = pd.DataFrame([hafeez, aslan, kareem], columns = ['Name', 'Age'])

displaying the DataFrame

print(data_frame)

Output

If you run the above program, you will get the following results.

Name Age

0 Hafeez 19

1 Aslan 21

2 Kareem 18

Program 2:

importing the pyplot module to create graphs

import matplotlib.pyplot as plot

importing the data using pd.read_csv() method

data = pd.read_csv('CountryData.IND.csv')

 P.2 Data Exploration and Visualization

creating a histogram of Time period

data['Time period'].hist(bins = 10)

Output

If you run the above program, you will get the following results.

<matplotlib.axes._subplots.AxesSubplot at 0x25e363ea8d0>

2. Perform exploratory data analysis (EDA) on with datasets like email data

set. Export all your emails as a dataset, import them inside a pandas data

frame, visualize them and get different insights from the data.

Create a CSV file with only the required attributes:

 with open('mailbox.csv', 'w') as outputfile:

 writer =csv.writer(outputfile)

 writer.writerow(['subject','from','date','to','label','thread'])

 for message in mbox:

 writer.writerow([

 message['subject'],

 message['from'],

Practical Exercises P.3

 message['date'],

 message['to'],

 message['X-Gmail-Labels'],

 message['X-GM-THRID']

The output of the preceding code is as follows:

subject object

from object date

object

to object label

object

thread float64

dtype: object

 def plot_number_perdhour_per_year(df, ax, label=None, dt=1,

smooth=False,

 weight_fun=None, **plot_kwargs):

 tod = df[df['timeofday'].notna()]['timeofday'].values year =

 df[df['year'].notna()]['year'].values

 Ty = year.max() - year.min() T

 = tod.max() - tod.min() bins =

 int(T / dt)

 if weight_fun is None:

 weights = 1 / (np.ones_like(tod) * Ty * 365.25 / dt) else:

 weights = weight_fun(df) if

 smooth:

 P.4 Data Exploration and Visualization

 hst, xedges = np.histogram(tod, bins=bins, weights=weights); x =

 np.delete(xedges, -1) + 0.5*(xedges[1] - xedges[0])

 hst = ndimage.gaussian_filter(hst, sigma=0.75) f =

 interp1d(x, hst, kind='cubic')

 x = np.linspace(x.min(), x.max(), 10000) hst =

 f(x)

 ax.plot(x, hst, label=label, **plot_kwargs) else:

 ax.hist(tod, bins=bins, weights=weights, label=label,

 **plot_kwargs);

 ax.grid(ls=':', color='k')

 orientation = plot_kwargs.get('orientation')

 if orientation is None or orientation == 'vertical':

 ax.set_xlim(0, 24)

 ax.xaxis.set_major_locator(MaxNLocator(8))

 ax.set_xticklabels([datetime.datetime.strptime(str(int(np.mod(ts, 24))),

"%H").strftime("%I %p")

 for ts in ax.get_xticks()]); elif

 orientation == 'horizontal':

 ax.set_ylim(0, 24)

 ax.yaxis.set_major_locator(MaxNLocator(8))

 ax.set_yticklabels([datetime.datetime.strptime(str(int(np.mod(ts, 24))),

"%H").strftime("%I %p")

 for ts in ax.get_yticks()]);

Practical Exercises P.5

3. Working with Numpy arrays, Pandas data frames, Basic plots using

Matplotlib.

Program 1:

import numpy as np

from matplotlib import pyplot as plt

 P.6 Data Exploration and Visualization

x = np.arange(1,11)

y = 2 * x + 5

plt.title("Matplotlib demo")

plt.xlabel("x axis caption")

plt.ylabel("y axis caption")

plt.plot(x,y)

plt.show()

The above code should produce the following output −

Program 2:

import pandas as pd

import matplotlib.pyplot as plt

creating a DataFrame with 2 columns

dataFrame = pd.DataFrame(

 {

 "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],

 "Reg_Price": [2000, 2500, 2800, 3000, 3200, 3500],

Practical Exercises P.7

 "Units": [100, 120, 150, 170, 180, 200]

 }

)

plot a line graph

plt.plot(dataFrame["Reg_Price"], dataFrame["Units"])

plt.show()

Output

This will produce the following output −

4. Explore various variable and row filters in R for cleaning data. Apply

various plot features in R on sample data sets and visualize.

install.packages("data.table") # Install data.table package

library("data.table") # Load data.table

We also create some example data.

dt_all <- data.table(x = rep(month.name[1:3], each = 3),

 y = rep(c(1, 2, 3), times = 3),

 z = rep(c(TRUE, FALSE, TRUE), each = 3)) # Create data.table

head(dt_all)

 P.8 Data Exploration and Visualization

Table 1

 x y z

1 January 1 TRUE

2 January 2 TRUE

3 January 3 TRUE

4 February 1 FALSE

5 February 2 FALSE

6 February 3 FALSE

Filter Rows by Column Values

In this example, I’ll demonstrate how to select all those rows of the example data

for which column x is equal to February. With the use of %in%, we can choose a set

of values of x. In this example, the set only contains one value.

dt_all[x %in% month.name[c(2)],] # Rows where x is February

Table 2

 x y z

1 February 1 FALSE

2 February 2 FALSE

3 February 3 FALSE

Filter Rows by Column Values

In this example, I’ll demonstrate how to select all those rows of the example data

for which column x is equal to February. With the use of %in%, we can choose a set

of values of x. In this example, the set only contains one value.

dt_all[x %in% month.name[c(2)],] # Rows where x is February

Practical Exercises P.9

 Table 2

 x y z

1 February 1 FALSE

2 February 2 FALSE

3 February 3 FALSE

Filter Rows by Multiple Column Value

In the previous example, we addressed those rows of the example data for which

one column was equal to some value. In this example, we condition on the values of

multiple columns.

dt_all[x %in% month.name[c(2)] & y == 1,] # Rows, where x is February and y is 1

Table 3

 x y z

1 February 1 FALSE

5. Perform Time Series Analysis and apply the various visualization

techniques.

import matplotlib as mpl

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

import pandas as pd

plt.rcParams.update({'figure.figsize': (10, 7), 'figure.dpi': 120})

Import as Dataframe

df=pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv',

parse_dates=['date'])

df.head()

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Logic.html
https://raw.githubusercontent.com/selva86/datasets/master/a10.csv

 P.10 Data Exploration and Visualization

 Date Value

0

1

2

3

4

1991-07-01

1991-08-01

1991-09-01

1991-10-01

1991-11-01

3.526591

3.180891

3.252221

3.611003

3.565869

Time series data source: fpp pacakge in R.

import matplotlib.pyplot as plt

df=pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv',

parse_dates=['date'], index_col='date')

Draw Plot

def plot_df(df, x, y, title="", xlabel='Date', ylabel='Value', dpi=100):

plt.figure(figsize=(16,5), dpi=dpi)

plt.plot(x, y, color='tab:red')

plt.gca().set(title=title, xlabel=xlabel, ylabel=ylabel)

plt.show()

plot_df(df, x=df.index, y=df.value, title='Monthly anti-diabetic drug sales in

Australia from 1992 to 2008.')

https://raw.githubusercontent.com/selva86/datasets/master/a10.csv

Practical Exercises P.11

6. Perform Data Analysis and representation on a Map using various Map

data sets with Mouse Rollover effect, user interaction, etc.. 22

1. Draw the map background

fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='lcc', resolution='h',

 lat_0=37.5, lon_0=-119,

 width=1E6, height=1.2E6)

m.shadedrelief()

m.drawcoastlines(color='gray')

m.drawcountries(color='gray')

m.drawstates(color='gray')

2. scatter city data, with color reflecting population

and size reflecting area

m.scatter(lon, lat, latlon=True,

 c=np.log10(population), s=area,

 cmap='Reds', alpha=0.5)

3. create colorbar and legend

plt.colorbar(label=r'$\log_{10}({\rm population})$')

plt.clim(3, 7)

make legend with dummy points

for a in [100, 300, 500]:

 plt.scatter([], [], c='k', alpha=0.5, s=a,

 label=str(a) + ' km2')

plt.legend(scatterpoints=1, frameon=False,

 labelspacing=1, loc='lower left');

 P.12 Data Exploration and Visualization

7. Build cartographic visualization for multiple datasets involving various

countries of the world;

alt.Chart(zipcodes).transform_filter(

 '-150 < datum.longitude && 22 < datum.latitude && datum.latitude < 55'

).transform_calculate(

 digit='datum.zip_code[0]'

).mark_line(

 strokeWidth=0.5

).encode(

 longitude='longitude:Q',

 latitude='latitude:Q',

 color='digit:N',

 order='zip_code:O'

Practical Exercises P.13

).project(

 type='albersUsa'

).properties(

 width=900,

 height=500

).configure_view(

 stroke=None

)

alt.layer(

 alt.Chart(alt.topo_feature(usa, 'states')).mark_geoshape(

 fill='#ddd', stroke='#fff', strokeWidth=1

),

 alt.Chart(airports).mark_circle(size=9).encode(

 latitude='latitude:Q',

 longitude='longitude:Q',

 tooltip='iata:N'

)

).project(

 type='albersUsa'

).properties(

 P.14 Data Exploration and Visualization

 width=900,

 height=500

).configure_view(

 stroke=None

)

8. Perform EDA on Wine Quality Data Set.

#importing libraries

import numpy as np

import pandas as pd

importmatplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

In [4]: 1 #features in data

df.columns

Out [4]: Index([‘fixed acidity’, volatile acidity’, ‘citric acid’, ‘residual su

 gar’,

 ;chlorides’, ‘free sulfur dioxide’, total sulfur dioxide’, ‘den

 sity’,

 ‘pH’, ‘sulphates’, ‘alcohol’, ‘quality’],

 dtype=’object’)

Practical Exercises P.15

In [5]: #few datapoints

df.head()

In [13]: sns.catplot(x=‘quality’,data=df,kind=‘count’)

 Out [13]: <seaborn.axisgrid.facegrid at022b7de0dba8 ?? >

Out

[5]:

Fixed

acidity

Volatile

acidity

citric

acid

residual

sugar
chlorides

free

sulphur

dioxide

total

sulphur

dioxide

density pH Sulphates alcohol Quality

 0

1

2

3

4

7.0

6.3

8.1

7.2

7.2

0.27

0.30

0.28

0.23

0.23

0.36

0.34

0.40

0.32

0.32

20.7

1.6

6.9

8.5

8.5

0.045

0.049

0.050

0.068

0.068

45.0

14.0

30.0

47.0

47.0

170.0

132.0

97.0

186.0

186.0

1.0010

0.9940

0.9951

0.9956

0.9956

3.00

3.30

3.26

3.19

3.19

0.45

0.49

0.44

0.40

0.40

8.8

9.5

10.1

9.9

9.9

6

6

6

6

6

 P.16 Data Exploration and Visualization

9. Use a case study on a data set and apply the various EDA and visualization

techniques and present an analysis report.

 import datetime

import math

import pandas as pd

import random

import radar

from faker import Faker

fake = Faker()

def generateData(n):

 listdata = []

 start = datetime.datetime(2019, 8, 1)

 end = datetime.datetime(2019, 8, 30)

 delta = end - start

 for _ in range(n):

Practical Exercises P.17

 date = radar.random_datetime(start='2019-08-1', stop='2019-08-

30').strftime("%Y-%m-%d")

 price = round(random.uniform(900, 1000), 4)

Date Price

2019-08-01

2019-08-02

2019-08-04

2019-08-05

2019-08-06

2019-08-07

2019-08-08

2019-08-10

2019-08-13

2019-08-14

999.598900

957.870150

978.674200

963.380375

978.092900

987.847700

952.669900

973.929400

971.485600

977.036200

 listdata.append([date, price])

 df = pd.DataFrame(listdata, columns = ['Date', 'Price']) df['Date']

 = pd.to_datetime(df['Date'], format='%Y-%m-%d') df =

 df.groupby(by='Date').mean()

import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (14, 10)

plt.plot(df)

 P.18 Data Exploration and Visualization

And the plotted graph looks something like this:

	Data Exploration and Visualization - Contents
	DEV - First page - UNIT 1
	Data Exploration and Visualization Unit 1
	DEV - First page - UNIT 2
	Data Exploration and Visualization Unit 2
	DEV - First page - UNIT 3
	Data Exploration and Visualization Unit 3 (Formatting and Typed)
	DEV - First page - UNIT 4
	Data Exploration and Visualization Unit 4
	DEV - First page - UNIT 5
	Data Exploration and Visualization Unit 5 (Formatting and Typed)
	Data Exploration and Visualization - Practical Exercise

