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UNIT I 

EXPLORATORY DATA ANALYSIS  

EDA is a process of examining the available dataset to discover patterns, spot 

anomalies, test hypotheses, and check assumptions using statistical measures. In this 

chapter, we are going to discuss the steps involved in performing top-notch 

exploratory data analysis and get our hands dirty using some open source databases. 

As mentioned here and in several studies, the primary aim of EDA is to examine 

what data can tell us before actually going through formal modeling or hypothesis 

formulation.  

The main takeaway here is the stages of EDA. Let's understand in brief what these 

stages are: 

Data requirements: There can be various sources of data for an organization. It 

is important to comprehend what type of data is required for the organization to be 

collected, curated, and stored.  

Data collection: Data collected from several sources must be stored in the correct 

format and transferred to the right information technology personnel within a 

company. As mentioned previously, data can be collected from several objects on 

several events using different types of sensors and storage tools. 

Data processing: Preprocessing involves the process of pre-curating the dataset 

before actual analysis. Common tasks involve correctly exporting the dataset, placing 

them under the right tables, structuring them, and exporting them in the correct 

format. 

Data cleaning: Preprocessed data must be correctly transformed for an 

incompleteness check, duplicates check, error check, and missing value check. These 
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tasks are performed in the data cleaning stage, which involves matching the correct 

record, finding inaccuracies in the dataset, understanding the overall data quality, 

removing duplicate items, and filling in the missing values.  

Modeling and algorithm: From a data science perspective, generalized models 

or mathematical formulas can represent or exhibit relationships among different 

variables, such as correlation or causation. These models or equations involve one or 

more variables that depend on other variables to cause an event.  

Data Product: Any computer software that uses data as inputs, produces outputs, 

and provides feedback based on the output to control the environment is referred to 

as a data product. A data product is generally based on a model developed during 

data analysis, for example, a recommendation model that inputs user purchase 

history and recommends a related item that the user is highly likely to buy. 

Communication: This stage deals with disseminating the results to end 

stakeholders to use the result for business intelligence. One of the most notable steps 

in this stage is data visualization. Visualization deals with information relay 

techniques such as tables, charts, summary diagrams, and bar charts to show the 

analyzed result.  

Exploratory data analysis is key, and usually the first exercise in data mining. It 

allows us to visualize data to understand it as well as to create hypotheses for further 

analysis. The exploratory analysis centers around creating a synopsis of data or 

insights for the next steps in a data mining project. 

Steps in EDA 

Problem definition: The problem definition works as the driving force for a data 

analysis plan execution. The main tasks involved in problem definition are defining 

the main objective of the analysis, defining the main deliverables, outlining the main 

roles and responsibilities, obtaining the current status of the data, defining the 

timetable, and performing cost/benefit analysis.  
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Data preparation: This step involves methods for preparing the dataset before 

actual analysis. In this step, we define the sources of data, define data schemas and 

tables, understand the main characteristics of the data, clean the dataset, delete non-

relevant datasets, transform the data, and divide the data into required chunks for 

analysis. 

Data analysis: This is one of the most crucial steps that deals with descriptive 

statistics and analysis of the data. The main tasks involve summarizing the data, 

finding the hidden correlation and relationships among the data, developing 

predictive models, evaluating the models, and calculating the accuracies. Some of the 

techniques used for data summarization are summary tables, graphs, descriptive 

statistics, inferential statistics, correlation statistics, searching and grouping. 

Development and representation of the results: This step involves presenting 

the dataset to the target audience in the form of graphs, summary tables, maps, and 

diagrams. This is also an essential step as the result analyzed from the dataset should 

be interpretable by the business stakeholders, which is one of the major goals of 

EDA.  

A dataset contains many observations about a particular object. For instance, a 

dataset about patients in a hospital can contain many observations. A patient can be 

described by a patient identifier (ID), name, address, weight, date of birth, address, 

email, and gender. Each of these features that describes a patient is a variable. Each 

observation can have a specific value for each of these variables.  

Numerical Data 

This data has a sense of measurement involved in it; for example, a person's age, 

height, weight, blood pressure, heart rate, temperature, number of teeth, number of 

bones, and the number of family members. This data is often referred to as 

quantitative data in statistics. The numerical dataset can be either discrete or 

continuous types. 
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Discrete Data 

This is data that is countable and its values can be listed out. For example, if we 

flip a coin, the number of heads in 200 coin flips can take values from 0 to 200 

(finite) cases. A variable that represents a discrete dataset is referred to as a discrete 

variable. The discrete variable takes a fixed number of distinct values. For example, 

the Country variable can have values such as Nepal, India, Norway, and Japan. It is 

fixed. The Rank variable of a student in a classroom can take values from 1, 2, 3, 4, 

5, and so on. 

Continuous Data 

A variable that can have an infinite number of numerical values within a specific 

range is classified as continuous data. A variable describing continuous data is a 

continuous variable.  

Categorical Data 

This type of data represents the characteristics of an object; for example, gender, 

marital status, type of address, or categories of the movies. This data is often referred 

to as qualitative datasets in statistics.  

A variable describing categorical data is referred to as a categorical variable. 

These types of variables can have one of a limited number of values. There are 

different types of categorical variables: 

A binary categorical variable can take exactly two values and is also referred to as 

a dichotomous variable. For example, when you create an experiment, the result is 

either success or failure. Hence, results can be understood as a binary categorical 

variable. 

Polytomous variables are categorical variables that can take more than two 

possible values. For example, marital status can have several values, such as annulled, 

divorced, interlocutory, legally separated, married, polygamous, never married, 

domestic partners, unmarried, widowed, domestic partner, and unknown. Since 

marital status can take more than two possible values, it is a polytomous variable. 
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There are several approaches to data analysis.  

Classical data analysis: For the classical data analysis approach, the problem 

definition and data collection step are followed by model development, which is 

followed by analysis and result communication. Exploratory data analysis 

approach: For the EDA approach, it follows the same approach as classical data 

analysis except the model imposition and the data analysis steps are swapped. The 

main focus is on the data, its structure, outliers, models, and visualizations.  

Bayesian data analysis approach: The Bayesian approach incorporates prior 

probability distribution knowledge into the analysis steps as shown in the following 

diagram. Well, simply put, prior probability distribution of any quantity expresses 

the belief about that particular quantity before considering some evidence.  

 

Fig. 1.1.  
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There are several software tools that are available to facilitate EDA.  

NumPy 

For importing numpy, we will use the following code: 

import numpy as np 

For NumPy arrays and file operations, we will use the following code: 

# Save a numpy array into file x = np.arange(0.0,50.0,1.0) 

np.savetxt('data.out', x, delimiter=',') 

# Loading numpy array from text 

z = np.loadtxt('data.out', unpack=True) print(z) 

# Loading numpy array using genfromtxt method my_array2 = 

np.genfromtxt('data.out', 

skip_header=1, filling_values=-999) print(my_array2) 

For inspecting NumPy arrays, we will use the following code: 

# Print the number of `my2DArray`'s dimensions print(my2DArray.ndim) 

# Print the number of `my2DArray`'s elements print(my2DArray.size) 

# Print information about `my2DArray`'s memory layout print(my2DArray.flags) 

# Print the length of one array element in bytes print(my2DArray.itemsize) 

# Print the total consumed bytes by `my2DArray`'s elements 

print(my2DArray.nbytes) 

Pandas 

1. Use the following to set default parameters: 

import numpy as np import pandas as pd 

print("Pandas Version:", pd. version ) 

pd.set_option('display.max_columns', 500) 
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pd.set_option('display.max_rows', 500) 

2. In pandas, we can create data structures in two ways: series and 

dataframes.  The following code snippet shows how we can create a 

dataframe from a  series: 

series = pd.Series([2, 3, 7, 11, 13, 17, 19, 23]) print(series) 

# Creating dataframe from Series series_df = pd.DataFrame({ 

'A': range(1, 5), 

'B': pd.Timestamp('20190526'), 

'C': pd.Series(5, index=list(range(4)), dtype='float64'), 'D': np.array([3] * 4, 

dtype='int64'), 

'E': pd.Categorical(["Depression", "Social Anxiety", "Bipolar Disorder", "Eating 

Disorder"]), 

'F': 'Mental health', 'G': 'is challenging' 

}) 

print(series_df) 

3. Now, let's load a dataset from an external source into a pandas 

DataFrame. After that, let's see the first 10 entries: 

columns = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 

'marital_status', 'occupation', 'relationship', 'ethnicity', 

'gender','capital_gain','capital_loss','hours_per_week','country_of_origin','inco me'] 

df=pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-

databases/adult/adult.data',names=columns) 

df.head(10) 

If you run the preceding cell, you should get an output similar to the followi n  g   

screenshot:

http://archive.ics.uci.edu/ml/machine-learning-
http://archive.ics.uci.edu/ml/machine-learning-
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age 

work 

class 
fnlwgt education 

education-

num 

marital-

status 
Occupation relationship Ethinicity Gender Capital_gain Capital_loss Hours_per_week 

0 39 State-

gov 

77516 Bachelors 13 Never-

married 

Adm-

clerical 

Not-in-

family 

White Male 2174 0 40 

1 50 Self-

emp-

not-inc 

83311 Bachelors 13 Married-

civ-

spouse 

Exec-

managerial 

Husband White Male 0 0 13 

2 38 Private 215646 HS-grad 9 Divorced Handlers-

cleaners 

Not-in-

family 

White Male 0 0 40 

3 53 Private 234721 11th  7 Married-

civ-

spouse 

Handlers-

cleaners 

Husband Black Male 0 0 40 

4 28 Private 338409 Bachelors 13 Married-

civ-

spouse 

Prof-

speciality 

Wife Black Female 0 0 40 

5 37 Private 284582 Masters 14 Married-

civ-

spouse 

Exec-

managerial 

Wife White Female 0 0 40 

6 49 Private 160187 9th  5 Married-

spouse-

absent 

Other-

service 

Not-in 

family 

Black Female 0 0 16 

7 52 Self-

emp-

not-inc 

209642 HS-grad 9 Married-

civ-

spouse 

Exec-

managerial 

Husband White Male 0 0 45 

8 31 Private 45781 Masters 14 Never-

married 

Prof-

speciality 

Not-in 

family 

White Female 14084 0 50 

9 42 Private 159449 Bachelors 13 Married-

civ-

spouse 

Exec-

managerial 

Husband White Male 5178 0 40 
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4. The following code displays the rows, columns, data types, and memory 

used by the dataframe: 

df.info() 

The output of the preceding code snippet should be similar to the following: 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 32561 entries, 0 to 32560 Data columns (total 15 columns):age 

32561 non-null int64 workclass 32561 non-null object fnlwgt 32561 non-null 

int64 education 32561 non-null object 

education_num 32561 non-null int64 marital_status 32561 non-null object 

occupation 32561 non-null object relationship 32561 non-null object ethnicity 

32561 non-null object gender 32561 non-null object capital_gain 32561 non-null 

int64 capital_loss 32561 non-null int64 hours_per_week 32561 non-null int64 

country_of_origin 32561 non-null object income 32561 non-null object 

dtypes: int64(6), object(9) memory usage: 3.7 + MB 

5. Let's now see how we can select rows and columns in any dataframe: 

# Selects a row df.iloc[10] 

# Selects 10 rows df.iloc[0:10] 

# Selects a range of rows df.iloc[10:15] 

# Selects the last 2 rows df.iloc[-2:] 

# Selects every other row in columns 3-5 df.iloc[::2, 3:5].head() 

6. Let's combine NumPy and pandas to create a dataframe as follows: 

import pandas as pd import numpy as np 

np.random.seed(24) 

dFrame = pd.DataFrame({'F': np.linspace(1, 10, 10)}) 

dFrame = pd.concat([df, pd.DataFrame(np.random.randn(10, 5), 

columns=list('EDCBA'))], 

axis=1) dFrame.iloc[0, 2] = np.nan dFrame 

7.  Let's style this table using a custom rule. If the values are greater than 

zero, we change the color to black (the default color); if the value is less 
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than zero, we change the color to red; and finally, everything else would 

be colored green. Let's define a Python function to accomplish that: 

# Define a function that should color the values that are less than 0 def 

colorNegativeValueToRed(value): 

if value < 0: color = 'red' 

elif value > 0: color = 'black' 

else: 

color = 'green' 

return 'color: %s' % color 

8. Now, let's pass this function to the dataframe. We can do this by using 

the style method provided by pandas inside the dataframe: 

s = df.style.applymap(colorNegativeValueToRed, subset=['A','B','C','D','E']) s 

It should display a colored dataframe as shown in the following screenshot: 

 F E D C B A 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1.32921 

–1.43871 

0.678805 

0.850229 

–1.33694 

1.2076 

–0.385684 

–2.08935 

1.2641 

0.118098 

nan 

0.564417 

1.88927 

1.45342 

0.562861 

– 0.00204021 

0.519818 

– 0.12982 

0.290035 

– 0.0218533 

–0.31628 

0.295722 

0.961538 

1.05774 

1.39285 

1.6278 

1.68658 

0.631523 

–1.97029 

0.0468407 

–0.99081 

–1.6264 

0.104011 

0.165562 

– 0.063328 

0.354493 

–1.32596 

–0.586538 

0.803906 

–1.62875 

–1.07082 

0.219565 

–0.481165 

0.515018 

0.121668 

1.03753 

1.42898 

0.29072 

1.03055 

–0.392361 

It should be noted that the apply map and apply methods are computationally 

expensive as they apply to each value inside the dataframe. Hence, it will take some 

time to execute. Have patience and await execution. 
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9. Now, let's go one step deeper. We want to scan each column and 

highlight the maximum value and the minimum value in that column: 

def highlightMax(s): isMax = s == s.max() 

return ['background-color: orange' if v else '' for v in isMax] 

def highlightMin(s): isMin = s == s.min() 

return ['background-color: green' if v else '' for v in isMin] 

We apply these two functions to the dataframe as follows: 

df.style.apply(highlightMax).apply(highlightMin).highlight_null(null_color='red) 

The output should be similar to the following screenshot: 

 F E D C B A 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1.32921 

–1.43871 

0.678805 

0.850229 

–1.33694 

1.2076 

–0.385684 

–2.08935 

1.2641 

0.118098 

nan 

0.564417 

1.88927 

1.45342 

0.562861 

– 0.00204021 

0.519818 

– 0.12982 

0.290035 

– 0.0218533 

–0.31628 

0.295722 

0.961538 

1.05774 

1.39285 

1.6278 

1.68658 

0.631523 

–1.97029 

0.0468407 

–0.99081 

–1.6264 

0.104011 

0.165562 

– 0.063328 

0.354493 

–1.32596 

–0.586538 

0.803906 

–1.62875 

–1.07082 

0.219565 

–0.481165 

0.515018 

0.121668 

1.03753 

1.42898 

0.29072 

1.03055 

–0.392361 

SciPy 

SciPy is a scientific library for Python and is open source. We are going to use this 

library in the upcoming chapters. This library depends on the NumPy library, which 

provides an efficient n-dimensional array manipulation function. If you want to get 

started early, check for scipy.stats from the SciPy library. 
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Matplotlib 

Matplotlib provides a huge library of customizable plots, along with a 

comprehensive set of backends. It can be utilized to create professional reporting 

applications, interactive analytical applications, complex dashboard applications, 

web/GUI applications, and embedded views.  

As data scientists, two important goals in our work would be to extract knowledge 

from the data and to present the data to stakeholders. Presenting results to 

stakeholders is very complex in the sense that our audience may not have enough 

technical know-how to understand programming jargon and other technicalities. 

Hence, visual aids are very useful tools. 

Line Chart 

We have created a function using the faker Python library to generate the dataset. 

It is the simplest possible dataset you can imagine, with just two columns. The first 

column is Date and the second column is Price, 

My generate Data function is defined here: 

import datetime import math 

import pandas as pd import random 

import radar 

from faker import Faker fake = Faker() 

def generateData(n): listdata = [] 

start = datetime.datetime(2019, 8, 1) 

end = datetime.datetime(2019, 8, 30) delta = end - start 

for _ in range(n): 

date = radar.random_datetime(start='2019-08-1', stop='2019-08- 30').strftime("%Y-

%m-%d") 
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price = round(random.uniform(900, 1000), 4) listdata.append([date, price]) 

df = pd.DataFrame(listdata, columns = ['Date', 'Price']) df['Date'] = 

pd.to_datetime(df['Date'], format='%Y-%m-%d') df = df.groupby(by='Date').mean() 

return df 

Having defined the method to generate data, let's get the data into a pandas dataframe 

and check the first 10 entries: 

df = generateData(50) df.head(10) 

The output of the preceding code is shown in the following screenshot: 

Date Price 

2019-08-01 

2019-08-02 

2019-08-04 

2019-08-05 

2019-08-06 

2019-08-07 

2019-08-08 

2019-08-10 

2019-08-13 

2019-08-14 

999.598900 

957.870150 

978.674200 

963.380375 

978.092900 

987.847700 

952.669900 

973.929400 

971.485600 

977.036200 

Steps involved 

Let's look at the process of creating the line chart: 

1. Load and prepare the dataset.  

2. Import the matplotlib library. It can be done with this command: 

import matplotlib.pyplot as plt 

3. Plot the graph: 
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plt.plot(df) 

4. Display it on the screen: 

plt.show() 

Here is the code if we put it all together: 

import matplotlib.pyplot as plt 

plt.rcParams['figure.figsize'] = (14, 10) plt.plot(df) 

And the plotted graph looks something like this: 

 

Fig. 1.2.  

Bar Charts 

This is one of the most common types of visualization that almost everyone must 

have encountered. Bars can be drawn horizontally or vertically to represent 

categorical variables. 

Bar charts are frequently used to distinguish objects between distinct collections 

in order to track variations over time. In most cases, bar charts are very convenient 

when the changes are large. In order to learn about bar charts, let's assume a 
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pharmacy in Norway keeps track of the amount of Zoloft sold every month. Zoloft 

is a medicine prescribed to patients suffering from depression. We can use the 

calendar  

1. Let's import the required libraries: 

import numpy as np import calendar 

import matplotlib.pyplot as plt 

2. Set up the data. Remember, the range stopping parameter is exclusive, 

meaning if you generate range from (1, 13), the last item, 13, is not 

included: 

months = list(range(1, 13)) 

sold_quantity = [round(random.uniform(100, 200)) for x in range(1, 13)] 

3. Specify the layout of the figure and allocate space: 

figure, axis = plt.subplots() 

4. In the x  axis, we would like to display the names of the months: 

plt.xticks(months, calendar.month_name[1:13], rotation=20) 

5. Plot the graph: 

plot = axis.bar(months, sold_quantity) 

6. This step is optional depending upon whether you are interested in 

displaying the data value on the head of the bar. It visually gives more 

meaning to show an actual number of sold items on the bar itself: 

for rectangle in plot: 

height = rectangle.get_height() 

axis.text(rectangle.get_x() + rectangle.get_width() /2., 1.002 * height, '%d' % 

int(height), ha='center', va = 'bottom') 

7. Display the graph on the screen: 

plt.show() 
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The bar chart is as follows:  

 

Fig. 1.3.  

Scatter Plot 

Scatter plots are also called scatter graphs, scatter charts, scattergrams, and scatter 

diagrams. They use a Cartesian coordinates system to display values of typically 

two variables for a set of data. 

When should we use a scatter plot? Scatter plots can be constructed in the 

following two situations: 

When one continuous variable is dependent on another variable, which is under 

the control of the observer 

When both continuous variables are independent 
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There are two important concepts - independent variable and dependent 

variable. In statistical modeling or mathematical modeling, the values of dependent 

variables rely on the values of independent variables. The dependent variable is the 

outcome variable being studied. The independent variables are also referred to as 

regressors.  

Here, we are using seaborn to load the dataset: 

1. Import seaborn and set some default parameters of matplotlib: import 

seaborn as sns 

import matplotlib.pyplot as plt 

plt.rcParams['figure.figsize'] = (8, 6) 

plt.rcParams['figure.dpi'] = 150 

2. Use style from seaborn. Try to comment on the next line and see the 

difference in the graph: 

sns.set() 

3. Load the Iris dataset: 

df = sns.load_dataset('iris') 

 

df['species'] = df['species'].map({'setosa': 0, "versicolor": 1, 

"virginica": 2}) 

4. Create a regular scatter plot: 

plt.scatter(x=df["sepal_length"], y=df["sepal_width"], c = df.species) 

5. Create the labels for the axes: 

plt.xlabel('Septal Length') plt.ylabel('Petal length') 

6. Display the plot on the screen: 

plt.show() 

The scatter plot generated by the preceding code is as follows: 
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Fig. 1.4.  

Pie Chart 

This is one of the more interesting types of data visualization graphs.  

There are two ways in which you can load the data: first, directly from the GitHub 

URL; or you can download the dataset from the GitHub and reference it from your 

local machine by providing the correct path. In either case, you can use the read_csv 

method from the pandas library. Check out the following snippet: 

# Create URL to JSON file (alternatively this can be a filepath) 

url='https://raw.githubusercontent.com/hmcuesta/PDA_Book/master/Chapter3/poke

monByType 

.csv' 

# Load the first sheet of the JSON file into a data frame pokemon = pd.read_csv(url, 

index_col='type')pokemon 

The preceding code snippet should display the dataframe as follows: 
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Type Amount 

Bug 

Dark 

Dragon 

Electric 

Fighting 

Fire 

Ghost 

Grass 

Ground 

Ice 

Normal 

Poison 

Psychic 

Rock 

Steel 

Water 

45 

16 

12 

7 

3 

14 

10 

31 

17 

11 

29 

11 

9 

24 

13 

45 

 

Next, we attempt to plot the pie chart: 

import matplotlib.pyplot as plt 

plt.pie(pokemon['amount'],labels=pokemon.index,shadow=False,startangle=90,autop

ct='%1.1f%%',) 

plt.axis('equal') plt.show() 

We should get the following pie chart from the preceding code: 
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Fig. 1.5.  

Histogram 

Histogram plots are used to depict the distribution of any continuous variable. 

These types of plots are very popular in statistical analysis. 

Consider the following use cases. A survey created in vocational training sessions 

of developers had 100 participants. They had several years of Python programming 

experience ranging from 0 to 20. 

Let's import the required libraries and create the dataset: 

import numpy as np 

import matplotlib.pyplot as plt 

#Create data set 

yearsOfExperience = np.array([10, 16, 14, 5, 10, 11, 16, 14, 3, 14, 13, 19, 2, 5, 

7, 3, 20,11, 11, 14, 2, 20, 15, 11, 1, 15, 15, 15, 2, 9, 18, 1, 17, 18, 

13, 9, 20, 13, 17, 13, 15, 17, 10, 2, 11, 8, 5, 19, 2, 4, 9, 

17, 16, 13, 18, 5, 7, 18, 15, 20, 2, 7, 0, 4, 14, 1, 14, 18, 

8, 11, 12, 2, 9, 7, 11, 2, 6, 15, 2, 14, 13, 4, 6, 15, 3, 

6, 10, 2, 11, 0, 18, 0, 13, 16, 18, 5, 14, 7, 14, 18]) 
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yearsOfExperience 

In order to plot the histogram chart, execute the following steps: 

1. Plot the distribution of group experience: 

nbins = 20n, bins, patches = plt.hist(yearsOfExperience, bins=nbins) 

2. Add labels to the axes and a title: 

plt.xlabel("Years of experience with Python Programming") plt.ylabel("Frequency") 

plt.title("Distribution of Python programming experience in the vocational training 

session") 

3. Draw a green vertical line in the graph at the average experience: 

plt.axvline(x=yearsOfExperience.mean(), linewidth=3, color = 'g') 

4. Display the plot: 

plt.show() 

The preceding code generates the following histogram: 

Distribution of Python Programming Experience in the Vocational Training Session 

 

Fig. 1.6.  
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EDA with Personal Email 

The exploration of useful insights from a dataset requires a great deal of thought 

and a high level of experience and practice.  

Loading the Dataset 

1. Let's load the required libraries: 

import numpy as np import pandas as pd 

import matplotlib.pyplot as plt 

2. When you have loaded the libraries, load the dataset: 

import mailbox 

mboxfile = "PATH TO DOWNLOADED MBOX FIL" 

mbox = mailbox.mbox(mboxfile) mbox 

Note that it is essential that you replace the mbox file path with your own path. 

The output of the preceding code is as follows: 

<mailbox.mbox at 0x7f124763f5c0> 

3. Next, let's see the list of available keys: 

for key in mbox[0].keys(): print(key) 

Although there are a lot of objects returned by the extracted data, we do not need 

all the items. We will only extract the required fields. Data cleansing is one of the 

essential steps in the data analysis phase. For our analysis, all we need is data for the 

following: subject, from, date, to, label, and thread. 

Data Ccleansing 

Let's create a CSV file with only the required fields. Let's start with the following 

steps: 

1. Import the csv package: 

import csv 

2. Create a CSV file with only the required attributes: 

with open('mailbox.csv', 'w') as outputfile: 
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writer = csv.writer(outputfile) writer. write row (['subject', 'from', 'date', 'to', 'label', 

'thread']) 

for message in mbox: writer.writerow([ 

message['subject'], message['from'], 

message['date'], 

message['to'], 

message['X-Gmail-Labels'], message['X-GM-THRID'] 

] 

Loading the CSV File 

We will load the CSV file. Refer to the following code block: 

dfs = pd.read_csv('mailbox.csv', names=['subject', 'from', 'date', 'to', 'label', 'thread']) 

The preceding code will generate a pandas dataframe with only the required fields 

stored in the CSV file. 

Converting the Date 

Next, we will convert the date. 

Check the datatypes of each column as shown here: 

dfs.dtypes 

The output of the preceding code is as follows: 

subject object from object date object 

to object label object 

thread float64 dtype: object 

Note that a date field is an object. So, we need to convert it into a DateTime 

argument. In the next step, we are going to convert the date field into an actual 

DateTime argument. We can do this by using the pandas to_datetime() method. See 

the following code: 

dfs['date'] = dfs['date'].apply(lambda x: pd.to_datetime(x, errors='coerce', utc=True)) 

Removing NaN Values 

Next, we are going to remove NaN values from the field. We can do this as 

follows: 

dfs = dfs[dfs['date'].notna()] 
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Next, it is good to save the preprocessed file into a separate CSV file in case we 

need it again. We can save the dataframe into a separate CSV file as follows: 

dfs.to_csv('gmail.csv') 

Data Refactoring 

We noticed that the from field contains more information than we need. We just 

need to extract an email address from that field. Let's do some refactoring: 

1. First of all, import the regular expression package: 

import re 

2. Next, let's create a function that takes an entire string from any column and 

extracts an email address: 

def extract_email_ID(string): 

email = re.findall(r'<(.+?)>', string) if not email: 

email = list(filter(lambda y: '@' in y, string.split())) return email[0] if email else 

np.nan 

3. Next, let's apply the function to the from column: 

dfs['from'] = dfs['from'].apply(lambda x: extract_email_ID(x)) 

We used the lambda function to apply the function to each and every                       

value in the column. 

1. Next, we are going to refactor the label field. The logic is simple. If an 

email is from your email address, then it is the sent email. Otherwise, it is 

a received email, that is, an inbox email: 

myemail = 'itsmeskm99@gmail.com' 

dfs['label'] = dfs['from'].apply(lambda x: 'sent' if x==myemail else 'inbox') 

Dropping Columns 

Let's drop a column: 

1. Note that the to column only contains your own email. So, we can drop 

this irrelevant column: 

dfs.drop(columns='to', inplace=True) 

2. This drops the to column from the dataframe. Let's display the first 10 

entries now: 

dfs.head(10)
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The output of the preceding code is as follows: 

  Subject From Date label thread 

 0 New Books: The Python Journey man + understandi james@sitepoint.com 2019-09-20 

14.07.05 + 00:00 

Inbox 1.645217e+18 

 1 iphone 11 Pro og iphone 11 er her News_Europe@Inside 

Apple.Apple.com 

2019-09-20 

10:33:27  + 00:00 

Inbox 1.645190e+18 

 2 =?utf-8?Q?Save=20on=20Burlap=20Bags=20Today=21 support@totebagfactory.com 2019-09-20 

15:32:31 +00:00 

Inbox 1.645210e+18 

 3 Hi there, looking for the best Dashain deals? info@email.daraz.com.np 2019-09-17 

06:19:10 +00:00 

Inbox 1.644916e+18 

 4 The file=?UTF-8?B?JOJyYW5kXOJvb2sgdGVzdC5wZGY noreply@box.com 2019-09-20 

19:04:16 +00:00 

Inbox 1.645222e+18 

 5 We miss you on Google Maps noreply-local-

guides@google.com 

2019-09-20 

11:19:56 +00:00 

Inbox 1.645193e+18 

 6 =?utf-8?B?VGFrZSB5b3VyIHNraWxscyBObyBOaGUgbmV4 news@edx.org 2019-09-17 

13:32:49 +00:00 

Inbox 1.644930e+18 

 7 Freelancing 101: How to market a small Business partners@email.shopify.com 2019-09-17 

14:10:12 +00:00 

Inbox 1.644932e+18 

 8 Suresh KUMAR, your profile is getting hits linkedin@e.linkedin.com 2019-09-17 

17:29:38 +00:00 

Inbox 1.644956e+18 

 9 =?UTF-8?Q?Forget_FOMO_=E2=80=93_you_can_go_bac info@flatironschool.com 2019-09-19 

18:01:13 +00:00 

Inbox 1.645128e+18 
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Data Analysis 

This is the most important part of EDA. This is the part where we gain insights 

from the data that we have. 

Let's answer the following questions one by one: 

1. How many emails did I send during a given timeframe? 

2. At what times of the day do I send and receive emails with Gmail? 

3. What is the average number of emails per day? 

4. What is the average number of emails per hour? 

5. What am I mostly emailing about? 

Number of emails 

The answer to the first question, "How many emails did I send during a given 

timeframe?", can be answered as shown here: 

print(dfs.index.min().strftime('%a, %d %b %Y %I:%M %p')) print (dfs.index. max(). 

strftime('%a, %d %b %Y %I:%M %p')) 

print(dfs['label'].value_counts()) 

The output of the preceding code is given here: 

Tue, 24 May 2011 11:04 AM 

Fri, 20 Sep 2019 03:04 PM 

inbox 32952 

sent 4602 

Name: label, dtype: int64 

Average emails per day and hour 

Let's answer the rest of the questions, taking a look at the average number of 

emails per day and per hour: 

1. To do so, we will create two functions, one that counts the total number 

of emails per day and one that plots the average number of emails per 

hour: 
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def plot_number_perday_per_year(df, ax, label=None, dt=0.3, **plot_kwargs): year = 

df[df['year'].notna()]['year'].values 

T = year.max() - year.min() bins = int(T / dt) 

weights = 1 / (np.ones_like(year) * dt * 365.25) 

ax.hist(year, bins=bins, weights=weights, label=label, **plot_kwargs); ax.grid(ls=':', 

color='k') 

The preceding code creates a function that plots the average number of emails 

per day. 

def plot_number_perdhour_per_year(df, ax, label=None, dt=1, smooth=False, 

weight_fun=None, **plot_kwargs): 

tod = df[df['timeofday'].notna()]['timeofday'].values year = df [df ['year']. notna()] 

['year'].values 

Ty = year.max() - year.min() T = tod.max() - tod.min() bins = int(T / dt) 

if weight_fun is None: 

weights = 1 / (np.ones_like(tod) * Ty * 365.25 / dt) else: 

weights = weight_fun(df) if smooth: 

hst, xedges = np.histogram(tod, bins=bins, weights=weights); x = np.delete(xedges, -1) 

+ 0.5*(xedges[1] - xedges[0]) 

hst = ndimage.gaussian_filter(hst, sigma=0.75) f = interp1d(x, hst, kind='cubic') 

x = np.linspace(x.min(), x.max(), 10000) hst = f(x) 

ax.plot(x, hst, label=label, **plot_kwargs) else: 

ax.hist(tod, bins=bins, weights=weights, label=label, 

**plot_kwargs); 

ax.grid(ls=':', color='k') 

orientation = plot_kwargs.get('orientation') 

if orientation is None or orientation == 'vertical': 

ax.set_xlim(0, 24) ax.xaxis.set_major_locator(MaxNLocator(8)) 
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ax.set_xticklabels([datetime.datetime.strptime(str(int(np.mod(ts, 24))), 

"%H").strftime("%I %p") 

for ts in ax.get_xticks()]); elif orientation == 'horizontal': 

ax.set_ylim(0, 24) ax.yaxis.set_major_locator(MaxNLocator(8)) 

ax.set_yticklabels([datetime.datetime.strptime(str(int(np.mod(ts, 24))), 

"%H").strftime("%I %p") 

for ts in ax.get_yticks()]); 

 

Fig. 1.7.  
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Number of emails per day 

Let's find the busiest day of the week in terms of emails: 

counts = dfs.dayofweek.value_counts(sort=False) counts.plot(kind='bar') 

The output of the preceding code is as follows: 

 

Fig. 1.8.  

The preceding output shows that my busiest day is Thursday. I receive most of 

my emails on Thursdays. Let's go one step further and see the most active days for 

receiving and sending emails separately: 

sdw = sent.groupby('dayofweek').size() / len(sent) 

rdw = received.groupby('dayofweek').size() / len(received) 

df_tmp = pd.DataFrame(data={'Outgoing Email': sdw, 'Incoming Email':rdw}) 

df_tmp.plot(kind='bar', rot=45, figsize=(8,5), alpha=0.5) 

plt.xlabel(''); 

plt.ylabel('Fraction of weekly emails'); plt.grid(ls=':', color='k', alpha=0.5) 
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The output of the preceding code is as follows: 

 

Fig. 1.9.  

 

 

Fig. 1.10.  
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StudentID ScoreSE  StudentID ScoreSE 

1 89  2 98 

3 39  4 93 

5 50  6 44 

7 97  8 77 

9 20  10 69 

     

     

27 73  28 56 

29 92  30 27 

We can concatenate the data using the pandas concat() method: 

dataframe = pd.concat([dataFrame1, dataFrame2], ignore_index=True) dataframe 

See the difference using the following code: 

pd.concat([dataFrame1, dataFrame2], axis=1) 

The output of the preceding code is shown in the following screenshot: 

 StudentID Score StudentID Score 

0 

1 

2 

3 

4 

5 

6 

7 

8 

1 

3 

5 

7 

9 

11 

13 

15 

17 

89 

39 

50 

97 

22 

66 

31 

51 

71 

2 

4 

6 

8 

10 

12 

14 

16 

18 

98 

93 

44 

77 

69 

56 

31 

53 

78 
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 StudentID Score StudentID Score 

9 

10 

11 

12 

13 

14 

19 

21 

23 

25 

27 

29 

91 

56 

32 

52 

73 

92 

20 

22 

24 

26 

28 

30 

93 

56 

77 

33 

56 

27 

Check the following dataframes: 

StudentID ScoreSE  StudentID ScoreSE 

9 22  2 98 

11 66  4 93 

13 31  6 44 

15 51  8 77 

17 71  10 69 

     

     

27 73  28 56 

29 92  30 27 

StudentID ScoreSE  StudentID ScoreSE 

1 39  2 98 

3 49  4 93 

5 55  6 44 

7 77  8 77 

9 52  10 69 

     

     

27 23  28 56 

29 49  30 27 
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Using the pd.merge() method with a left join 

The third option is to use the pd.merge() method with the left join technique. By 

now, you should have understood the concept of a merge. The argument of the 

pd.merge() method allows us to use different types of joins. 

These are the following types of joins: 

The inner join takes the intersection from two or more dataframes. It corresponds 

to the INNER JOIN in Structured Query Language (SQL). The outer join takes the 

union from two or more dataframes. It corresponds to the FULL OUTER JOIN in 

SQL. 

The left join uses the keys from the left-hand dataframe only. It corresponds to the 

LEFT OUTER JOIN in SQL. 

The right join uses the keys from the right-hand dataframe only. It corresponds to 

the RIGHT OUTER JOIN in SQL. 

Let's see how we can use the left outer join: 

dfSE = pd.concat([df1SE, df2SE], ignore_index=True) dfML = pd.concat([df1ML, 

df2ML], ignore_index=True) 

df = dfSE.merge(dfML, how='left') df 

The output of the preceding code is as follows: 

 StudentID ScoreSE ScoreML 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 

2 

4 

22 

66 

31 

51 

71 

91 

56 

32 

52 

73 

92 

98 

93 

52.0 

86.0 

41.0 

77.0 

73.0 

51.0 

86.0 

82.0 

92.0 

23.0 

49.0 

93.0 

44.0 
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 StudentID ScoreSE ScoreML 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

44 

77 

69 

56 

31 

53 

78 

93 

56 

77 

33 

56 

27 

78.0 

97.0 

87.0 

89.0 

39.0 

43.0 

88.0 

78.0 

NaN 

NaN 

NaN 

NaN 

NaN 

Using the pd.merge() method with a right join 

This is the fourth option. Similarly to those options we've already looked at, we 

can use the right join to get a list of all the students who appeared in the Machine 

Learning course. 

The code for doing it is as follows: 

dfSE = pd.concat([df1SE, df2SE], ignore_index=True) dfML = pd.concat([df1ML, 

df2ML], ignore_index=True) 

df = dfSE.merge(dfML, how='right') df 

The output of this snippet is left as part of an exercise for you to complete. Check 

which columns have NaN values. 

Using pd.merge() methods with outer join 

This is the fifth option. Finally, we want to know the total number of students 

appearing for at least one course. This can be done using an outer join: 

dfSE = pd.concat([df1SE, df2SE], ignore_index=True) dfML = pd.concat([df1ML, 

df2ML], ignore_index=True) 

df = dfSE.merge(dfML, how='outer') df 

Check the output and compare the differences with the previous output. 
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Merging on Index 

Sometimes the keys for merging dataframes are located in the dataframes index. In 

such a situation, we can pass left_index=True or right_index=True to indicate that the 

index should be accepted as the merge key. 

 Key Value Group_Val 

0 

1 

2 

3 

4 

5 

apple 

ball 

apple 

apple 

ball 

cat 

0 

1 

2 

3 

4 

5 

apple 

ball 

33.4 

5.0 

Merging on index is done in the following steps: 

1. Consider the following two dataframes: 

left1 = pd.DataFrame({'key': ['apple','ball','apple', 'apple', 'ball', 'cat'], 'value': 

range(6)}) 

right1 = pd.DataFrame({'group_val': [33.4, 5]}, index=['apple', 'ball']) 

If you print these two dataframes, the output looks like the following screenshot: 

2. Now, let's consider two different cases. Firstly, let's try merging using an 

inner join, which is the default type of merge. In this case, the default 

merge is the intersection of the keys. Check the following example code: 

df = pd.merge(left1, right1, left_on='key', right_index=True) df 

The output of the preceding code is as follows: 

 Key value group_val 

0 

2 

3 

1 

4 

apple 

apple 

apple 

ball 

ball 

0 

2 

3 

1 

4 

33.4 

33.4 

33.4 

5.0 

5.0 
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3. Secondly, let's try merging using an outer join, as follows: 

df = pd.merge(left1, right1, left_on='key', right_index=True, how='outer') df 

The output of the preceding code is as follows: 

 Key value group_val 

0 

2 

3 

1 

4 

5 

apple 

apple 

apple 

ball 

ball 

cat 

0 

2 

3 

1 

4 

5 

33.4 

33.4 

33.4 

5.0 

5.0 

NaN 

This can be done with hierarchical indexing using two actions: 

Stacking: Stack rotates from any particular column in the data to the rows. 

Unstacking: Unstack rotates from the rows into the column. 

We will look at the following example: 

1. Let's create a dataframe that records the rainfall, humidity, and wind 

conditions of five different counties in Norway: 

data = np.arange(15).reshape((3,5)) 

indexers = ['Rainfall', 'Humidity', 'Wind'] 

dframe1 = pd.DataFrame(data, index=indexers, columns=['Bergen', 'Oslo', 

'Trondheim', 'Stavanger', 'Kristiansand']) 

dframe1 

The output of the preceding snippet is as follows: 

 Bergen Oslo Trondheim Stavanger Kristiansand 

Rainfall 0 1 2 3 4 

Humidity 5 6 7 8 9 

Wind 10 11 12 13 14 
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2. Now, using the stack() method on the preceding dframe1, we can pivot 

the columns into rows to produce a series: 

stacked = dframe1.stack() stacked 

The output of this stacking is as follows: 

 Rainfall Bergen 

Oslo 

Trondheim 

Stavanger 

Kristiansand 

0 

1 

2 

3 

4 

Humidity Bergen 

Oslo 

Trondheim 

Stavanger 

Kristiansand 

5 

6 

7 

8 

9 

Wind Bergen 

Oslo 

Trondheim 

Stavanger 

Kristiansand 

10 

11 

12 

13 

14 

dtype: int64 

3. The preceding series stored unstacked in the variable can be rearranged 

into a dataframe using the unstack() method: 

stacked.unstack() 

4. Now, let's unstack the concatenated frame: 

series1 = pd.Series([000, 111, 222, 333], index=['zeros','ones', 'twos', 'threes']) 

series2 = pd.Series([444, 555, 666], index=['fours', 'fives', 'sixes']) 

frame2 = pd.concat([series1, series2], keys=['Number1', 'Number2']) frame2.unstack() 

The output of the preceding unstacking is shown in the following screenshot: 
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  Fives Fours Ones Sixs Threes Twos Zeros 

Number1 NaN NaN 111.0 NaN 333.0 222.0 0.0 

Number2 555.0 444.0 NaN 666.0 NaN NaN NaN 

Let's dive more into how we can perform other types of data transformations 

including cleaning, filtering, deduplication, and others. 

Performing Data Deduplication 

It is very likely that your dataframe contains duplicate rows. Removing them is 

essential to enhance the quality of the dataset. This can be done with the following 

steps: 

1. Let's consider a simple dataframe, as follows: 

frame3 = pd.DataFrame({'column 1': ['Looping'] * 3 + ['Functions'] * 4, 'column 2': 

[10, 10, 22, 23, 23, 24, 24]}) 

The preceding code creates a simple dataframe with two columns. You can clearly 

see from the following screenshot that in both columns, there are some duplicate 

entries: 

 
 Column 1 Column 2 

0 

1 

2 

3 

4 

5 

6 

Looping 

Looping 

Looping 

Functions 

Functions 

Functions 

Functions 

10 

10 

22 

23 

23 

24 

24 

2. The pandas dataframe comes with a duplicated() method that returns a 

Boolean series stating which of the rows are duplicates: 
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frame3.duplicated() 

The output of the preceding code is pretty easy to interpret: 

 
0 

1 

2 

3 

4 

5 

6 

False 

True 

False 

False 

True 

False 

True 

dtype: bool 

3. Now, we can drop these duplicates using the drop_duplicates() method: 

frame4 = frame3.drop_duplicates() frame4 

The output of the preceding code is as follows: 

 
 Column 1 Column 2 

0 

2 

3 

5 

Looping 

Looping 

Functions 

Functions 

10 

22 

23 

24 

Note that rows 1, 4, and 6 are removed. Basically, both the duplicated() and 

drop_duplicates() methods consider all of the columns for comparison. Instead of all 

the columns, we could specify any subset of the columns to detect duplicated items. 

4. Let's add a new column and try to find duplicated items based on the 

second column: 

frame3['column 3'] = range(7) 

frame5 = frame3.drop_duplicates(['column 2']) frame5 

The output of the preceding snippet is as follows:  



 1.40    Data Exploration and Visualization 

 
 Column 1 Column 2 Column 3 

0 Looping 10 0 

2 Looping 22 2 

3 Functions 23 3 

5 Functions 24 5 

Note that both the duplicated and drop_duplicates methods keep the first observed 

value during the duplication removal process. If we pass the take_last=True 

argument, the methods return the last one. 

Replacing Values 

Often, it is essential to find and replace some values inside a dataframe. This can 

be done with the following steps: 

1. We can use the replace  method in such cases: 

import numpy as np 

replaceFrame = pd.DataFrame({'column 1': [200., 3000., -786., 3000., 234., 

444., -786., 332., 3332. ], 'column 2': range(9)}) 

replaceFrame.replace(to_replace =-786, value= np.nan) 

The output of the preceding code is as follows: 

 
 Column 1 Column 2 

 0 

1 

2 

3 

4 

5 

6 

7 

8 

200.0 

3000.0 

NaN 

3000.0 

234.0 

444.0 

NaN 

332.0 

3332.0 

0 

1 

2 

3 

4 

5 

6 

7 

8 
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Note that we just replaced one value with the other values. We can also replace 

multiple values at once. 

2. In order to do so, we display them using a list: 

replaceFrame = pd.DataFrame({'column 1': [200., 3000., -786., 3000., 234., 

444., -786., 332., 3332. ], 'column 2': range(9)}) 

replaceFrame.replace(to_replace =[-786, 0], value= [np.nan, 2]) 

Handling Missing Data 

Whenever there are missing values, a NaN value is used, which indicates that 

there is no value specified for that particular index. There could be several reasons 

why a value could be NaN: 

It can happen when data is retrieved from an external source and there are some 

incomplete values in the dataset. 

It can also happen when we join two different datasets and some values are not 

matched. 

Missing values due to data collection errors. 

When the shape of data changes, there are new additional rows or columns that 

are not determined. 

Reindexing of data can result in incomplete data. 

Let's see how we can work with the missing data: 

1. Let's assume we have a dataframe as shown here: 

data = np.arange(15, 30).reshape(5, 3) 

dfx = pd.DataFrame(data, index=['apple', 'banana', 'kiwi', 'grapes', 'mango'], 

columns=['store1', 'store2', 'store3']) 

dfx 

And the output of the preceding code is as follows: 

 
 Store 1 Store 2 Store 3 

 apple 

banana 

kiwi 

grapes 

mango 

15 

18 

21 

24 

27 

16 

19 

22 

25 

28 

17 

20 

23 

26 

29 
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2. Let's add some missing values to our dataframe: 

dfx['store4'] = np.nan dfx.loc['watermelon'] = np.arange(15, 19) dfx.loc['oranges'] = 

np.nan 

dfx['store5'] = np.nan dfx['store4']['apple'] = 20. dfx 

And the output will now look like the following screenshot: 

 
 store 1 store 2 store 3 store 4 store 5 

apple 15.0 16.0 17.0 20.0 NaN 

banana 18.0 19.0 20.0 NaN NaN 

kiwi 21.0 22.0 23.0 NaN NaN 

grapes 24.0 25.0 26.0 NaN NaN 

mango 27.0 28.0 29.0 NaN NaN 

watermelon 15.0 16.0 17.0 18.0 NaN 

oranges NaN NaN NaN NaN NaN 

Note that we've added two more stores, store4 and store5, and two more types of 

fruits, watermelon and oranges. Assume that we know how many kilos of apples and 

watermelons were sold from store4, but we have not collected any data from store5. 

Moreover, none of the stores reported sales of oranges. We are quite a huge fruit 

dealer, aren't we? 

NaN values in pandas objects 

We can use the is null() function from the pandas library to identify NaN values: 

1. Check the following example: 

dfx.isnull() 

The output of the preceding code is as follows: 

 
 store 1 store 2 store 3 store 4 store 5 

apple False False False False True 

banana False False False True True 

kiwi False False False True True 

grapes False False False True True 

mango False False False True True 

watermelon False False False False True 

Oranges True True True True True 



Exploratory Data Analysis   1.43  

Note that the True values indicate the values that are NaN. Pretty obvious, right? 

Alternatively, we can also use the notnull() method to do the same thing. The only 

difference would be that the function will indicate True for the values which are not 

null. 

2. Check it out in action: 

dfx.notnull() 

And the output of this is as follows: 

 
 store 1 store 2 store 3 store 4 store 5 

apple True True True True False 

banana True True True False False 

kiwi True True True False False 

grapes True True True False False 

mango True True True False False 

watermelon True True True True False 

oranges False False False False False 

Compare these two tables. These two functions, notnull() andisnull(), are the 

complement to each other. 

3. We can use the sum() method to count the number of NaN values in each 

store. How does this work, you ask? Check the following code: 

dfx.isnull().sum() 

And the output of the preceding code is as follows: 

store1 1 

store2 1 

store3 1 

store4 5 

store5 7 dtype: int64 
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The fact that True is 1 and False is 0 is the main logic for summing. The preceding 

results show that one value was not reported by store1, store2, and store3. Five 

values were not reported by store4 and seven values were not reported by store5. 

4. We can go one level deeper to find the total number of missing values: 

dfx.isnull().sum().sum() 

And the output of the preceding code is as follows: 

15 

This indicates 15 missing values in our stores. We can use an alternative way to 

find how many values were actually reported. 

5. So, instead of counting the number of missing values, we can count the 

number of reported values: 

dfx.count() 

And the output of the preceding code is as follows: 

store1 6 

store2 6 

store3 6 

store4 2 

store5 0 dtype: int64 

Pretty elegant, right? We now know two different ways to find the missing values, 

and also how to count the missing values. 

Dropping Missing Values 

One of the ways to handle missing values is to simply remove them from our 

dataset. We have seen that we can use the isnull() and notnull() functions from the 

pandas library to determine null values: 

dfx.store4[dfx.store4.notnull()] 

The output of the preceding code is as follows: 

apple 20.0 

watermelon 18.0 
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Name: store4, dtype: float64 

Dropping by Rows 

We can also drop rows that have NaN values. To do so, we can use the how=all 

argument to drop only those rows entire values are entirely NaN: 

dfx.dropna(how='all') 

The output of the preceding code is as follows: 

 
 store 1 store 2 store 3 store 4 store 5 

apple 15.0 16.0 17.0 20.0 NaN 

banana 18.0 19.0 20.0 NaN NaN 

kiwi 21.0 22.0 23.0 NaN NaN 

grapes 24.0 25.0 26.0 NaN NaN 

mango 27.0 28.0 29.0 NaN NaN 

watermelon 15.0 16.0 17.0 18.0 NaN 

Note that only the orange rows are removed because those entire rows contained 

NaN values. 

Dropping by Columns 

Furthermore, we can also pass axis=1 to indicate a check for NaN by columns. 

dfx.dropna(how='all', axis=1) 

And the output of the preceding code is as follows: 

 
 store 1 store 2 store 3 store 4 

apple 15.0 16.0 17.0 20.0 

banana 18.0 19.0 20.0 NaN 

kiwi 21.0 22.0 23.0 NaN 

grapes 24.0 25.0 26.0 NaN 

mango 27.0 28.0 29.0 NaN 

watermelon 15.0 16.0 17.0 18.0 

oranges NaN NaN NaN NaN 
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Note that store5 is dropped from the dataframe. By passing in axis=1, we are 

instructing pandas to drop columns if all the values in the column are NaN. 

Furthermore, we can also pass another argument, thresh, to specify a minimum 

number of NaNs that must exist before the column should be dropped: 

dfx.dropna(thresh=5, axis=1) 

And the output of the preceding code is as follows: 

 
 store 1 store 2 store 3 

apple 15.0 16.0 17.0 

banana 18.0 19.0 20.0 

kiwi 21.0 22.0 23.0 

grapes 24.0 25.0 26.0 

mango 27.0 28.0 29.0 

watermelon 15.0 16.0 17.0 

oranges NaN NaN NaN 

Compared to the preceding, note that even the store4 column is now dropped 

because it has more than five NaN values. 

Filling Missing Values 

We can use the fillna() method to replace NaN values with any particular values. 

Check the following example: 

filledDf = dfx.fillna(0) filledDf 

The output of the preceding code is shown in the following screenshot: 

 
 store 1 store 2 store 3 store 4 store 5 

apple 15.0 16.0 17.0 20.0 0.0 

banana 18.0 19.0 20.0 0.0 0.0 

kiwi 21.0 22.0 23.0 0.0 0.0 

grapes 24.0 25.0 26.0 0.0 0.0 

mango 27.0 28.0 29.0 0.0 0.0 

watermelon 15.0 16.0 17.0 18.0 0.0 

oranges 0.0 0.0 0.0 0.0 0.0 
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Note that in the preceding dataframe, all the NaN values are replaced by 0. 

Replacing the values with 0 will affect several statistics including mean, sum, and 

median. 

Check the difference in the following two examples: 

dfx.mean() 

And the output of the preceding code is as follows: 

store1 20.0 

store2 21.0 

store3 22.0 

store4 19.0 

store5 NaN dtype: float64 

And the output we get is as follows: 

store1 17.142857 

store2 18.000000 

store3 18.857143 

store4 5.428571 

store5 0.000000 dtype: float64 

Benefits of Data Transformation 

Let's try to list these benefits: 

Data transformation promotes interoperability between several applications. The 

main reason for creating a similar format and structure in the dataset is that it 

becomes compatible with other systems. 

Comprehensibility for both humans and computers is improved when using better-

organized data compared to messier data. 

Data transformation ensures a higher degree of data quality and protects 

applications from several computational challenges such as null values, unexpected 

duplicates, and incorrect indexings, as well as incompatible structures or formats. 

Data transformation ensures higher performance and scalability for modern 

analytical databases and dataframes. 
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Mean/average 

The mean, or average, is a number around which the observed continuous 

variables are distributed. This number estimates the value of the entire dataset. 

Mathematically, it is the result of the division of the sum of numbers by the number 

of integers in the dataset. 

Let x  be a set of integers: 

 x   = (12, 2, 3, 5, 8, 9, 6, 4, 2) 

Hence, the mean value of x can be calculated as follows: 

 Mean (x) = 
12 + 2 + 3 + 5 + 8 + 9 + 6 + 4 + 2

9
  = 5.66 

Median 

Given a dataset that is sorted either in ascending or descending order, the median 

divides the data into two parts. The general formula for calculating the median is as 

follows: 

  Median position = 
(n  + 1)

2
 th observation 

Here, n  is the number of items in the data. The steps involved in calculating the 

median are as follows: 

1. Sort the numbers in either ascending or descending order. 

2. If n  is odd, find the (n  + 1) / 2th  term. The value corresponding to this 

term is the median. 

3. If n  is even, find the (n  + 1) / 2th  term. The median value is the average of 

numbers on either side of the median position. 

For a set of integers such as x , we must arrange them in ascending order and then 

select the middle integer. 

In ascending order = (2, 2, 3, 4, 5, 6, 8, 9, 12). Here, the median is 5. 

Mode 

The mode is the integer that appears the maximum number of times in the dataset. 

It happens to be the value with the highest frequency in the dataset. In the x dataset 

in the median example, the mode is 2 because it occurs twice in the set. 
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Python provides different libraries for operating descriptive statistics in the dataset. Commonly used libraries are 

pandas, numpy, and scipy. These measures of central tendency can simply be calculated by the numpy and pandas 

functionalities. 

Here is a dataset of automobiles that enlists different features and attributes of cars, such as symboling, normalized 

losses, aspiration, and many others, an analysis of which will provide some valuable insight and findings in relation to 

automobiles in this dataset. 

Let's begin by importing the datasets and the Python libraries required: 

import pandas as pd import numpy as np 

Now, let's load the automobile database: 

df = pd.read_csv("data.csv") df.head() 

The output of the code is given here: 

Symboling 
normalized 

losses 
make  aspiration 

number 

of 

doors 

body style 
drive-

wheels 

engine 

location 

wheel-

base 
length width height 

curb 

weight 

engine- 

type 

Num of 

cylinders 

engine 

-size 

0 

1 

2 

3 

4 

3 

3 

1 

2 

2 

122 

122 

122 

164 

164 

alfa-

romero 

alfa- 

romero 

alfa 

romero 

audi 

audi 

std 

std 

std 

std 

std 

two 

two 

two 

four 

four 

convertible 

convertible 

hatchback 

sedan 

sedan 

rwd 

rwd 

rwd 

fwd 

4wd 

front 

front 

front 

front 

front 

88.6 

88.6 

94.5 

99.8 

99.4 

0.811148 

0.811148 

0.822681 

0.848630 

0.848630 

0.890278 

0.890278 

0.909722 

0.919444 

0.922222 

48.8 

48.8 

52,4 

54.3 

54.3 

2548 

2548 

2823 

2337 

2824 

dohc 

dohc 

ohcv 

ohc 

ohc 

four 

four 

six 

four 

five 

130 

130 

152 

109 

136 
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Standard Deviation 

Different Python libraries have functions to get the standard deviation of the 

dataset. The NumPy library has the numpy.std(dataset) function. The statistics library 

has the statistics.stdev(dataset). function. Using the pandas library, we calculate the 

standard deviation in our df data frame using the df.std() function: 

#standard variance of dataset using std() function std_dev =df.std() 

print(std_dev) 

# standard variance of the specific column sv_height=df.loc[:,"height"].std() 

print(sv_height) 

The output of the preceding code is as follows: 

symboling 

normalized-losses 

wheel-base 

length 

width 

height 

curb-weight 

engine-size 

bore 

stroke 

compression-ratio 

horsepower 

peak-rpm 

city-mpg 

highway-mpg 

price 

city-L/100 km 

diesel 

gas 

dtype: float64 

2.44782216129631 

1.254802 

31.996250 

6.066366 

0.059213 

0.029187 

2.447822 

517.296727 

41.546834 

0.268072 

0.319256 

4.004965 

37.365700 

478.113805 

6.423220 

6.815150 

7947.066342 

2.534599 

0.300083 

0.300083 
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Variance 

Variance is the square of the average/mean of the difference between each value 

in the dataset with its average/mean; that is, it is the square of standard deviation. 

Different Python libraries have functions to obtain the variance of the dataset. The 

NumPy library has the numpy.var(dataset) function. The statistics library has the 

statistics.variance(dataset) function. Using the pandas library, we calculate the 

variance in our df data frame using the df.var() function: 

# variance of dataset using var() function variance=df.var() 

print(variance) 

# variance of the specific column var_height=df.loc[:,"height"].var() print(var_height) 

The output of the preceding code is as follows: 

symboling 

normalized-losses 

wheel-base 

length 

width 

height 

curb-weight 

engine-size 

bore 

stroke 

compression-ratio 

horsepower 

peak-rpm 

city-mpg 

highway-mpg 

price 

city-L/100 km 

diesel 

gas 

dtype: float64 

5.991833333333338 

1.574527e+00 

1.023760e+03 

3.680079e+01 

3.506151e–03 

8.518865e–04 

5.991833e+00 

2.675959e+05 

1.726139e+03 

7.186252e–02 

1.019245e–01 

1.603975e+01 

1.396195e+03 

2.285928e+05 

4.125776e+01 

4.644627e+01 

6.315586e+07 

6.424193e+00 

9.004975e–02 

9.004975e–02 
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Skewness 

In probability theory and statistics, skewness is a measure of the asymmetry of 

the variable in the dataset about its mean. The skewness value can be positive or 

negative, or undefined. The skewness value tells us whether the data is skewed or 

symmetric. Here's an illustration of a positively skewed dataset, symmetrical data, 

and some negatively skewed data: 

 

Fig. 1.11.  

Note the following observations from the preceding diagram: 

The graph on the right-hand side has a tail that is longer than the tail on the 

right-hand side. This indicates that the distribution of the data is skewed to the left. 

If you select any point in the left-hand longer tail, the mean is less than the mode. 

This condition is referred to as negative skewness. 

The graph on the left-hand side has a tail that is longer on the right- hand side. If 

you select any point on the right-hand tail, the mean value is greater than the mode. 

This condition is referred to as 

Positive Skewness. 

The graph in the middle has a right-hand tail that is the same as the left- hand 

tail. This condition is referred to as a symmetrical condition. 

Different Python libraries have functions to get the skewness of the dataset. The 

SciPy library has a scipy.stats.skew(dataset) function. Using the pandas library, we 

can calculate the skewness in our df data frame using the df.skew() function. 
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Here, in our data frame of automobiles, let's get the skewness using the 

df.skew() function: 

df.skew() 

The output of the preceding code is as follows: 

 

symboling 

normalized-losses 

wheel-base 

length 

width 

height 

curb-weight 

engine-size 

bore 

stroke 

compression-ratio 

horsepower 

peak-rpm 

city-mpg 

highway-mpg 

price 

dtype: float64 

0.204275 

0.209007 

1.041170 

0.154086 

0.900685 

0.064134 

0.668942 

1.934993 

0.013419 

–0.669515 

2.682640 

9.985047 

0.073094 

0.673533 

0.549104 

1.812335 

Kurtosis 

Basically, kurtosis is a statistical measure that illustrates how heavily the tails of 

distribution differ from those of a normal distribution. This technique can identify 

whether a given distribution contains extreme values. 

Kurtosis, unlike skewness, is not about the peakedness or flatness. It is the 

measure of outlier presence in a given distribution. Both high and low kurtosis are an 

indicator that data needs further investigation. The higher the kurtosis, the higher the 

outliers. 
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Types of Kurtosis 

There are three types of kurtosis - mesokurtic, leptokurtic, and platykurtic. Let's 

look at these one by one: 

Mesokurtic: If any dataset follows a normal distribution, it follows a mesokurtic 

distribution. It has kurtosis around 0. 

Leptokurtic: In this case, the distribution has kurtosis greater than 3 and the fat 

tails indicate that the distribution produces more outliers. Platykurtic: In this case, 

the distribution has negative kurtosis and the tails are very thin compared to the 

normal distribution. 

All three types of kurtosis are shown in the following diagram: 

 

Fig. 1.12.  

Calculating Percentiles 

Percentiles measure the percentage of values in any dataset that lie below a 

certain value. In order to calculate percentiles, we need to make sure our list is 

sorted. An example would be if you were to say that the 80th percentile of data is 

130: then what does that mean? Well, it simply means that 80% of the values lie 

below 130. Pretty easy, right? We will use the following formula for this: 

` 


The formula for calculating

 percentile of X
  = 

Number of values less than X

Total number of observations
   100 

Suppose we have the given data: 1, 2, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10. Then the 

percentile value of 4 = (4 / 12) * 100 = 33.33%. 
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This simply means that 33.33% of the data is less than 4. 

Quartiles 

Given a dataset sorted in ascending order, quartiles are the values that split the 

given dataset into quarters. Quartiles refer to the three data points that divide the 

given dataset into four equal parts, such that each split makes 25% of the dataset. In 

terms of percentiles, the 25th percentile is referred to as the first quartile (Q1), the 

50th percentile is referred to as the second quartile (Q2), and the 75th percentile is 

referred to as the third quartile (Q3). 

Based on the quartile, there is another measure called inter-quartile range that also 

measures the variability in the dataset. It is defined as follows: 

 IQR = Q3 – Q1  

IQR is not affected by the presence of outliers. Let's get the IQR for the price 

column from the same dataframe we have been using so far: 

rice = df.price.sort_values() Q1 = np.percentile(price, 25) Q2 = np.percentile(price, 

50) Q3 = np.percentile(price, 75) 

IQR = Q3 - Q1 IQR 

The output of the preceding snippet is as follows: 

8718.5 

Understanding groupby() 

During the data analysis phase, categorizing a dataset into multiple categories or 

groups is often essential. We can do such categorization using the pandas library. The 

pandas groupby function is one of the most efficient and time-saving features for 

doing this. Groupby provides functionalities that allow us to split-apply-combine 

throughout the dataframe; that is, this function can be used for splitting, applying, 

and combining dataframes. 
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Group by mechanics 

To work with groupby functionalities, we need a dataset that has multiple numerical as well as categorical records in it 

so that we can group by different categories and ranges. 

Let's take a look at a dataset of automobiles that enlists the different features and attributes of cars, such as symbolling, 

normalized-losses, make, aspiration, body- style, drive-wheels, engine-location, and many others. Let's get started: 

1. Let's start by importing the required Python libraries and datasets: 

import pandas as pd 

df = pd.read_csv("/content/automobileEDA.csv") df.head() 

The output of the preceding code is as follows: 

Symboling normalized  

losses 

make  aspiration number 

of 

doors 

body style drive-

wheels 

engine 

location 

wheel-

base 

length width height curb 

weight 

engine 

type  

sum of 

cylinders 

engine 

size 

0 

1 

2 

3 

4 

3 

3 

1 

2 

2 

122 

122 

122 

164 

164 

alfa-

romero 

alfa 

romero 

alfa 

romero 

audi 

audi 

std 

std 

std 

std 

std 

two 

two 

two 

four 

four 

convertible 

convertible 

hatchback 

sedan 

sedan 

rwd 

rwd 

rwd 

fwd 

4wd 

front 

front 

front 

front 

front 

88.6 

88.6 

94.5 

99.8 

99.4 

0.811148 

0.811148 

0.822681 

0.848630 

0.848630 

0.890278 

0.890278 

0.909722 

0.919444 

0.922222 

48.8 

48.8 

52,4 

54.3 

54.3 

2548 

2548 

2823 

2337 

2824 

dohc 

dohc 

ohcv 

ohc 

ohc 

four 

four 

six 

four 

five 

130 

130 

152 

109 

136 
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As you can see, there are multiple columns with categorical  variables. 

2. Using the groupby() function lets us group this dataset on the basis of the body-style column: 

df.groupby('body-style').groups.keys() 

The output of the preceding code is as follows: 

dict_keys(['convertible', 'hardtop', 'hatchback', 'sedan', 'wagon']) 

From the preceding output, we know that the body-style column has five unique values, including convertible, 

hardtop, hatchback, sedan, and wagon. 

3. Now, we can group the data based on the body-style column. Next, let's print the values contained in that 

group that have the body-style value of convertible. This can be done using the following code: 

# Group the dataset by the column body-style style = df.groupby('body-style') 

# Get values items from group with value convertible style.get_group("convertible") 

The output of the preceding code is as follows: 

Symboling normalized  

losses 

make  aspiration number 

of doors 

body style drive-

wheels 

engine 

location 

wheel-

base 

length width height curb 

weight 

engine 

type  

sum of 

cylinders 

engine 

size 

0 

1 

69 

125 

168 

185 

3 

3 

3 

3 

2 

2 

122 

122 

142 

122 

134 

122 

alfa-romero 

alfa romero 

Mercedes 

benz 

porsche 

Toyota 

volkswagen 

std 

std 

std 

std 

std 

std 

two 

two 

two 

two 

two 

two 

convertible 

convertible 

convertible 

convertible 

convertible 

convertible 

rwd 

rwd 

rwd 

rwd 

rwd 

fwd 

front 

front 

front 

rear 

front 

front 

88.6 

88.6 

96.6 

89.5 

98.4 

94.5 

0.811148 

0.811148 

0.866410 

0.811629 

0.846708 

0.765497 

0.890278 

0.890278 

0.979167 

0.902778 

0.911111 

0.891667 

48.8 

48.8 

50.8 

– 51.6 

53.0 

55.6 

2548 

2548 

3685 

2800 

2975 

2254 

dohc 

dohc 

ohcv 

ohcf 

ohc 

ohc 

four 

four 

eight 

six 

four 

four 

130 

130 

234 

194 

146 

109 
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Max and Min 

Let's compute the maximum and minimum entry for each group. Here, we will 

find the maximum and minimum for the normalized-losses column: 

# max() will print the maximum entry of each group style['normalized-losses'].max() 

# min() will print the minimum entry of each group style['normalized-losses'].min() 

The output of the preceding code is as follows: 

body-style convertible 122 

hardtop 93 

hatchback 65 

sedan 65 

wagon 74 

Name: normalized-losses, dtype: int64 

Aggregation is the process of implementing any mathematical operation on a 

dataset or a subset of it. Aggregation is one of the many techniques in pandas that's 

used to manipulate the data in the dataframe for data analysis. 

The Dataframe.aggregate() function is used to apply aggregation across one or 

more columns. Some of the most frequently used aggregations are as follows: 

sum: Returns the sum of the values for the requested axis 

min: Returns the minimum of the values for the requested axis 

max: Returns the maximum of the values for the requested axis We can apply    

aggregation in a DataFrame, df, as df.aggregate() or df.agg(). 

Since aggregation only works with numeric type columns, let's take some of the 

numeric columns from the dataset and apply some aggregation functions to them: 

# new dataframe that consist length,width,height,curb-weight and price 

new_dataset = df.filter(["length","width","height","curb-weight","price"],axis=1) 

new_dataset 
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The output of the preceding code snippet is as follows: 

 
Length Width Height 

Curb-

weight 
Price 

0 

1 

2 

3 

4 

 

196 

197 

198 

199 

200 

201 rows  5 columns 

0.811148 

0.811148 

0.822681 

0.848630 

0.848630 

 

0.907256 

0.907256 

0.907256 

0.907256 

0.907256 

 

0.890278 

0.890278 

0.909722 

0.919444 

0.922222 

 

0.956944 

0.955556 

0.956944 

0.956944 

0.956944 

48.8 

48.8 

52.4 

54.3 

54.3 

 

55.5 

55.5 

55.5 

55.5 

55.5 

2548 

2548 

2823 

2337 

2824 

 

2952 

3049 

3012 

3217 

3062 

13495.0 

16500.0 

16500.0 

13950.0 

17450.0 

 

16845.0 

19045.0 

21485.0 

22470.0 

22625.0 

Next, let's apply a single aggregation to get the mean of the columns. To do this, 

we can use the agg() method, as shown in the following code: 

# applying single aggregation for mean over the columns new_dataset.agg("mean", 

axis="rows") 

The output of the preceding code is as follows: 

length 0.837102 

width 0.915126 

height 53.766667 

curb-weight 2555.666667 
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price 13207.129353 

dtype: float64 

 

 Length Width Height Curb-weight 

Max 

Min 

Sum 

NaN 

0.678039 

168.257568 

1.0000 

0.8375 

NaN 

NaN 

47.8 

10807.1 

NaN 

NaN 

513689.0 

Group-wise operations 

The most important operations groupBy implements are aggregate, filter, 

transform, and apply. An efficient way of implementing aggregation functions in the 

dataset is by doing so after grouping the required columns. The aggregated function 

will return a single aggregated value for each group.  

Let's group the DataFrame, df, by body-style and drive-wheels and extract stats 

from each group by passing a dictionary of aggregation functions: 

# Group the data frame df by body-style and drive-wheels and extract stats from each 

group 

df.groupby( 

["body-style","drive-wheels"] 

).agg( 

{ 

'height':min, # minimum height of car in each group 'length': max, # maximum length 

of car in each group 'price': 'mean', # average price of car in each group 

} 

) 
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The output of the preceding code is as follows: 

Body-style Drive 

wheels 

Height Length Price 

Convertible fwd 

rwd 

55.6 

48.8 

0.765497 

0.866410 

11595.000000 

23949.600000 

Hardtop fwd 

rwd 

53.3 

51.6 

0.780394 

0.957232 

8249.000000 

24202.714286 

Hatchback 4wd 

fwd 

rwd 

55.7 

49.4 

49.6 

0.755887 

0.896684 

0.881788 

7603.000000 

8396.387755 

14337.777778 

Sedan 4wd 

fwd 

rwd 

54.3 

50.6 

47.8 

0.848630 

0.925997 

1.000000 

12647.333333 

9811.800000 

21711.833333 

Wagon 4wd 

fwd 

rwd 

54.9 

53.0 

54.1 

0.834214 

0.925997 

0.955790 

9095.750000 

9997.333333 

16994.222222 

The preceding code groups the dataframe according to body-style and then driver-

wheels. Then, the aggregate functions are applied to the height, length, and price 

columns, which return the minimum height, maximum length, and average price in 

the respective groups. 

# create dictionary of aggregations aggregations=( 

{ 

'height':min, # minimum height of car in each group 'length': max, # maximum length 

of car in each group 'price': 'mean', # average price of car in each group 

} 

) 
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# implementing aggregations in groups df.groupby( 

["body-style","drive-wheels"] 

).agg(aggregations) 

The output of the preceding code is as follows: 

Body-style Drive 

wheels 

Sum Mean Std 

Convertible fwd 

rwd 

11595.0 

119748.0 

11595.000000 

23949.600000 

NaN 

11165.099700 

Hardtop fwd 

rwd 

8249.0 

169419.0 

8249.000000 

24202.714286 

NaN 

14493.311190 

Hatchback 4wd 

fwd 

rwd 

7603.0 

411423.0 

258080.0 

7603.000000 

8396.387755 

14337.777778 

NaN 

3004.675695 

3831.795195 

Sedan 4wd 

fwd 

rwd 

37942.0 

539649.0 

781626.0 

12647.333333 

9811.800000 

21711.833333 

4280.814681 

3519.517598 

9194.820239 

Wagon 4wd 

fwd 

rwd 

36383.0 

119968.0 

152948.0 

9095.750000 

9997.333333 

16994.222222 

1775.652063 

3584.185551 

4686.703313 

Group-wise transformations 

Working with groupby() and aggregation, you must have thought, why can't we 

group data, apply aggregation, and append the result into the dataframe directly? Is it 

possible to do all this in a single step? Yes, it is. 

Performing a transformation on a group or a column returns an object that is 

indexed by the same axis length as itself. It is an operation that's used in conjunction 

with groupby(). The aggregation operation has to return a reduced version of the 
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data, whereas the transformation operation can return a transformed version of the 

full data. Let's take a look: 

1. Let's begin by using a simple transformation function to increase the price 

of each car by 10% using the lambda function: 

df["price"]=df["price"].transform(lambda x:x + x/10) df.loc[:,'price'] 

The output of the preceding code is as follows: 

0 14844.5 

1 18150.0 

2 18150.0 

3 15345.0 

4 19195.0 

... 196 18529.5 

197 20949.5 

198 23633.5 

199 24717.0 

200 24887.5 

Name: price, Length: 201, dtype: float64 

2. Let's observe the average price of cars for each grouping by body-style and 

drive-wheels: 

df.groupby(["body-style","drive-wheels"])["price"].transform('mean') 

The output of the preceding code is as follows: 

0 26344.560000 

1 26344.560000 

 15771.555556 

3 10792.980000 

4 13912.066667 

... 
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196 23883.016667 

197 23883.016667 

198 23883.016667 

199 23883.016667 

3. Now, create a new column for an average price in the original dataframe: 

df["average-price"]=df.groupby(["body-style","drive-wheels"]) 

["price"].transform('mean') 

# selecting columns body-style,drive-wheels,price and average-price df.loc[:,["body-

style","drive-wheels","price","average-price"]] 

The output of the preceding code is as follows: 

 body-style drive 

wheels 

price average-price 

0 

1 

2 

3 

4 

 

196 

197 

198 

199 

200 

201 rows  4 columns 

convertible 

convertible 

hatchback 

sedan 

sedan 

 

sedan 

sedan 

sedan 

sedan 

sedan 

rwd 

rwd 

rwd 

fwd 

4wd 

 

rwd 

rwd 

rwd 

rwd 

rwd 

14844.5 

18150.0 

18150.0 

15345.0 

19195.0 

 

18529.5 

20949.5 

23633.5 

24717.0 

24887.5 

26344.560000 

26344.560000 

15771.555556 

10792.980000 

13912.066667 

 

23883.016667 

23883.016667 

23883.016667 

23883.016667 

23883.016667 
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The pandas.pivot_table() function creates a spreadsheet-style pivot table as a 

dataframe. The levels in the pivot table will be stored in MultiIndex objects 

(hierarchical indexes) on the index and columns of the resulting dataframe. 

The simplest pivot tables must have a dataframe and an index/list of the index. 

Let's take a look at how to do this: 

1. Let's make a pivot table of a new dataframe that consists of the body- 

style, drive-wheels, length, width, height, curb-weight, and price columns: 

new_dataset1 = df.filter(["body-style","drive-wheels", 

"length","width","height","curb- 

weight","price"],axis=1) 

#simplest pivot table with dataframe df and index body-style table = 

pd.pivot_table(new_dataset1, index =["body-style"]) table 

The output of the preceding code is as follows: 

Body-style 
Curb-

weight 
Height Length Price Width 

Convertible 2801.666667 51.433333 0.818757 24079.550000 0.910880 

Hardtop 2810.625000 52.850000 0.850252 24429.350000 0.925174 

Hatchback 2322.852941 52.133824 0.799078 10953.185294 0.904228 

Sedan 2625.893617 54.387234 0.855583 15905.730851 0.921070 

Wagon 2784.240000 56.728000 0.871235 13609.156000 0.920222 

The output table is similar to how we group a dataframe with respect to body-

style. The values in the preceding table are the mean of the values in the 

corresponding category.  

2. Now, design a pivot table with the new_dataset1 dataframe and make 

body- style and drive-wheels as an index. Note that providing multiple 

indexes will make a grouping of the dataframe first and then summarize 

the data: 
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#pivot table with dataframe df and index body-style and drive-wheels 

table = pd.pivot_table(new_dataset1, index =["body-style","drive-wheels"]) table 

The output of the preceding code is as follows: 

Body-style 
drive 

wheels 

Curb-

weight 
Height Length Price Width 

Convertible fwd 

rwd 

2254.000000 

2911.200000 

55.600000 

50.600000 

0.765497 

0.829409 

12754.500000 

26344.560000 

0.891667 

0.914722 

Hardtop fwd 

rwd 

2008.000000 

2925.285714 

53.300000 

52.785714 

0.780394 

0.860232 

9073.900000 

26622.985714 

0.886111 

0.930754 

Hatchback 4wd 

fwd 

rwd 

2240.000000 

2181.551020 

2712.11111 

55.700000 

52.442857 

51.094444 

0.755887 

0.787818 

0.832132 

8363.300000 

9236.026531 

15771.555556 

0.886111 

0.898214 

0.921605 

Sedan 4wd 

fwd 

rwd 

2573.000000 

2313.018182 

3108.305556 

54.300000 

53.956364 

55.052778 

0.833894 

0.828404 

0.898913 

13912.066667 

10792.980000 

23883.016667 

0.921963 

0.908182 

0.941435 

Wagon 4wd 

fwd 

rwd 

2617.500000 

2464.333333 

3284.888889 

57.000000 

56.008333 

57.566667 

0.824844 

0.843064 

0.929414 

1005.325000 

10997.066667 

18693.644444 

0.895833 

0.910185 

0.944444 

3. We can also apply a different aggregation function to different columns: 

table = pd.pivot_table(new_dataset1, values=['price','height','width'], 

index =["body-style","drive-wheels"], aggfunc={'price': np.mean,'height': [min, 

max],'width': [min, max]}, 

fill_value=0) 

table 
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The output of the preceding code is as follows: 

body-style 
drive-

wheels 
Height Price Width 

  max. min mean max min 

Convertible fwd 

rwd 

55.6 

53.0 

55.6 

48.8 

12754.500000 

26344.560000 

0.891667 

0.890278 

0.891667 

0.890278 

Hardtop fwd 

rwd 

53.3 

55.4 

53.3 

51.6 

9073.900000 

26622.985714 

0.886111 

1.000000 

0.886111 

0.902778 

Hatchback 4wd 

fwd 

rwd 

55.7 

56.1 

54.8 

55.7 

49.4 

49.6 

8363.300000 

9236.026531 

15771.555556 

0.886111 

0.925000 

0.948611 

0.886111 

0.837500 

0.888889 

Sedan 4wd 

fwd 

rwd 

54.3 

56.1 

56.7 

54.3 

50.6 

47.8 

13912.066667 

10792.980000 

23883.016667 

0.922222 

0.991667 

0.995933 

0.908333 

0.868056 

0.858333 

Wagon 4wd 

fwd 

rwd 

59.1 

59.8 

58.7 

54.9 

53.0 

54.1 

10005.325000 

10997.066667 

18693.644444 

0.908333 

0.991667 

0.976389 

0.883333 

0.883333 

0.923611 

This pivot table represents the maximum and minimum of the height and width 

and the average price of cars in the respective categories mentioned in the index. 

We can customize the pandas dataframe with another technique called cross- 

tabulation. This allows us to cope with groupby and aggregation for better data 

analysis. Pandas has the crosstab function, which helps when it comes to building a 

cross-tabulation table. The cross-tabulation table shows the frequency with which 

certain groups of data appear. Let's take a look: 
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1. Let's use pd.crosstab() to look at how many different body styles cars are 

made by different makers: 

pd.crosstab(df["make"], df["body-style"]) 

The output of the preceding code is as follows: 

 

Body-style 

make 
Convertible Hardtop Hatchback Sedan Wagon 

alfa-romero 

audi 

bmw 

Chevrolet 

Dodge 

Honda 

Isuzu 

Jaguar 

Mazda 

Mercedes-benz 

Mercury 

2 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

1 

0 

0 

2 

5 

7 

1 

0 

10 

0 

1 

0 

5 

8 

1 

3 

5 

1 

3 

7 

4 

0 

0 

1 

0 

0 

1 

1 

0 

0 

0 

1 

0 

Let's apply margins and the margins_name attribute to display the row- wise and 

column-wise sum of the cross tables, as shown in the following code: 

# apply margins and margins_name attribute to displays the row wise # and 

column wise sum of the cross table 

pd.crosstab(df["make"], df["body-style"],margins=True,margins_name="Total 

Made") 
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The output of the preceding code is as follows: 

Body-style 

make 
Convertible Hardtop Hatchback Sedan Wagon 

Total 

Made 

alfa-romero 

audi 

bmw 

Chevrolet 

Dodge 

Honda 

Isuzu 

Jaguar 

Mazda 

Mercedes-benz 

Mercury 

Mitsubishi 

Nissan 

Peugot 

2 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

1 

0 

1 

0 

0 

2 

5 

7 

1 

0 

10 

0 

1 

9 

5 

0 

0 

5 

8 

1 

3 

5 

1 

3 

7 

4 

0 

4 

9 

7 

0 

1 

0 

0 

1 

1 

0 

0 

0 

1 

0 

0 

3 

4 

3 

6 

8 

3 

9 

13 

2 

3 

17 

8 

1 

13 

18 

11 

2. Let's see how the data is distributed by the body-type and drive_wheels 

columns within the maker of car and their door type in a crosstab: 

pd.crosstab([df["make"],df["num-of-doors"]], [df["body-style"],df["drive- wheels"]], 

margins=True,margins_name="Total Made") 
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The output of the preceding code is as follows: 

Make 

body-

style 

drive 

wheels 

num-

of-

wheels 

Convertible Hardtop Hatchback Sedan Wagon Total 

made 

 fwd rwd fwd rwd 4wd fwd rwd 4wd fwd rwd 4wd fwd rwd 

alfa-

romero 
two 0 2 0 0 0 0 1 0 0 0 0 0 0 3 

audi four 

two 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

3 

1 

0 

0 

0 

0 

1 

0 

0 

0 

5 

1 

bmw four 

two 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

5 

3 

0 

0 

0 

0 

0 

0 

5 

3 

Chevrolet four 

two 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

2 

Dodge four 

two 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

4 

0 

0 

0 

0 

3 

0 

0 

0 

0 

0 

1 

0 

0 

0 

5 

4 

Honda four 

two 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

7 

0 

0 

0 

0 

4 

1 

0 

0 

0 

0 

1 

0 

0 

0 

5 

8 

Isuzu four 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

The pivot table syntax of pd.crosstab also takes some arguments, such as 

dataframe columns, values, normalize, and the aggregation function. We can apply 

the aggregation function to a cross table at the same time. Passing the aggregation 

function and values, which are the columns that aggregation will be applied to, gives 

us a cross table of a summarized subset of the dataframe. 

3. First, let's look at the average curb-weight of cars made by different 

makers with respect to their body-style by applying the mean() 

aggregation function to the crosstable: 
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# values are the column in which aggregation function is to be applied # aggfunc is 

the aggregation function to be applied 

# round() to round the output 

pd.crosstab(df["make"], df["body-style"],values=df["curb-weight"], aggfunc= 

'mean').round(0) 

The output of the preceding code is as follows: 

Body-style 

make 

Convertible Hardtop Hatchback Sedan Wagon 

alfa-romero 

audi 

bmw 

Chevrolet 

Dodge 

Honda 

Isuzu 

Jaguar 

Mazda 

Mercedes-benz 

Mercury 

Mitsubishi 

Nissan 

Peugot  

2548.0 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

3685.0 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

3605.0 

NaN 

NaN 

2008.0 

NaN 

2823.0 

NaN 

NaN 

1681.0 

2132.0 

1970.0 

2734.0 

NaN 

2254.0 

NaN 

2910.0 

2377.0 

2740.0 

NaN 

NaN 

2720.0 

2929.0 

1909.0 

2056.0 

2289.0 

237.0 

4027.0 

2361.0 

3731.0 

NaN 

2394.0 

2238.0 

NaN 

NaN 

2954.0 

NaN 

NaN 

2535.0 

2024.0 

NaN 

NaN 

NaN 

3750.0 

NaN 

NaN 

2452.0 

3358.0 
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1. Define EDA. 

EDA is a process of examining the available dataset to discover patterns, spot 

anomalies, test hypotheses, and check assumptions using statistical measures. In 

this chapter, we are going to discuss the steps involved in performing top-notch 

exploratory data analysis and get our hands dirty using some open source 

databases. 

2. What is data processing? 

Preprocessing involves the process of pre-curating the dataset before actual 

analysis. Common tasks involve correctly exporting the dataset, placing them 

under the right tables, structuring them, and exporting them in the correct format. 

3. What do you understand from data cleaning? 

Preprocessed data must be correctly transformed for an incompleteness 

check, duplicates check, error check, and missing value check. These tasks are 

performed in the data cleaning stage, which involves matching the correct 

record, finding inaccuracies in the dataset, understanding the overall data 

quality, removing duplicate items, and filling in the missing values.  

4. List down the steps in EDA 

 Problem definition 

 Data preparation 

 Data analysis 

 Development and representation of the results 

5. What are different categories of data available in EDA? 

 Numerical data 

 Discrete data 

 Continuous data 

 Categorical data 

6. Brief the term Bayesian analysis? 

The Bayesian approach incorporates prior probability distribution 

knowledge into the analysis steps as shown in the following diagram. Well, 
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simply put, prior probability distribution of any quantity expresses the belief 

about that particular quantity before considering some evidence.  

7. List the Software tools available for EDA. 

 NumPy 

 Pandas 

 Sea born 

 Sci py 

 Matplotlib 

8. Define matplotlib 

Matplotlib provides a huge library of customizable plots, along with a 

comprehensive set of back ends. It can be utilized to create professional 

reporting applications, interactive analytical applications, complex dashboard 

applications, web/GUI applications, embedded views, and many more. What are 

the visual aids for EDA? 

 Line chart 

 Bar chart 

 Scatter plot 

 Pie chart  

 Histogram 

9. What is the purpose of bar chart? 

This is one of the most common types of visualization that almost everyone 

must have encountered. Bars can be drawn horizontally or vertically to 

represent categorical variables. Bar charts are frequently used to distinguish 

objects between distinct collections in order to track variations over time. In 

most cases, bar charts are very convenient when the changes are large. 

10. What is a scatter plot? 

Scatter plots are also called scatter graphs, scatter charts, scattergrams, and 

scatter diagrams. They use a Cartesian coordinates system to display values of 

typically two variables for a set of data. 
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Scatter plots can be constructed in the following two situations: 

 When one continuous variable is dependent on another variable, which is 

under the control of the observer 

 When both continuous variables are independent 

11. Differentiate dependent and independent variable 

There are two important concepts—independent variable and dependent 

variable. In statistical modeling or mathematical modeling, the values of 

dependent variables rely on the values of independent variables. The dependent 

variable is the outcome variable being studied. The independent variables are 

also referred to as regressors. 

12. What are the various steps in data transformation? 

 Data cleansing 

 Data refactoring 

 Data analysis 

13. List the different methods in merging a database. 

 pd.merge() method with a left join 

 pd.merge() method with a right join 

 pd.merge() method with a inner join 

 pd.merge() method with a outer join 

14. Distinguish stacking and unstacking. 

Pivoting can be done with hierarchical indexing using two  actions: 

 Stacking: Stack rotates from any particular column in the data to the rows. 

 Unstacking: Unstack rotates from the rows into the column. 

15. What are the benefits of data transformation 

 Data transformation promotes interoperability between several 

applications. The main reason for creating a similar format and structure in 

the dataset is that it becomes compatible with other systems. 

 Data transformation ensures a higher degree of data quality and protects 

applications from several computational challenges such as null values, 

unexpected duplicates, and incorrect indexings, as well as incompatible 

structures or formats. 
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 Data transformation ensures higher performance and scalability for 

modern analytical databases and dataframes. 

16. Define mean, median, mode. 

Mean/average 

The mean, or average, is a number around which the observed continuous 

variables are distributed. This number estimates the value of the entire dataset. 

Mathematically, it is the result of the division of the sum of numbers by the 

number of integers in the dataset. 

Median 

Given a dataset that is sorted either in ascending or descending order, the 

median divides the data into two parts. The general formula for calculating the 

median is as follows: 

 Median position = 
(n  + 1)

2
 th observation 

Mode 

The mode is the integer that appears the maximum number of times in the 

dataset. It happens to be the value with the highest frequency in the dataset. In 

the x  dataset in the median example, the mode is 2 because it occurs twice in 

the set. 

17. Define standard deviation and variance. 

Standard deviation 

Different Python libraries have functions to get the standard deviation of the 

dataset. The NumPy library has the numpy.std(dataset) function. The statistics 

library has the statistics.stdev(dataset). function. Using the pandas library, we 

calculate the standard deviation in our df data frame using the df.std() function 

Variance 

Variance is the square of the average/mean of the difference between each 

value in the dataset with its average/mean; that is, it is the square of standard 

deviation. 

18. What is skewness? 

Skewness is a measure of the asymmetry of the variable in the dataset about 

its mean. The skewness value can be positive or negative, or undefined. The 

skewness value tells us whether the data is skewed or symmetric. 
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19. Define kurtosis 

Basically, kurtosis is a statistical measure that illustrates how heavily the tails 

of distribution differ from those of a normal distribution. This technique can 

identify whether a given distribution contains extreme values. 

20. What are the types of kurtosis? 

 Mesokurtic: If any dataset follows a normal distribution, it follows a 

mesokurtic distribution. It has kurtosis around 0. 

 Leptokurtic: In this case, the distribution has kurtosis greater than 3 and 

the fat tails indicate that the distribution produces more outliers. 

 Platykurtic: In this case, the distribution has negative kurtosis and the tails 

are very thin compared to the normal distribution. 

21. Define percentile 

Percentiles measure the percentage of values in any dataset that lie below a 

certain value. In order to calculate percentiles, we need to make sure our list is 

sorted. We will use the following formula for this: 

 


The formula for calculating

 percentile of X
  = 

Number of values less than X

Total number of observations
   100 

22. Define Quartile 

Quartiles refer to the three data points that divide the given dataset into four 

equal parts, such that each split makes 25% of the dataset. In terms of 

percentiles, the 25th percentile is referred to as the first quartile (Q1), the 50th 

percentile is referred to as the second quartile (Q2), and the 75th percentile is 

referred to as the third quartile (Q3). 

 IQR = Q3 – Q1  

23. What is data aggregation? 

Aggregation is the process of implementing any mathematical operation on a 

dataset or a subset of it. Aggregation is one of the many techniques in pandas 

that's used to manipulate the data in the dataframe for data analysis. 

24. What are the group-wise operations? 

The most important operations groupBy implements are aggregate, filter, 

transform, and apply. An efficient way of implementing aggregation functions in 

the dataset is by doing so after grouping the required columns. 
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25. Define group-wise transformation 

Performing a transformation on a group or a column returns an object that is 

indexed by the same axis length as itself. It is an operation that's used in 

conjunction with groupby(). The aggregation operation has to return a reduced 

version of the data, whereas the transformation operation can return a 

transformed version of the full data 

26. What is a pivot table? 

The pandas.pivot_table() function creates a spreadsheet-style pivot table as a 

dataframe. The levels in the pivot table will be stored in MultiIndex objects 

(hierarchical indexes) on the index and columns of the resulting dataframe.The 

simplest pivot tables must have a dataframe and an index/list of the index. 

27. What is a cross tabulation? 

We can customize the pandas dataframe with another technique called cross- 

tabulation. This allows us to cope with groupby and aggregation for better data 

analysis. pandas has the crosstab function, which helps when it comes to 

building a cross-tabulation table. 

28. What are the transformation techniques? 

 Performing data deduplication 

 Replacing values 

 Handling missing data 

 Filling missing values 

1. Explain the various stages in EDA. 

2. Write down the steps in EDA, Explain. 

3. Explain the software tools available for EDA 

4. Elaborate in detail the visual aids for EDA 

5. Elucidate the different transformation techniques in EDA 

6. Define pivot table and cross tabulation, Explain. 

****************** 
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UNIT II 

VISUALIZING USING 

MATPLOTLIB  

Matplotlib is a low level graph plotting library in python that serves as a 

visualization utility. Matplotlib was created by John D. Hunter. Matplotlib is open 

source and we can use it freely. Matplotlib is mostly written in python, a few 

segments are written in C, Objective-C and Javascript for Platform compatibility. 

Matplotlib is a Python library that helps to plot graphs. It is used in data visualization 

and graphical plotting. To use matplotlib, we need to install it. 

Step 1 − Make sure Python and pip is preinstalled on your system 

Type the following commands in the command prompt to check is python and pip 

is installed on your system. 

To check Python 

python --version 

If python is successfully installed, the version of python installed on your 

system will be displayed. 

To check pip 

pip -V 

The version of pip will be displayed, if it is successfully installed on your 

system. 

Step 2 − Install Matplotlib 

Matplotlib can be installed using pip. The following command is run in the 

command prompt to install Matplotlib. 
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pip install matplotlib 

This command will start downloading and installing packages related to the 

matplotlib library. Once done, the message of successful installation will be 

displayed. 

Step 3 − Check if it is installed successfully 

To verify that matplotlib is successfully installed on your system, execute the 

following command in the command prompt. If matplotlib is successfully installed, 

the version of matplotlib installed will be displayed. 

import matplotlib 

matplotlib.__version__ 

Pyplot 

Most of the Matplotlib utilities lies under the pyplot submodule, and are usually 

imported under the plt alias: 

import matplotlib.pyplot as plt 

Now the Pyplot package can be referred to as plt. 

 

Fig. 2.1.  

Example 

Draw a line in a diagram from position (0,0) to position (6,250): 
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import matplotlib.pyplot as plt 

import numpy as np 

xpoints=np.array([0, 6]) 

ypoints=np.array([0, 250]) 

plt.plot(xpoints, ypoints) 

plt.show() 

Perhaps the simplest of all plots is the visualization of a single 

function y=f(x)y=f(x). Here we will take a first look at creating a simple plot of this 

type. As with all the following sections, we'll start by setting up the notebook for 

plotting and importing the packages we will use: 

import matplotlib.pyplot as plt 

plt.style.use('seaborn-whitegrid') 

import numpy as np 

For all Matplotlib plots, we start by creating a figure and an axes. In their simplest 

form, a figure and axes can be created as follows: 

fig = plt.figure() 

ax = plt.axes() 

In Matplotlib, the figure (an instance of the class plt.Figure) can be thought of as a 

single container that contains all the objects representing axes, graphics, text, and 

labels. The axes (an instance of the class plt.Axes) is what we see above: a bounding 

box with ticks and labels, which will eventually contain the plot elements that make 

up our visualization.  

Once we have created an axes, we can use the ax.plot function to plot some data. 

Let's start with a simple sinusoid: 

fig = plt.figure() 

ax = plt.axes() 

x = np.linspace(0, 10, 1000) 
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ax.plot(x, np.sin(x)); 

Alternatively, we can use the pylab interface and let the figure and axes be created 

for us in the background, 

plt.plot(x, np.sin(x)); 

If we want to create a single figure with multiple lines, we can simply call 

the plot function multiple times: 

plt.plot(x, np.sin(x)) 

plt.plot(x, np.cos(x)); 

Adjusting the Plot: Line Colors and Styles 

The first adjustment you might wish to make to a plot is to control the line colors 

and styles. The plt.plot() function takes additional arguments that can be used to 

specify these. To adjust the color, you can use the color keyword, which accepts a 

string argument representing virtually any imaginable color. The color can be 

specified in a variety of ways: 

plt.plot(x, np.sin(x - 0), color='blue')        # specify color by name 

plt.plot(x, np.sin(x - 1), color='g')           # short color code (rgbcmyk) 

plt.plot(x, np.sin(x - 2), color='0.75')        # Grayscale between 0 and 1 

plt.plot(x, np.sin(x - 3), color='#FFDD44')     # Hex code (RRGGBB from 00 to FF) 

plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB tuple, values 0 to 1 

plt.plot(x, np.sin(x - 5), color='chartreuse'); # all HTML color names supported 

If no color is specified, Matplotlib will automatically cycle through a set of 

default colors for multiple lines. 

Similarly, the line style can be adjusted using the linestyle keyword: 

plt.plot(x, x + 0, linestyle='solid') 

plt.plot(x, x + 1, linestyle='dashed') 

plt.plot(x, x + 2, linestyle='dashdot') 

plt.plot(x, x + 3, linestyle='dotted'); 

 

# For short, you can use the following codes: 
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plt.plot(x, x + 4, linestyle='-')  # solid 

plt.plot(x, x + 5, linestyle='--') # dashed 

plt.plot(x, x + 6, linestyle='-.') # dashdot 

plt.plot(x, x + 7, linestyle=':');  # dotted 

If you would like to be extremely terse, these linestyle and color codes can be 

combined into a single non-keyword argument to the plt.plot() function: 

plt.plot(x, x + 0, '-g')  # solid green 

plt.plot(x, x + 1, '--c') # dashed cyan 

plt.plot(x, x + 2, '-.k') # dashdot black 

plt.plot(x, x + 3, ':r');  # dotted red 

Adjusting the Plot: Axes Limits 

Matplotlib does a decent job of choosing default axes limits for your plot, but 

sometimes it's nice to have finer control. The most basic way to adjust axis limits is 

to use the plt.xlim() and plt.ylim() methods: 

plt.plot(x, np.sin(x)) 

plt.xlim(-1, 11) 

plt.ylim(-1.5, 1.5); 

If for some reason you'd like either axis to be displayed in reverse, you can simply 

reverse the order of the arguments: 

plt.plot(x, np.sin(x)) 

plt.xlim(10, 0) 

plt.ylim(1.2, -1.2); 

A useful related method is plt.axis() (note here the potential confusion 

between axes with an e, and axis with an i). The plt.axis() method allows you to set 

the x and y limits with a single call, by passing a list which specifies [xmin, xmax, 

ymin, ymax]: 

plt.plot(x, np.sin(x)) 

plt.axis([-1, 11, -1.5, 1.5]); 
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The plt.axis() method goes even beyond this, allowing you to do things like 

automatically tighten the bounds around the current plot: 

plt.plot(x, np.sin(x)) 

plt.axis('tight'); 

It allows even higher-level specifications, such as ensuring an equal aspect ratio 

so that on your screen, one unit in x is equal to one unit in y: 

plt.plot(x, np.sin(x)) 

plt.axis('equal'); 

Labeling Plots 

As the last piece of this section, we'll briefly look at the labeling of plots: titles, 

axis labels, and simple legends. 

Titles and axis labels are the simplest such labels—there are methods that can be 

used to quickly set them: 

plt.plot(x, np.sin(x)) 

plt.title("A Sine Curve") 

plt.xlabel("x") 

plt.ylabel("sin(x)"); 

The position, size, and style of these labels can be adjusted using optional 

arguments to the function. For more information, see the Matplotlib documentation 

and the docstrings of each of these functions. 

When multiple lines are being shown within a single axes, it can be useful to 

create a plot legend that labels each line type. Again, Matplotlib has a built-in way of 

quickly creating such a legend. It is done via the (you guessed it)plt.legend() method. 

plt.plot(x, np.sin(x), '-g', label='sin(x)') 

plt.plot(x, np.cos(x), ':b', label='cos(x)') 

plt.axis('equal') 
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plt.legend(); 

As you can see, the plt.legend() function keeps track of the line style and color, 

and matches these with the correct label. More information on specifying and 

formatting plot legends can be found in the plt.legend docstring 

Another commonly used plot type is the simple scatter plot, a close cousin of the 

line plot. Instead of points being joined by line segments, here the points are 

represented individually with a dot, circle, or other shape. We‟ll start by setting up 

the notebook for plotting and importing the functions we will use: 

import matplotlib.pyplot as plt 

plt.style.use('seaborn-whitegrid') 

import numpy as np 

Scatter Plots with plt.plot 

In the previous section we looked at plt.plot/ax.plot to produce line plots. It turns 

out that this same function can produce scatter plots as well: 

x = np.linspace(0, 10, 30) 

y = np.sin(x) 

plt.plot(x, y, 'o', color='black'); 

The third argument in the function call is a character that represents the type of 

symbol used for the plotting. Just as you can specify options such as '-', '--' to control 

the line style, the marker style has its own set of short string codes. The full list of 

available symbols can be seen in the documentation of plt.plot, or in Matplotlib's 

online documentation. Most of the possibilities are fairly intuitive, and we'll show a 

number of the more common ones here: 

rng = np.random.RandomState(0) 

for marker in ['o', '.', ',', 'x', '+', 'v', '^', '<', '>', 's', 'd']: 

    plt.plot(rng.rand(5), rng.rand(5), marker, 

             label="marker='{0}'".format(marker)) 
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plt.legend(numpoints=1) 

plt.xlim(0, 1.8); 

Additional keyword arguments to plt.plot specify a wide range of properties of the 

lines and markers: 

plt.plot(x, y, '-p', color='gray', 

         markersize=15, linewidth=4, 

         markerfacecolor='white', 

         markeredgecolor='gray', 

         markeredgewidth=2) 

plt.ylim(-1.2, 1.2); 

Scatter Plots with plt.scatter 

A second, more powerful method of creating scatter plots is the plt.scatter 

function, which can be used very similarly to the plt.plot function: 

plt.scatter(x, y, marker='o'); 

The primary difference of plt.scatter from plt.plot is that it can be used to create 

scatter plots where the properties of each individual point (size, face color, edge 

color, etc.) can be individually controlled or mapped to data. 

Let's show this by creating a random scatter plot with points of many colors and 

sizes. In order to better see the overlapping results, we'll also use the alpha keyword 

to adjust the transparency level: 

rng = np.random.RandomState(0) 

x = rng.randn(100) 

y = rng.randn(100) 

colors = rng.rand(100) 

sizes = 1000 * rng.rand(100) 

plt.scatter(x, y, c=colors, s=sizes, alpha=0.3,cmap='viridis') 

plt.colorbar();  # show color scale 
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Notice that the color argument is automatically mapped to a color scale (shown 

here by the colorbar() command), and that the size argument is given in pixels. In 

this way, the color and size of points can be used to convey information in the 

visualization, in order to visualize multidimensional data. 

For example, we might use the Iris data from Scikit-Learn, where each sample is 

one of three types of flowers that has had the size of its petals and sepals carefully 

measured: 

import load_iris 

iris = load_iris() 

features = iris.data.T 

plt.scatter(features[0],features[1],alpha=0.2,s=100*features[3],c=iris.target, 

cmap='viridis') 

plt.xlabel(iris.feature_names[0]) 

plt.ylabel(iris.feature_names[1]); 

We can see that this scatter plot has given us the ability to simultaneously explore 

four different dimensions of the data: the (x, y) location of each point corresponds to 

the sepal length and width, the size of the point is related to the petal width, and the 

color is related to the particular species of flower. Multicolor and multifeature scatter 

plots like this can be useful for both exploration and presentation of data. 

Plot Versus Scatter:  

Aside from the different features available in plt.plot and plt.scatter, why might 

you choose to use one over the other? While it doesn't matter as much for small 

amounts of data, as datasets get larger than a few thousand points, plt.plot can be 

noticeably more efficient than plt.scatter. The reason is that plt.scatter has the 

capability to render a different size and/or color for each point, so the renderer must 

do the extra work of constructing each point individually. In plt.plot, on the other 

hand, the points are always essentially clones of each other, so the work of 

determining the appearance of the points is done only once for the entire set of data. 

For large datasets, the difference between these two can lead to vastly different 

performance, and for this reason, plt.plot should be preferred over plt.scatter for large 

datasets. 



 2.10    Data Exploration and Visualization 

For any scientific measurement, accurate accounting for errors is nearly as 

important, if not more important, than accurate reporting of the number itself. In 

visualization of data and results, showing these errors effectively can make a plot 

convey much more complete information. 

Basic Errorbars 

A basic errorbar can be created with a single Matplotlib function call: 

import matplotlib.pyplot as plt 

plt.style.use('seaborn-whitegrid') 

import numpy as np 

x = np.linspace(0, 10, 50) 

dy = 0.8 

y = np.sin(x) + dy * np.random.randn(50) 

plt.errorbar(x, y, yerr=dy, fmt='.k'); 

Here the fmt is a format code controlling the appearance of lines and points, and 

has the same syntax as the shorthand used in plt.plot, outlined in Simple Line 

Plots and Simple Scatter Plots. 

In addition to these basic options, the errorbar function has many options to fine-

tune the outputs. Using these additional options you can easily customize the 

aesthetics of your errorbar plot.  

plt.errorbar(x, y, yerr=dy, fmt='o', color='black', 

              ecolor='lightgray', elinewidth=3, capsize=0); 

In addition to these options, you can also specify horizontal errorbars (xerr), one-

sided errorbars, and many other variants. For more information on the options 

available, refer to the docstring of plt.errorbar. 

Continuous Errors 

In some situations it is desirable to show errorbars on continuous quantities. 

Though Matplotlib does not have a built-in convenience routine for this type of 
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application, it's relatively easy to combine primitives like plt.plot and 

plt.fill_between for a useful result. 

Here we'll perform a simple Gaussian process regression, using the Scikit-Learn 

API This is a method of fitting a very flexible non-parametric function to data with a 

continuous measure of the uncertainty. We won't delve into the details of Gaussian 

process regression at this point, but will focus instead on how you might visualize 

such a continuous error measurement: 

Import Gaussian Process 

# define the model and draw some data 

model = lambda x: x * np.sin(x) 

xdata = np.array([1, 3, 5, 6, 8]) 

ydata = model(xdata) 

# Compute the Gaussian process fit 

gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1E-

1,random_start=100) 

gp.fit(xdata[:, np.newaxis], ydata) 

xfit = np.linspace(0, 10, 1000) 

yfit, MSE = gp.predict(xfit[:, np.newaxis], eval_MSE=True) 

dyfit = 2 * np.sqrt(MSE)  # 2*sigma ~ 95% confidence region 

We now have xfit, yfit, and dyfit, which sample the continuous fit to our data. We 

could pass these to the plt.errorbar function as above, but we don't really want to plot 

1,000 points with 1,000 errorbars. Instead, we can use the plt.fill_between function 

with a light color to visualize this continuous error: 

# Visualize the result 

plt.plot(xdata, ydata, 'or') 

plt.plot(xfit, yfit, '-', color='gray') 

plt.fill_between(xfit, yfit - dyfit, yfit + dyfit, 

                 color='gray', alpha=0.2) 

plt.xlim(0, 10); 
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Note what we've done here with the fill_between function: we pass an x value, 

then the lower y-bound, then the upper y-bound, and the result is that the area 

between these regions is filled. The resulting figure gives a very intuitive view into 

what the Gaussian process regression algorithm is doing: in regions near a measured 

data point, the model is strongly constrained and this is reflected in the small model 

errors. In regions far from a measured data point, the model is not strongly 

constrained, and the model errors increase. 

Sometimes it is useful to display three-dimensional data in two dimensions using 

contours or color-coded regions. There are three Matplotlib functions that can be 

helpful for this task: plt.contour for contour plots, plt.contourf for filled contour 

plots, and plt.imshow for showing images. This section looks at several examples of 

using these. We'll start by setting up the notebook for plotting and importing the 

functions we will use: 

import matplotlib.pyplot as plt 

plt.style.use('seaborn-white') 

import numpy as np 

Visualizing a Three-Dimensional Function 

We'll start by demonstrating a contour plot using a function z=f(x,y)z=f(x,y), 

using the following particular choice for ff (we've seen this before in Computation on 

Arrays: Broadcasting, when we used it as a motivating example for array 

broadcasting): 

def f(x, y): 

return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x) 

A contour plot can be created with the plt.contour function. It takes three 

arguments: a grid of x values, a grid of y values, and a grid of z values. 

The x and y values represent positions on the plot, and the z values will be 

represented by the contour levels. Perhaps the most straightforward way to prepare 
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such data is to use the np.meshgrid function, which builds two-dimensional grids 

from one-dimensional arrays: 

x = np.linspace(0, 5, 50) 

y = np.linspace(0, 5, 40) 

X, Y = np.meshgrid(x, y) 

Z = f(X, Y) 

Now let's look at this with a standard line-only contour plot: 

plt.contour(X, Y, Z, colors='black'); 

Notice that by default when a single color is used, negative values are represented 

by dashed lines, and positive values by solid lines. Alternatively, the lines can be 

color-coded by specifying a colormap with the cmap argument. Here, we'll also 

specify that we want more lines to be drawn—20 equally spaced intervals within the 

data range: 

plt.contour(X, Y, Z, 20, cmap='RdGy'); 

Here we chose the RdGy (short for Red-Gray) colormap, which is a good choice 

for centered data. Matplotlib has a wide range of colormaps available, which you can 

easily browse in IPython by doing a tab completion on the plt.cm module: 

plt.cm.<TAB> 

Our plot is looking nicer, but the spaces between the lines may be a bit distracting. 

We can change this by switching to a filled contour plot using 

the plt.contourf() function (notice the f at the end), which uses largely the same 

syntax as plt.contour().Additionally, we'll add a plt.colorbar() command, which 

automatically creates an additional axis with labeled color information for the plot: 

plt.contourf(X, Y, Z, 20, cmap='RdGy') 

plt.colorbar(); 

The colorbar makes it clear that the black regions are "peaks," while the red 

regions are "valleys." 

One potential issue with this plot is that it is a bit "splotchy." That is, the color 

steps are discrete rather than continuous, which is not always what is desired. This 
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could be remedied by setting the number of contours to a very high number, but this 

results in a rather inefficient plot: Matplotlib must render a new polygon for each 

step in the level. A better way to handle this is to use the plt.imshow() function, 

which interprets a two-dimensional grid of data as an image. 

The following code shows this: 

plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',cmap='RdGy') 

plt.colorbar() 

plt.axis(aspect='image'); 

There are a few potential gotchas with imshow(), however: 

 plt.imshow() doesn't accept an x and y grid, so you must manually specify 

the extent [xmin, xmax, ymin, ymax] of the image on the plot. 

 plt.imshow() by default follows the standard image array definition where 

the origin is in the upper left, not in the lower left as in most contour plots. 

This must be changed when showing gridded data. 

 plt.imshow() will automatically adjust the axis aspect ratio to match the 

input data; this can be changed by setting, for 

example, plt.axis(aspect='image') to make x and y units match. 

 Finally, it can sometimes be useful to combine contour plots and image 

plots. For example, here we'll use a partially transparent background image 

(with transparency set via the alpha parameter) and overplot contours with 

labels on the contours themselves (using the plt.clabel() function): 

contours = plt.contour(X, Y, Z, 3, colors='black') 

plt.clabel(contours, inline=True, fontsize=8) 

plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',cmap='RdGy', alpha=0.5) 

plt.colorbar(); 

The combination of these three functions—plt.contour, plt.contourf, 

and plt.imshow—gives nearly limitless possibilities for displaying this sort of three-

dimensional data within a two-dimensional plot. 
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A histogram is basically used to represent data provided in a form of some groups. 

It is accurate method for the graphical representation of numerical data distribution. 

It is a type of bar plot where X-axis represents the bin ranges while Y-axis gives 

information about frequency. 

Creating a Histogram 

To create a histogram the first step is to create bin of the ranges, then distribute 

the whole range of the values into a series of intervals, and count the values which 

fall into each of the intervals. Bins are clearly identified as consecutive, non-

overlapping intervals of variables. The matplotlib.pyplot.hist() function is used to 

compute and create histogram of x .  

The following table shows the parameters accepted by matplotlib.pyplot.hist() 

function :  

Attribute Parameter 

x array or sequence of array 

bins optional parameter contains integer or sequence or 

strings 

density optional parameter contains boolean values 

range optional parameter represents upper and lower range 

of bins 

histtype optional parameter used to create type of histogram 

[bar, barstacked, step, stepfilled], default is “bar” 

align optional parameter controls the plotting of histogram 

[left, right, mid] 

weights optional parameter contains array of weights having 

same dimensions as x 

bottom location of the baseline of each bin 

rwidth optional parameter which is relative width of the bars 

with respect to bin width 
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Attribute Parameter 

color optional parameter used to set color or sequence of 

color specs 

label optional parameter string or sequence of string to 

match with multiple datasets 

log optional parameter used to set histogram axis on log 

scale 

Let‟s create a basic histogram of some random values. Below code creates a 

simple histogram of some random values:   

import numpy as np 

 # Creating dataset 

a = np.array([22, 87, 5, 43, 56,73, 55, 54, 11,20, 51, 5, 79, 31,27]) 

 # Creating histogram 

fig, ax = plt.subplots(figsize =(10, 7)) 

ax.hist(a, bins = [0, 25, 50, 75, 100]) 

 # Show plot   plt.show() 

Output :  

 

Fig. 2.2.  



Visualizing using Matplotlib   2.17  

Customization of Histogram 

Matplotlib provides a range of different methods to customize 

histogram. matplotlib.pyplot.hist() function itself provides many attributes with the 

help of which we can modify a histogram. The hist() function provide a patches 

object which gives access to the properties of the created objects, using this we can 

modify the plot according to our will. 

Example 1:   

import matplotlib.pyplot as plt 

import numpy as np 

from matplotlib import colors 

from matplotlib.ticker import PercentFormatter 

 # Creating dataset 

np.random.seed(23685752) 

N_points = 10000 

n_bins = 20 

 # Creating distribution 

x = np.random.randn(N_points) 

y = .8 ** x + np.random.randn(10000) + 25 

 # Creating histogram 

fig, axs = plt.subplots(1, 1, 

                        figsize =(10, 7), 

                        tight_layout = True) 

 axs.hist(x, bins = n_bins) 

 # Show plot 

plt.show() 
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Output :  

 

Example 2:  

The code below modifies the above histogram for a better view and accurate 

readings.  

import matplotlib.pyplot as plt 

import numpy as np 

from matplotlib import colors 

from matplotlib.ticker import PercentFormatter 

 # Creating dataset 

np.random.seed(23685752) 

N_points = 10000 

n_bins = 20 

 # Creating distribution 

x = np.random.randn(N_points) 

y = .8 ** x + np.random.randn(10000) + 25 

legend = ['distribution'] 
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 # Creating histogram 

fig, axs = plt.subplots(1, 1, 

                        figsize =(10, 7), 

                        tight_layout = True) 

# Remove axes splines 

for s in ['top', 'bottom', 'left', 'right']: 

    axs.spines[s].set_visible(False) 

 # Remove x, y ticks 

axs.xaxis.set_ticks_position('none') 

axs.yaxis.set_ticks_position('none') 

  # Add padding between axes and labels 

axs.xaxis.set_tick_params(pad = 5) 

axs.yaxis.set_tick_params(pad = 10) 

 # Add x, y gridlines 

        axs.grid(b = True, color ='grey', 

        linestyle ='-.', linewidth = 0.5, 

        alpha = 0.6) 

# Add Text watermark 

fig.text(0.9, 0.15, 'Jeeteshgavande30', 

         fontsize = 12, 

         color ='red', 

         ha ='right', 

         va ='bottom', 

         alpha = 0.7) 

 # Creating histogram 

N, bins, patches = axs.hist(x, bins = n_bins) 

 # Setting color 

fracs = ((N**(1 / 5)) / N.max()) 
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norm = colors.Normalize(fracs.min(), fracs.max()) 

 for thisfrac, thispatch in zip(fracs, patches): 

    color = plt.cm.viridis(norm(thisfrac)) 

    thispatch.set_facecolor(color) 

 # Adding extra features    

plt.xlabel("X-axis") 

plt.ylabel("y-axis") 

plt.legend(legend) 

plt.title('Customized histogram') 

 # Show plot 

plt.show() 

Output :  

 

Fig. 2.3.  

A legend is basically an area in the plot which describes the elements present in 

the graph. Matplotlib provides an inbuilt method named legend() for this purpose. 

The syntax of the method is below : 
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Example: Adding Simple legend 

# Import libraries 

import matplotlib.pyplot as plt 

 # Creating plot 

  plt.plot([1, 2, 3, 4]) 

  plt.title('simple legend example ') 

  # Creating legend 

plt.legend(['simple legend example'])  

 # Show plot 

plt.show() 

Output: 

 

Fig. 2.4.  

To create a legend with a color box, patches are used provided by 

the matplotlib.patches module. A patch nothing but a 2D artist with face color and 

edge color. Below is a simple example of this: 
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Example 1: 

# Import libraries 

import matplotlib.patches as mpatches 

import matplotlib.pyplot as plt 

  # Creating plot 

plt.plot([1, 2, 3, 4], color='blue') 

  plt.title('simple legend example ') 

  # Creating legend with color box 

blue_patch = mpatches.Patch(color='blue', label='blue legend') 

plt.legend(handles=[blue_patch]) 

# Show plot 

plt.show() 

Output: 

 

Fig. 2.5.  
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What is a Subplot? 

There are many cases where you will want to generate a plot that contains several 

smaller plots within it. That is exactly what a subplot is! A common version of the 

subplot is the 4x4 subplot. An example of the 4x4 subplot is below:  

 

Fig. 2.6.  

Subplots can be very complicated to create when done properly. As an example, 

consider the code that I used to create the above 4  4 subplot: 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

%matplotlib inline 

from datetime import datetime 



 2.24    Data Exploration and Visualization 

tech_stocks_data = 

pd.read_csv('https://raw.githubusercontent.com/nicholasmccullum/python-

visualization/master/tech_stocks/GOOG_MSFT_FB_AMZN_data.csv') 

tech_stocks_data.sort_values('Period', ascending = True, inplace = True) 

google = tech_stocks_data['Alphabet Inc Price'] 

amazon = tech_stocks_data['Amazon.com Inc Price'] 

facebook = tech_stocks_data['Facebook Inc Price'] 

microsoft = tech_stocks_data['Microsoft Corp Price'] 

dates = tech_stocks_data['Period'] 

x = [] 

for date in tech_stocks_data['Period']: 

    x.append(datetime.strptime(date, '%Y-%m-%d %H:%M:%S').year) 

plt.figure(figsize=(16,12)) 

 

#Plot 1 

plt.subplot(2,2,1) 

plt.xticks(np.arange(0, len(x) + 1)[::365], x[::365]) 

plt.plot(dates, google) 

plt.title('Alphabet (GOOG) (GOOGL) Stock Price') 

 

#Plot 2 

plt.subplot(2,2,2) 

plt.xticks(np.arange(0, len(x) + 1)[::365], x[::365]) 

plt.plot(dates, amazon) 

plt.title('Amazon (AMZN)) Stock Price') 

 

#Plot 3 

plt.subplot(2,2,3) 
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plt.xticks(np.arange(0, len(x) + 1)[::365], x[::365]) 

plt.plot(dates, facebook) 

plt.title('Facebook (FB) Stock Price') 

 

#Plot 4 

plt.subplot(2,2,4) 

plt.xticks(np.arange(0, len(x) + 1)[::365], x[::365]) 

plt.plot(dates, microsoft) 

plt.title('Microsoft (MSFT) Stock Price') 

How To Create Subplots in Python Using Matplotlib? 

We can create subplots in Python using matplotlib with the subplot method, which 

takes three arguments: 

nrows: The number of rows of subplots in the plot grid. 

ncols: The number of columns of subplots in the plot grid. 

index: The plot that you have currently selected. 

The nrows and ncols arguments are relatively straightforward, but 

the index argument may require some explanation. It starts at 1 and moves through 

each row of the plot grid one-by-one. When it reaches the end of a row, it will move 

down to the first entry of the next row. 

A few examples of selecting specific subplots within a plot grid are shown below: 

plt.subplot(3,3,5) 

#Selects the middle entry of the second row in the 3x3 subplot grid 

plt.subplot(1,2,2) 

#Selects the second entry in a 1x2 subplot grid 

plt.subplot(4,4,16) 

#Selects the last entry in a 4x4 subplot grid 

We will work through two examples of how to create subplot grids before 

concluding this lesson. 
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Example #1: A 22 Subplot Grid 

First, let's import the Iris data set: 

iris_data = 

pd.read_json('https://raw.githubusercontent.com/nicholasmccullum/python-

visualization/master/iris/iris.json') 

Using the Iris data set, let's create a 2  2 subplot with a subplot for each of the 

following variables (in the order they're listed): 

sepalLength 

sepalWidth 

petalLength 

petalWidth 

Make each subplot a histogram with X bins. Make sure to give each subplot a 

reasonable title so that an outside reader could understand the data. 

Once you have attempted this on your own, you can view the code below for a 

full solution: 

plt.subplot(2,2,1) 

plt.hist(iris_data['sepalLength'], bins = 15) 

plt.title('A Histogram of Sepal Lengths from the Iris Data Set') 

plt.subplot(2,2,2) 

plt.hist(iris_data['sepalWidth'], bins = 15) 

plt.title('A Histogram of Sepal Widths from the Iris Data Set') 

plt.subplot(2,2,3) 

plt.hist(iris_data['petalLength'], bins = 15) 

plt.title('A Histogram of Petal Lengths from the Iris Data Set') 

plt.subplot(2,2,4) 

plt.hist(iris_data['petalWidth'], bins = 15) 

plt.title('A Histogram of Petal Widths from the Iris Data Set') 
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Fig. 2.7.  

Example #2: A 2  3 Subplot Grid 

Let's create a 2  3 subplot with the following plots (in the order they're listed): 

chlorides 

quality 

alcohol 

density 

total sulfur dioxide 

citric acid 
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Let's make each subplot a scatterplot, with the x-variable for each scatterplot 

being fixed acidity. Name each plot with an appropriate title for an outside reader to 

understand it. 

Give this a try yourself before proceeding! 

Once you have attempted this on your own, you can view the code below for a 

full solution: 

x = wine_data['fixed acidity'] 

plt.subplot(2,3,1) 

plt.scatter(x, wine_data['chlorides']) 

plt.title('Chlorides plotted against Fixed Acidity') 

plt.subplot(2,3,2) 

plt.scatter(x, wine_data['quality']) 

plt.title('Quality plotted against Fixed Acidity') 

plt.subplot(2,3,3) 

plt.scatter(x, wine_data['alcohol']) 

plt.title('Alcohol plotted against Fixed Acidity') 

plt.subplot(2,3,4) 

plt.scatter(x, wine_data['density']) 

plt.title('Density plotted against Fixed Acidity') 

plt.subplot(2,3,5) 

plt.scatter(x, wine_data['total sulfur dioxide']) 

plt.title('Total Sulfur Dioxide plotted against Fixed Acidity') 

plt.subplot(2,3,6) 

plt.scatter(x, wine_data['citric acid']) 

plt.title('Citric Acid plotted against Fixed Acidity') 
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Fig. 2.8.  

Annotate using text 

Matplotlib offers the ability to place text within a chart. The only condition is it 

requires the positioning co-ordinate of the x and y-axis to place the text. 

1. Annotate graph: plt.annotate() 

To input text using matplotlib‟s “plt.annotate()” we need to declare two things, 

which is the “xy” coordinates which tells matplotlib where we want to input our text 

and the “s” attribute. 

There is also an added attribute aswell, this is called the “arrowprops” attribute, 

which basically allows us to input an arrow pointing towards a specific point in our 

graph. 
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If arrows and texts are used within the “plt.annotate()” function, you can also use 

two xy coordinates, one for the arrow and the other for the text. This can be declared 

via “xy()” and “xytext()” respectively. 

These are the following parameters used: 

s  : The text of the annotation 

xy : The point (x,y) to annotate 

xytext : The position (x,y) to place the text at (If None, defaults to xy) 

arrowprops : The properties used to draw an arrow between the positions xy and 

xytext 

#input annotation 

plt.annotate( 

# Label and coordinate 

'My Money Goal Has been Reached!', xy=(2003, 14000), xytext=(2002, 20000), 

#Arrow Pointer 

arrowprops=dict(facecolor='red')) 

 

Fig. 2.9.  

!pip install matplotlib # install matplotlib 

import matplotlib.pyplot as plt #import matplotlib 
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#Create our x, y values and variance 

year = [2001, 2002, 2003, 2004, 2005, 2006] 

income = [1000, 5000, 13000, 14000. 15000, 26000] 

#plot our graph 

ax = plt.plot(year, income) 

 

#input annotation 

plt.annotate( 

# Label and coordinate 

„My Money Goal Has been Reached!‟, xy=(2003, 14000), xytext=(2002, 20000), 

#Arrow Pointer 

arrowprops=dict(facecolor=‟red‟)) 

 

#output chart 

plt.show( ) 

2. Annotate graph: ax.text() or plt.text() 

Another way to annotate text is to use the function “ax.text()” which is also 

known as Axes.text(). This function is a much simpler way to input text, as 

ax.text() only adds the text to the Axes at locations x, y in data coordinates. This 

exact function can also be called using plt.text() as well. 

x : The x axis position to place text 

y : The y axis position to place text 

s : String to input text 

fontsize: change the size of the font 

ha: horizontal alignment 

va: vertical alignment 

ax.text(0.5, 0.5, 'Hello World!', size=24, ha='center', va='center') 
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Fig. 2.10.  

!pip install matplotlib # install matplotlib 

import matplotlib.pyplot as plt #import matplotlib 

 

#create our graph 

fig, ax = plt.subplots( ) 

 

#create our annotations 

ax.text(0.5, 0.5, „Hello World!‟, size=24, ha=‟center‟, va=‟center‟) 

3. Placing a text box: ax.text() 

Similarly, you can also place text boxes with our “ax.text()” function, the text 

box is created through the use of the “bbox” function. The only difference between 

our previous step and this current one is we require to create a new variable called 

“textbox” which helps create our text box. 

Below is the exact function to use for the current text box used. 

# Create our text box 

textbox = dict(boxstyle='round', facecolor='wheat', alpha=0.5) 

# place a text box in upper left in axes coords input our text box 

ax.text(0.05, 0.95, 'This is a histogram', transform=ax.transAxes, fontsize=14, 
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       verticalalignment='top', bbox=textbox) 

 

Fig. 2.11.  

!pip install matplotlib #download matplotlib 

import numpy as np 

import matplotlib.pyplot as plt #import relevant packages 

#create out graph 

np.random.seed(19680801) 

fig, ax = plt.subplots ( ) 

ax.hist(x, 50) 

# Create out text box 

textbox = dict(boxstyle=‟round‟, facecolor=‟wheat‟, alpha=0.5) 

#place a text box in upper left in axes cords input out text box 

ax.text(0.05, 0.95, „This is a histogram‟, transform=ax.transAxes, fontsize = 14, 

 verticalalignment=‟top‟, bbox=textbox) 

plt.show( ) 
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Annotate using shapes 

Another way to annotate your graph is to input shapes, this can include things 

such as a vertical line, a rectangle and many more objects which highlight a spot 

within a specific graph. Combining shapes with text annotations will definitely create 

a better solution to annotating graphs. 

4. Annotate using a vertical line: plt.axvline() 

Matplotlib allows the ability to input a vertical line to highlight a specific spot of a 

graph, by doing so we can identify key statistics such as in our current graph where I 

used a line annotation and also a text annotation to visualize the significance of the 

2008 Great financial crash.To create a vertical line annotation we can use the 

function plt.axvline() this basically creates a vertical line from a specified x-axis 

spot. 

x : The x axis position to place vertical line 

color : Color of the line graph 

linestyle : Line graph style 

plt.axvline(2007, color='r', linestyle='dashed') 

 

Fig. 2.12.  

!pip install matplotlib #download matplotlib 
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import matplotlib.pyplot as plt #import relevant packages 

#create a graph 

year=[2005,2006, 2007, 2008, 2009, 2010, 2011] 

income=[45000, 60000,70000,50000,60000,70000,80000] 

plt.plot(year, income) 

#Create our line graph 

plt.axvline(2007, color=‟r‟, linestyle=‟dashed‟) 

#input some text 

plt.text(2007.5, 70000, s=‟great financial crash) 

5. Annotate using a horizontal line: plt.axhline() 

Similarly, you can also annotate using a horizontal line, this can simply be created 

using the function plt.axhline(). The only difference in the parameters between this 

function and the previous plt.axvline() is the requirement of the y axis position. 

y : The y axis position to place vertical line 

color : Color of the line graph 

linestyle : Line graph style 

plt.axhline(60000, color='r', linestyle='dashed') 

 

Fig. 2.13.  
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!pip install matplotlib #download matplotlib 

import matplotlib.pyplot as plt #import relevant packages 

 

#create a graph 

year=[2005,2006, 2007, 2008, 2009, 2010, 2011] 

income=[45000, 60000,70000,50000,60000,70000,80000] 

plt.plot(year, income) 

 

#Create our line graph 

plt.axhline(60000, color=‟r‟, linestyle=‟dashed‟) 

#input some text 

plt.text(2007.5, 70000, s=break even price‟) 

6. Highlight using a rectangle: ax.add_patch(Rectangle()) 

To input a rectangle in matplotlib we need to import our rectangle package, this 

can be declared using the function “from matplotlib.patches import Rectangle“. 

Afterwards, we can now use our function “ax.add_patch(Rectangle())”. 

 

Fig. 2.14.  
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These are the following parameters used in the function 

xy  : The xy axis starting point for the lower left side of the rectangle 

width: the width span of the rectangle 

height: the height span of the rectangle 

color: the color of the rectangle 

ax.add_patch(Rectangle((2005, 55000), 6, 5000, color="red")) 

 

!pip install matplotlib #download matplotlib 

import matplotlib.pyplot as plt #import relevant packages 

from matplotlib.patches import Rectangle 

 

#create a graph 

year=[2005,2006, 2007, 2008, 2009, 2010, 2011] 

income=[45000, 60000,70000,50000,60000,70000,80000] 

fig, ax = plt.subplots( ) 

ax.plot(year, income) 

 

#input our rectangle 

ax.add_patch(Rectangle((2005, 55000), 6, 5000, color=”red”)) 

7. Highlight using a circle: patches.Circle() 

We can also create a „looking glass‟ effect using matplotlib. To do this we need to 

import the package “matplotlib.patches as patches” this library stores our circle 

function (patches.Circle()). 

These are the following parameters of our function 

xy  : The xy axis of the center of the circle 

radius: the size of the circle 

fc: the color of the rectangle 

alpha: transparency of the circle 
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Fig. 2.15.  

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib.patches as patches 

# Creating out data 

np.random.seed(19680801) 

x, y = np.random.rand(2, 200) 

#plotting our graph 

fig, ax = plt.subplots( ) 

ax.plot(x, y, alpha=0.2) 

#creating our circle 

circle = patches.Circle(0.5, 0.5), 0.25, alpha=0.8, fc=‟yellow‟) 

ax.add_patch(circle) 

Customizing Individual Plots 

First import Matplotlib‟s pyplot module, as well as NumPy to generate the sample 

data for the figures. 
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from matplotlib import pyplot as plt 

import numpy as np 

Setting Tick Marks and Tick Labels 

For the first plot, I‟ll use several trigonometric functions as sample data. 

π = np.pi 

x = 2 * π * np.linspace(-1, 1, 1000)_, ax = plt.subplots() 

ax.plot(x, np.cos(x)) 

ax.plot(x, np.sin(x)) 

ax.plot(x, np.cos(x - π)) 

Using the defaults from the current version of Matplotlib (v. 3.0.2 at the time of 

this writing) yields the following figure: 

Since there is more than one line, let‟s add a legend. Here, I‟m using Matplotlib‟s 

included miniature TeX distribution for the mathematical symbols. (Matplotlib can 

also render text elements with an external LaTeX distribution; more on LaTeX 

below.) 

ax.plot(x, np.cos(x), label=r"$ \cos \left( x \right) $") 

ax.plot(x, np.sin(x), label=r"$ \sin \left( x \right) $") 

ax.plot(x, np.cos(x - π), label=r"$ \cos \left( x - \pi \right) $") 

ax.legend(loc="upper right") 

It‟s often helpful to set the ticks and labels in terms of ππ when dealing with 

trigonometric functions. (You can define a custom tick formatter, but for this plot it‟s 

simpler and more readable to list the ticks and labels explicitly.) 

xticks = π * np.arange(-2, 3, 1) 

ax.set_xticks(xticks) 

xlabels = [r"$-2 \pi$", r"$- \pi$", "0", r"$\pi$", r"$2 \pi$"] 

ax.set_xticklabels(xlabels) 

ax.set_yticks([-1, 0, 1]) 
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Adding Fills 

Fills are useful for (among other things) visualizing where multiple distributions 

overlap. 

Let‟s start with several Gaussian distributions for illustration. The probability 

density for a Gaussian distribution is given by 

p(x)=1√2πσ2e−(x−μ)22σ2p(x)=12πσ2e−(x−μ)22σ2 

where μμ is the mean, and σσ is the standard deviation. 

def gaussian(x, μ=0, σ=1, normalized=True): 

    u = (x - μ) / σ 

    g = np.exp(-u**2 / 2) 

    if normalized: 

        g /= np.sqrt(2 * π * σ**2) 

    return g 

Let‟s generate 3 Gaussian distributions for the plot. 

z = np.linspace(-10, 10, 1000) 

μ0, μ1, μ2 = -4, 0, 2 

y0 = gaussian(z, μ=μ0, σ=1.25) 

y1 = gaussian(z, μ=μ1, σ=1.0) 

y2 = gaussian(z, μ=μ2, σ=1.5) 

You can specify colors from Matplotlib‟s color cycler with a “CN” color 

specification. Since this plot only has a few lines, it‟s simpler to explicitly match the 

fill color to the color of the associated line. (If you have more than a few lines in 

your plot, iterate over the lines and use line.get_color() to set the fill color.)_, ax = 

plt.subplots() 

ax.plot(z, y0, label=r"$G_0$", color="C0") 

ax.plot(z, y1, label=r"$G_1$", color="C1") 

ax.plot(z, y2, label=r"$G_2$", color="C2") 

ax.legend(loc="upper right") 

Next, place tick marks at the mean of each distribution. 
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ax.set_xticks([μ0, μ1, μ2]) 

ax.set_xticklabels([r"$\mu_0$", r"$\mu_1$", r"$\mu_2$"]) 

ax.set_yticks([]) 

Now shade the area between each distribution and the x axis. 

ax.fill_between(z, y0, 0, color="C0", alpha=0.2) 

ax.fill_between(z, y1, 0, color="C1", alpha=0.2) 

ax.fill_between(z, y2, 0, color="C2", alpha=0.2) 

Finally, remove unnecessary axis spines. 

ax.spines["top"].set_visible(False) 

ax.spines["left"].set_visible(False) 

ax.spines["right"].set_visible(False) 

Writing Your Own Style Sheets 

Recall that styles are invoked with plt.style.use(<stylename>). 

Style files in Matplotlib have the form <style_name>.mplstyle. If you place your 

style files in the <mpl_configdir>/stylelib directory, Matplotlib will load them at 

runtime. (You can also pass the full file path or URL to the style sheet.) 

Style sheets can be chained together, e.g. 

plt.style.use([style1, style2]) 

This means you can have one style file to set the margins, another to define line 

properties, etc. 

Rendering All Plot Elements with LaTeX 

Let‟s create an example style sheet. The following configuration will render all 

figure text (legend, axes labels, tick marks, etc.) with LaTeX‟s Computer 

Modern font. This is useful for producing publication-quality figures. 

# Use LaTeX's Computer Modern font for everything 

font.family : 'serif' 

font.serif : 'Computer Modern' 

text.usetex : True 
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If you place the above code block in a file called LaTeX_everywhere.mplstyle (or 

similar) in the stylelib directory (see above), you can then invoke it with 

with plt.style.context("LaTeX_everywhere"): 

Rendering the trigonometric plot from the first example with our custom LaTeX 

style produces 

The matplotlibrc File 

Matplotlib takes the first matplotlibrc file it finds. To display the path to the 

current matplotlibrc file, use 

matplotlib.matplotlib_fname() 

Matplotlib also provides a template matplotlibrc file. This is incredibly useful, not 

just for writing your own style sheets or matplotlibrc file, but also for understanding 

what customizations are available for individual plots. 

Meta example: the matplotlibrc file I used to render the figures in this post was 

savefig.format: svg 

savefig.transparent: True 

Then to render each figure as a transparent SVG, I could just use 

plt.savefig("assets/figure1") rather than 

plt.savefig("assets/figure1.svg", transparent=True) for each figure. 

Matplotlib was introduced keeping in mind, only two-dimensional plotting. But at 

the time when the release of 1.0 occurred, the 3d utilities were developed upon the 2d 

and thus, we have 3d implementation of data available today! The 3d plots are 

enabled by importing the mplot3d toolkit. In this article, we will deal with the 3d 

plots using matplotlib. 

Example:   

import numpy as np 

import matplotlib.pyplot as plt 
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 fig = plt.figure() 

ax = plt.axes(projection ='3d') 

Output:   

 

Fig. 2.16.  

With the above syntax three -dimensional axes are enabled and data can be plotted 

in 3 dimensions. 3 dimension graph gives a dynamic approach and makes data more 

interactive. Like 2-D graphs, we can use different ways to represent 3-D graph. We 

can make a scatter plot, contour plot, surface plot, etc. Let‟s have a look at different 

3-D plots.  

Plotting 3-D Lines and Points 

Graph with lines and point are the simplest 3 dimensional graph. ax.plot3d and 

ax.scatter are the function to plot line and point graph respectively. 

Example 1: 3 dimensional line graph   

# importing mplot3d toolkits, numpy and matplotlib 

from mpl_toolkits import mplot3d 

import numpy as np 

import matplotlib.pyplot as plt 

 fig = plt.figure() 

 # syntax for 3-D projection 

ax = plt.axes(projection ='3d') 
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 # defining all 3 axes 

z = np.linspace(0, 1, 100) 

x = z * np.sin(25 * z) 

y = z * np.cos(25 * z) 

 # plotting 

ax.plot3D(x, y, z, 'green') 

ax.set_title('3D line plot geeks for geeks') 

plt.show() 

Output: 

  

 

Fig. 2.17.  

Example 2: 3 dimensional scattered graph  

 # importing mplot3d toolkits 

from mpl_toolkits import mplot3d 

import numpy as np 

import matplotlib.pyplot as plt 

 fig = plt.figure() 

 # syntax for 3-D projection 

ax = plt.axes(projection ='3d') 
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 # defining axes 

z = np.linspace(0, 1, 100) 

x = z * np.sin(25 * z) 

y = z * np.cos(25 * z) 

c = x + y 

ax.scatter(x, y, z, c = c) 

 # syntax for plotting 

ax.set_title('3d Scatter plot geeks for geeks') 

plt.show() 

Output:  

 

Fig. 2.18.  

One common type of visualization in data science is that of geographic data. 

Matplotlib's main tool for this type of visualization is the Basemap toolkit, which is 

one of several Matplotlib toolkits which lives under the mpl_toolkits namespace. 

Admittedly, Basemap feels a bit clunky to use, and often even simple 

visualizations take much longer to render than you might hope. More modern 

solutions such as leaflet or the Google Maps API may be a better choice for more 

intensive map visualizations. Still, Basemap is a useful tool for Python users to 
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have in their virtual toolbelts. In this section, we'll show several examples of the 

type of map visualization that is possible with this toolkit. 

Installation of Basemap is straightforward; if you're using conda you can type 

this and the package will be downloaded: 

$ conda install basemap 

We add just a single new import to our standard boilerplate: 

%matplotlib inline 

import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.basemap import Basemap 

Once you have the Basemap toolkit installed and imported, geographic plots are 

just a few lines away (the graphics in the following also requires the PIL package in 

Python 2, or the pillow package in Python 3): 

plt.figure(figsize=(8, 8)) 

m = Basemap(projection='ortho', resolution=None, lat_0=50, lon_0=-100) 

m.bluemarble(scale=0.5); 

The meaning of the arguments to Basemap will be discussed momentarily. 

The useful thing is that the globe shown here is not a mere image; it is a fully-

functioning Matplotlib axes that understands spherical coordinates and which allows 

us to easily overplot data on the map! For example, we can use a different map 

projection, zoom-in to North America and plot the location of Seattle. We'll use an 

etopo image (which shows topographical features both on land and under the ocean) 

as the map background: 

fig = plt.figure(figsize=(8, 8)) 

m = Basemap(projection='lcc', resolution=None, 

            width=8E6, height=8E6,  

            lat_0=45, lon_0=-100,) 

m.etopo(scale=0.5, alpha=0.5) 

# Map (long, lat) to (x, y) for plotting 
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x, y = m(-122.3, 47.6) 

plt.plot(x, y, 'ok', markersize=5) 

plt.text(x, y, ' Seattle', fontsize=12); 

This gives you a brief glimpse into the sort of geographic visualizations that are 

possible with just a few lines of Python. We'll now discuss the features of Basemap 

in more depth, and provide several examples of visualizing map data. Using these 

brief examples as building blocks, you should be able to create nearly any map 

visualization that you desire. 

Map Projections 

The first thing to decide when using maps is what projection to use. You're 

probably familiar with the fact that it is impossible to project a spherical map, such 

as that of the Earth, onto a flat surface without somehow distorting it or breaking its 

continuity. These projections have been developed over the course of human history, 

and there are a lot of choices! Depending on the intended use of the map projection, 

there are certain map features (e.g., direction, area, distance, shape, or other 

considerations) that are useful to maintain. 

The Basemap package implements several dozen such projections, all referenced 

by a short format code. Here we'll briefly demonstrate some of the more common 

ones. 

from itertools import chain 

def draw_map(m, scale=0.2): 

    # draw a shaded-relief image 

    m.shadedrelief(scale=scale) 

    # lats and longs are returned as a dictionary 

    lats = m.drawparallels(np.linspace(-90, 90, 13)) 

    lons = m.drawmeridians(np.linspace(-180, 180, 13)) 

    # keys contain the plt.Line2D instances 

    lat_lines = chain(*(tup[1][0] for tup in lats.items())) 

    lon_lines = chain(*(tup[1][0] for tup in lons.items())) 

    all_lines = chain(lat_lines, lon_lines) 
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        # cycle through these lines and set the desired style 

    for line in all_lines: 

        line.set(linestyle='-', alpha=0.3, color='w') 

Cylindrical Projections 

The simplest of map projections are cylindrical projections, in which lines of 

constant latitude and longitude are mapped to horizontal and vertical lines, 

respectively. This type of mapping represents equatorial regions quite well, but 

results in extreme distortions near the poles. The spacing of latitude lines varies 

between different cylindrical projections, leading to different conservation 

properties, and different distortion near the poles. In the following figure we show an 

example of the equidistant cylindrical projection, which chooses a latitude scaling 

that preserves distances along meridians. Other cylindrical projections are the 

Mercator (projection='merc') and the cylindrical equal area (projection='cea') 

projections. 

Fi

g. 2.19.  

fig = plt.figure(figsize=(8, 6), edgecolor='w') 

m = Basemap(projection='cyl', resolution=None, 

            llcrnrlat=-90, urcrnrlat=90, 

            llcrnrlon=-180, urcrnrlon=180, ) 

draw_map(m) 
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Pseudo-cylindrical Projections 

Pseudo-cylindrical projections relax the requirement that meridians (lines of 

constant longitude) remain vertical; this can give better properties near the poles of 

the projection. The Mollweide projection (projection='moll') is one common example 

of this, in which all meridians are elliptical arcs. It is constructed so as to preserve 

area across the map: though there are distortions near the poles, the area of small 

patches reflects the true area. Other pseudo-cylindrical projections are the sinusoidal 

(projection='sinu') and Robinson (projection='robin') projections. 

fig = plt.figure(figsize=(8, 6), edgecolor='w') 

m = Basemap(projection='moll', resolution=None, 

            lat_0=0, lon_0=0) 

draw_map(m) 

 

Fig. 2.20.  

The extra arguments to Basemap here refer to the central latitude (lat_0) and 

longitude (lon_0) for the desired map. 

Perspective Projections 

Perspective projections are constructed using a particular choice of perspective 

point, similar to if you photographed the Earth from a particular point in space (a 

point which, for some projections, technically lies within the Earth!). One common 

example is the orthographic projection (projection='ortho'), which shows one side of 

the globe as seen from a viewer at a very long distance. As such, it can show only 
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half the globe at a time. Other perspective-based projections include the gnomonic 

projection (projection='gnom') and stereographic projection (projection='stere'). 

These are often the most useful for showing small portions of the map. 

fig = plt.figure(figsize=(8, 8)) 

m = Basemap(projection='ortho', resolution=None, 

            lat_0=50, lon_0=0) 

draw_map(m); 

 

Fig. 2.21.  

Conic Projections 

A Conic projection projects the map onto a single cone, which is then unrolled. 

This can lead to very good local properties, but regions far from the focus point of 

the cone may become very distorted. One example of this is the Lambert Conformal 

Conic projection (projection='lcc'), which we saw earlier in the map of North 

America. It projects the map onto a cone arranged in such a way that two standard 

parallels (specified in Basemap by lat_1 and lat_2) have well-represented distances, 

with scale decreasing between them and increasing outside of them. Other useful 

conic projections are the equidistant conic projection (projection='eqdc') and the 
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Albers equal-area projection (projection='aea'). Conic projections, like perspective 

projections, tend to be good choices for representing small to medium patches of the 

globe. 

In [8]: 

fig = plt.figure(figsize=(8, 8)) 

m = Basemap(projection='lcc', resolution=None, 

            lon_0=0, lat_0=50, lat_1=45, lat_2=55, 

            width=1.6E7, height=1.2E7) 

draw_map(m) 

 

Fig. 2.22.  

Drawing a Map Background 

Earlier we saw the bluemarble() and shadedrelief() methods for projecting global 

images on the map, as well as the drawparallels() and drawmeridians() methods for 

drawing lines of constant latitude and longitude. The Basemap package contains a 

range of useful functions for drawing borders of physical features like continents, 

oceans, lakes, and rivers, as well as political boundaries such as countries and US 

states and counties. The following are some of the available drawing functions that 

you may wish to explore using IPython's help features: 
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Physical boundaries and bodies of water 

drawcoastlines(): Draw continental coast lines 

drawlsmask(): Draw a mask between the land and sea, for use with projecting 

images on one or the other 

drawmapboundary(): Draw the map boundary, including the fill color for oceans. 

drawrivers(): Draw rivers on the map 

fillcontinents(): Fill the continents with a given color; optionally fill lakes with 

another color 

Political boundaries 

drawcountries(): Draw country boundaries 

drawstates(): Draw US state boundaries 

drawcounties(): Draw US county boundaries 

Map features 

drawgreatcircle(): Draw a great circle between two points 

drawparallels(): Draw lines of constant latitude 

drawmeridians(): Draw lines of constant longitude 

drawmapscale(): Draw a linear scale on the map 

Whole-globe images 

bluemarble(): Project NASA's blue marble image onto the map 

shadedrelief(): Project a shaded relief image onto the map 

etopo(): Draw an etopo relief image onto the map 

warpimage(): Project a user-provided image onto the map 

Plotting Data on Maps 

Perhaps the most useful piece of the Basemap toolkit is the ability to over-plot a 

variety of data onto a map background. For simple plotting and text, any plt function 

works on the map; you can use the Basemap instance to project latitude and 
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longitude coordinates to (x, y) coordinates for plotting with plt, as we saw earlier in 

the Seattle example. 

In addition to this, there are many map-specific functions available as methods of 

the Basemap instance. These work very similarly to their standard Matplotlib 

counterparts, but have an additional Boolean argument latlon, which if set 

to True allows you to pass raw latitudes and longitudes to the method, rather than 

projected (x, y) coordinates. 

Some of these map-specific methods are: 

contour()/contourf() : Draw contour lines or filled contours 

imshow(): Draw an image 

pcolor()/pcolormesh() : Draw a pseudocolor plot for irregular/regular meshes 

plot(): Draw lines and/or markers. 

scatter(): Draw points with markers. 

quiver(): Draw vectors. 

barbs(): Draw wind barbs. 

drawgreatcircle(): Draw a great circle. 

Example: California Cities 

Recall that in Customizing Plot Legends, we demonstrated the use of size and 

color in a scatter plot to convey information about the location, size, and population 

of California cities. Here, we'll create this plot again, but using Basemap to put the 

data in context. 

We start with loading the data, as we did before: 

import pandas as pd 

cities = pd.read_csv('data/california_cities.csv') 

# Extract the data we're interested in 

lat = cities['latd'].values 
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lon = cities['longd'].values 

population = cities['population_total'].values 

area = cities['area_total_km2'].values 

Next, we set up the map projection, scatter the data, and then create a colorbar and 

legend: 

# 1. Draw the map background 

fig = plt.figure(figsize=(8, 8)) 

m = Basemap(projection='lcc', resolution='h',  

            lat_0=37.5, lon_0=-119, 

            width=1E6, height=1.2E6) 

m.shadedrelief() 

m.drawcoastlines(color='gray') 

m.drawcountries(color='gray') 

m.drawstates(color='gray') 

# 2. scatter city data, with color reflecting population 

# and size reflecting area 

m.scatter(lon, lat, latlon=True, 

          c=np.log10(population), s=area, 

          cmap='Reds', alpha=0.5) 

# 3.make legend with dummy points 

for a in [100, 300, 500]: 

    plt.scatter([], [], c='k', alpha=0.5, s=a, 

                label=str(a) + ' km$^2$') 

plt.legend(scatterpoints=1, frameon=False, 

           labelspacing=1, loc='lower left'); 
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Fig. 2.23.  

This shows us roughly where larger populations of people have settled in 

California: they are clustered near the coast in the Los Angeles and San Francisco 

areas, stretched along the highways in the flat central valley, and avoiding almost 

completely the mountainous regions along the borders of the state. 

Data Visualization is the presentation of data in pictorial format. It is extremely 

important for Data Analysis, primarily because of the fantastic ecosystem of data-

centric Python packages. And it helps to understand the data, however, complex it is, 

the significance of data by summarizing and presenting a huge amount of data in a 
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simple and easy-to-understand format and helps communicate information clearly 

and effectively. 

Pandas 

Pandas offer tools for cleaning and process your data. It is the most popular 

Python library that is used for data analysis. In pandas, a data table is called a 

dataframe. 

Example 1: 

# Python code demonstrate creating 

  import pandas as pd 

  # initialise data of lists. 

data = {'Name':[ 'Mohe' , 'Karnal' , 'Yrik' , 'jack' ], 

        'Age':[ 30 , 21 , 29 , 28 ]} 

  # Create DataFrame 

df = pd.DataFrame( data ) 

  # Print the output. 

df 

Output: 

 Name Age 

0 

1 

2 

3 

Mohe 

Karnal 

Yrik 

Jack 

30 

21 

29 

28 

Example 2: 

Load the CSV data from the system and display it through pandas. 

# import module 

import pandas 

 # load the csv 
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data = pandas.read_csv("nba.csv") 

 # show first 5 column 

data.head() 

Output: 

 Name Team  Number Position Age Height Weight College Salary 

0 

1 

2 

3 

4 

Avery Bradley 

Jae Crowder 

John Holland 

R.J. Hunter 

Jonas Jerebko 

Boston Celtics 

Boston Celtics 

Boston Celtics 

Boston Celtics 

Boston Celtics 

0.0 

99.0 

30.0 

28.0 

8.0 

PG 

SF 

SG 

SG 

PF 

25.0 

25.0 

27.0 

22.0 

29.0 

6-2 

6-6 

6-5 

6-5 

6-10 

180.0 

235.0 

205.0 

185.0 

231.0 

Texas 

Marquette 

Boston University 

Georgia State 

NaN 

7730337.0 

6796117.0 

NaN 

1148640.0 

5000000.0 

Seaborn 

Seaborn is an amazing visualization library for statistical graphics plotting in 

Python. It is built on the top of matplotlib library and also closely integrated into the 

data structures from pandas. 

Installation 

For python environment :  

pip install seaborn 

Let‟s create Some basic plots using seaborn: 

# Importing libraries 

import numpy as np 

import seaborn as sns 

   # Selecting style as white, 

# dark, whitegrid, darkgrid  

# or ticks 

sns.set( style = "white" ) 

 # Generate a random univariate  

# dataset 
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rs = np.random.RandomState( 10 ) 

d = rs.normal( size = 50 ) 

  # Plot a simple histogram and kde  

# with binsize determined automatically 

sns.distplot(d, kde = True, color = "g") 

Output: 

 

Fig. 2.24.  

Seaborn: statistical data visualization 

Seaborn helps to visualize the statistical relationships, To understand how 

variables in a dataset are related to one another and how that relationship is 

dependent on other variables, we perform statistical analysis. This Statistical analysis 

helps to visualize the trends and identify various patterns in the dataset. 

These are the plot will help to visualize: 

Line Plot 

Scatter Plot 

Box plot 

Bar plot 

KDE Plot 
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Line plot: 

Lineplot Is the most popular plot to draw a relationship between x and y with the 

possibility of several semantic groupings. 

Syntax : sns.lineplot(x=None, y=None) 

Parameters: 

x, y: Input data variables; must be numeric. Can pass data directly or reference 

columns in data. 

Let‟s visualize the data with a line plot and pandas: 

Example 1: 

# import module 

import seaborn as sns 

import pandas 

 # loading csv 

data = pandas.read_csv("nba.csv") 

# plotting lineplot 

sns.lineplot( data['Age'], data['Weight']) 

Output: 

 

Fig. 2.25.  
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Scatter Plot: 

Scatterplot Can be used with several semantic groupings which can help to 

understand well in a graph against continuous/categorical data. It can draw a two-

dimensional graph. 

Syntax: seaborn.scatterplot(x=None, y=None) 

Parameters: 

 y: Input data variables that should be numeric. 

Returns: This method returns the Axes object with the plot drawn onto it. 

Example 1: 

# import module 

import seaborn 

import pandas 

 # load csv 

data = pandas.read_csv("nba.csv") 

 # plotting 

seaborn.scatterplot(data['Age'],data['Weight']) 

Output: 

 

Fig. 2.26.  
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Box Plot: 

A box plot (or box-and-whisker plot) s is the visual representation of the depicting 

groups of numerical data through their quartiles against continuous/categorical data. 

A box plot consists of 5 things. 

Minimum 

First Quartile or 25% 

Median (Second Quartile) or 50% 

Third Quartile or 75% 

Maximum 

Syntax:  

seaborn.boxplot(x=None, y=None, hue=None, data=None) 

Parameters:  

x, y, hue: Inputs for plotting long-form data. 

data: Dataset for plotting. If x and y are absent, this is interpreted as wide-form. 

Returns: It returns the Axes object with the plot drawn onto it.  

Draw the box plot with Pandas: 

Example 1: 

Python3 

# import module 

import seaborn as sns 

import pandas 

 # read csv and plotting 

data = pandas.read_csv( "nba.csv" ) 

sns.boxplot( data['Age'] ) 

Output: 
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Fig. 2.27.  

Bar Plot: 

Barplot represents an estimate of central tendency for a numeric variable with the 

height of each rectangle and provides some indication of the uncertainty around that 

estimate using error bars.  

Syntax : seaborn.barplot(x=None, y=None, hue=None, data=None) 

Parameters : 

x, y : This parameter take names of variables in data or vector data, Inputs for 

plotting long-form data. 

hue : (optional) This parameter take column name for colour encoding. 

data : (optional) This parameter take DataFrame, array, or list of arrays, Dataset 

for plotting. If x and y are absent, this is interpreted as wide-form. Otherwise it is 

expected to be long-form. 

Returns : Returns the Axes object with the plot drawn onto it.  

Example 1: 

# import module 

import seaborn 

 seaborn.set(style = 'whitegrid') 

 # read csv and plot 

data = pandas.read_csv("nba.csv") 

seaborn.barplot(x =data["Age"]) 



Visualizing using Matplotlib   2.63  

Output: 

 

Fig. 2.28.  

KDE Plot: 

KDE Plot described as Kernel Density Estimate is used for visualizing the 

Probability Density of a continuous variable. It depicts the probability density at 

different values in a continuous variable. We can also plot a single graph for multiple 

samples which helps in more efficient data visualization. 

Syntax: seaborn.kdeplot(x=None, *, y=None, vertical=False, palette=None, 

**kwargs) 

Parameters: 

x, y : vectors or keys in data 

vertical : boolean (True or False) 

data : pandas.DataFrame, numpy.ndarray, mapping, or sequence 

Draw the KDE plot with Pandas: 

Example 1: 

# importing the required libraries 

from sklearn import datasets 

import pandas as pd 

import seaborn as sns 

   # Setting up the Data Frame 
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iris = datasets.load_iris() 

   iris_df = pd.DataFrame(iris.data, columns=['Sepal_Length', 

                      'Sepal_Width', 'Patal_Length', 'Petal_Width']) 

   iris_df['Target'] = iris.target 

  iris_df['Target'].replace([0], 'Iris_Setosa', inplace=True) 

iris_df['Target'].replace([1], 'Iris_Vercicolor', inplace=True) 

iris_df['Target'].replace([2], 'Iris_Virginica', inplace=True) 

   

# Plotting the KDE Plot 

sns.kdeplot(iris_df.loc[(iris_df['Target'] =='Iris_Virginica'), 

            'Sepal_Length'], color = 'b', shade = True, Label ='Iris_Virginica') 

Output: 

 

Fig. 2.29.  

Bivariate and Univariate data using seaborn and pandas: 

Bivariate data: This type of data involves two different variables. The analysis of 

this type of data deals with causes and relationships and the analysis is done to find 

out the relationship between the two variables. 

Univariate data: This type of data consists of only one variable. The analysis of 

univariate data is thus the simplest form of analysis since the information deals with 
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only one quantity that changes. It does not deal with causes or relationships and the 

main purpose of the analysis is to describe the data and find patterns that exist within 

it. 

Let‟s see an example of Bivariate data : 

Example 1: Using the box plot. 

# import module 

import seaborn as sns 

import pandas 

 # read csv and plotting 

data = pandas.read_csv( "nba.csv" ) 

sns.boxplot( data['Age'], data['Height']) 

Output: 

 

Fig. 2.30.  

Let‟s see an example of univariate data distribution: 

Example: Using the dist plot 

# import module 

import seaborn as sns 
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import pandas 

 # read top 5 column 

data = pandas.read_csv("nba.csv").head() 

 sns.distplot( data['Age']) 

Output: 

 

Fig. 2.31.  

1. What is a Matplotlib? 

Matplotlib is a low level graph plotting library in python that serves as a 

visualization utility.Matplotlib is open source and we can use it freely. 

Matplotlib is mostly written in python, a few segments are written in C, 

Objective-C and Javascript for Platform compatibility. Matplotlib is a Python 

library that helps to plot graphs. It is used in data visualization and graphical 

plotting. 

2. What is a simple line plot? 

The simplest of all plots is the visualization of a single function y=f(x)y=f(x). 

Here we will take a first look at creating a simple plot of this type. we'll start by 

plotting and importing the packages we will use: 
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import matplotlib.pyplot as plt 

plt.style.use('seaborn-whitegrid') 

import numpy as np 

3. List down the steps involved in line plot 

 Adjusting the Plot: Line Colors and Styles 

 Adjusting the Plot: Axes Limits 

 Labeling Plots 

4. What is a simple scatter plot? 

Another commonly used plot type is the simple scatter plot, a close cousin of 

the line plot. Instead of points being joined by line segments, here the points are 

represented individually with a dot, circle, or other shape.  

import matplotlib.pyplot as plt 

plt.style.use('seaborn-whitegrid') 

import numpy as np 

5. How do you visualize error? 

For any scientific measurement, accurate accounting for errors is nearly as 

important, if not more important, than accurate reporting of the number itself. In 

visualization of data and results, showing these errors effectively can make a 

plot convey much more complete information 

6. What is a contour plot? 

Sometimes it is useful to display three-dimensional data in two dimensions 

using contours or color-coded regions. There are three Matplotlib functions that 

can be helpful for this task: plt.contour for contour plots, plt.contourf for filled 

contour plots, and plt.imshow for showing images.  

import matplotlib.pyplot as plt 

plt.style.use('seaborn-white') 

import numpy as np 

7. How will you create a histogram in matplotlib? 

To create a histogram the first step is to create bin of the ranges, then 

distribute the whole range of the values into a series of intervals, and count the 
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values which fall into each of the intervals. Bins are clearly identified as 

consecutive, non-overlapping intervals of variables. The matplotlib.pyplot.hist() 

function is used to compute and create histogram of x.  

8. What is a Subplot? 

There are many cases where you will want to generate a plot that contains 

several smaller plots within it. That is exactly what a subplot is! A common 

version of the subplot is the 4x4 subplot. Subplots can be very complicated to 

create when done properly. 

9. How To Create Subplots in Python Using Matplotlib? 

We can create subplots in Python using matplotlib with the subplot method, 

which takes three arguments: 

nrows: The number of rows of subplots in the plot grid. 

ncols: The number of columns of subplots in the plot grid. 

index: The plot that you have currently selected. 

10. How do you annotate text and graph? 

Annotate using text 

Matplotlib offers the ability to place text within a chart. The only condition is 

it requires the positioning co-ordinate of the x and y-axis to place the text. 

Annotate using  graph: plt.annotate() 

To input text using matplotlib‟s “plt.annotate()” we need to declare two 

things, which is the “xy” coordinates which tells matplotlib where we want to 

input our text and the “s” attribute. 

There is also an added attribute aswell, this is called the “arrowprops” 

attribute, which basically allows us to input an arrow pointing towards a specific 

point in our graph. 

11. Brief three-dimensional Plotting in Python using Matplotlib 

Matplotlib was introduced keeping in mind, only two-dimensional plotting. 

But at the time when the release of 1.0 occurred, the 3d utilities were developed 

upon the 2d and thus, we have 3d implementation of data available today! The 
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3d plots are enabled by importing the mplot3d toolkit. In this article, we will 

deal with the 3d plots using matplotlib. 

Example:  

 import numpy as np 

import matplotlib.pyplot as plt 

 fig = plt.figure() 

ax = plt.axes(projection ='3d') 

12. What is Geographic data with basemap 

One common type of visualization in data science is that of geographic data. 

Matplotlib's main tool for this type of visualization is the Basemap toolkit, 

which is one of several Matplotlib toolkits which lives under 

the mpl_toolkits namespace. Admittedly, Basemap feels a bit clunky to use, and 

often even simple visualizations take much longer to render than you might 

hope. More modern solutions such as leaflet or the Google Maps API may be a 

better choice for more intensive map visualizations. Still, Basemap is a useful 

tool for Python users to have in their virtual toolbelts. 

13. What is Visualization with seaborn 

Data Visualization is the presentation of data in pictorial format. It is 

extremely important for Data Analysis, primarily because of the fantastic 

ecosystem of data-centric Python packages. And it helps to understand the data, 

however, complex it is, the significance of data by summarizing and presenting 

a huge amount of data in a simple and easy-to-understand format and helps 

communicate information clearly and effectively 

14. Define a KDE plot? 

KDE Plot described as Kernel Density Estimate is used for visualizing the 

Probability Density of a continuous variable. It depicts the probability density at 

different values in a continuous variable. We can also plot a single graph for 

multiple samples which helps in more efficient data visualization. 

Syntax: seaborn.kdeplot(x=None, *, y=None, vertical=False, palette=None, 

**kwargs) 
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15. Differentiate Bivariate and Univariate data using seaborn and pandas: 

Bivariate data: This type of data involves two different variables. The 

analysis of this type of data deals with causes and relationships and the analysis 

is done to find out the relationship between the two variables. 

Univariate data: This type of data consists of only one variable. The 

analysis of univariate data is thus the simplest form of analysis since the 

information deals with only one quantity that changes. It does not deal with 

causes or relationships and the main purpose of the analysis is to describe the 

data and find patterns that exist within it. 

16. What is a Box plot? 

A box plot (or box-and-whisker plot) s is the visual representation of the 

depicting groups of numerical data through their quartiles against 

continuous/categorical data. 

A box plot consists of 5 things. 

Minimum 

First Quartile or 25% 

Median (Second Quartile) or 50% 

Third Quartile or 75% 

Maximum 

17. What are the different map projections available? 

Cylindrical projections 

Pseudo-cylindrical projections 

Perspective projections 

Conic projections 

18. Define Customization 

Customization challenges the boundaries of business analytics by constantly 

reinventing the delicate configurations between a user‟s creativity and 

fundamental design principles. For that reason, it aims to showcase better 

pictorial representations with more flexible and interactive use of the underlying 

data. 
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19. Distinguish plot vs scatter 

As datasets get larger than a few thousand points, plt.plot can be noticeably 

more efficient than plt.scatter. The reason is that plt.scatter has the capability to 

render a different size and/or color for each point, so the renderer must do the 

extra work of constructing each point individually. In plt.plot, on the other hand, 

the points are always essentially clones of each other, so the work of 

determining the appearance of the points is done only once for the entire set of 

data. For large datasets, the difference between these two can lead to vastly 

different performance, and for this reason, plt.plot should be preferred 

over plt.scatter for large datasets. 

20. How do you Install Matplotlib? 

Matplotlib can be installed using pip. The following command is run in the 

command prompt to install Matplotlib. 

pip install matplotlib 

This command will start downloading and installing packages related to the 

matplotlib library. 

 

1. Explain the simple line plot using matplotlib 

2. Elaborate the simple scatter plot in matplotlib 

3. Detail the process of visualizing errors in matplotlib 

4. What is a sub-plot. Explain using mat plot lib 

5. Explain geographic data three dimensional plotting with base map 

6. Elucidate visualization with sea-born 

 

 

****************** 



 

UNIT III 

UNIVARIATE ANALYSIS  

 

 

SYLLABUS  

Introduction to Single variable: Distributions and Variables - Numerical 

Summaries of Level and Spread - Scaling and Standardizing – 

Inequality - Smoothing Time Series. 

 

 Introduction to Single Variable 

 Distributions and Variables  

 Numerical Summaries of Level and Spread   

 Scaling and Standardizing   

 Inequality   

 Smoothing Time Series 



UNIT III 
UNIVARIATE ANALYSIS  

3.1.1.  DISTRIBUTIONS AND VARIABLES 

How many households have no access to a car? What is a typical household 

income in Britain? Which country in Europe has the longest working hours? To 

answer these kinds of questions we need to collect information from a large number 

of people, and we need to ensure that the people questioned are broadly 

representative of the population we are interested in.  

Conducting large-scale surveys is a time-consuming and costly business. 

However, increasingly information or data from survey research in the social 

sciences are available free of charge to researchers and students. The development of 

the worldwide web and the ubiquity and power of computers makes accessing these 

types of data quick and easy. 

The aim is to explore data. We can use the 'Statistical Package for the Social 

Sciences' (SPSS) package to start analysing data and answering the questions posed 

above. 

Preliminaries 

Two organizing concepts have become the basis of the language of data analysis: 

cases and variables. The cases are the basic units of analysis, the things about which 

information is collected. The word variable expresses the fact that this feature varies 

across different cases. 

We will look at some useful techniques for displaying information about the 

values of single variables, and will also introduce the differences between interval 

level and ordinal level variables. 

Variables on Household Survey 

It is a multipurpose survey carried out by the social survey division of the Office 

for National Statistics (ONS). The main aim of the survey is to collect data on a 
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range of core topics, covering household, family and individual information. 

Government departments and other organizations use this information for planning, 

policy and monitoring purposes, and to present a picture of households, family and 

people in Great Britain. 

Person-id Age Sex 
Units of alcohol 

per week 

Drinking 

Classification 
NC-SEC5 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

27 

27 

27 

6 

5 

77 

65 

51 

33 

25 

49 

16 

66 

65 

47 

42 

15 

13 

47 

44 

1 

2 

2 

1 

1 

1 

2 

2 

1 

1 

1 

1 

1 

2 

2 

1 

1 

2 

2 

1 

24 

8 

27 

. 

. 

8 

14 

3 

9 

9 

352 

2 

0 

0 

0 

6 

. 

. 

0 

5 

4 

3 

3 

. 

. 

2 

3 

2 

3 

2 

5 

1 

1 

1 

–9 

1 

. 

. 

1 

1 

5 

1 

4 

–6 

–6 

1 

2 

2 

5 

5 

3 

97 

4 

5 

2 

2 

–6 

–6 

1 

1 

Fig. 3.1. Specimen data from the 2005GHS (Individual file) 
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Column 5 contains a variable that indicates individuals classification of 

themselves in terms of the amount of alcohol they usually drink. It has five ranked 

categories: 

1. hardly drink at all 

2. drink a little 

3. drink a moderate amount 

4. drink quite a lot 

5. drink heavily 

Column 5 indicates the social class of individual based on the occupation. 

1. Managerial and professional occupations 

2. Intermediate occupations 

3. Small employers and own account workers 

4. Lower supervisory and technical occupations 

5. Semi-routine occupations 

Bar Charts and Pie Charts 

 

Fig. 3.2. Amount of alcohol respondent drinks 



 3.4    Data Exploration and Visualization 

One simple device is the bar chart, a visual display in which bars are drawn to 

represent each category of a variable such that the length of the bar is proportional to 

the number of cases in the category. 

A pie chart can also be used to display the same information. It is largely a matter 

of taste whether data from a categorical variable are displayed in a bar chart or a pie 

chart. In general, pie charts are to be preferred when there are only a few categories 

and when the sizes of the categories are very different. 

 

Fig. 3.3.  

Bar charts and pie charts can be an effective medium of communication if they are 

well drawn. 

Histograms 

Charts that are somewhat similar to bar charts can be used to display interval level 

variables grouped into categories and these are called histograms. They are 

constructed in exactly the same way as bar charts except that the ordering of the 

categories is fixed, and care has to be taken to show exactly how the data were 

grouped. 

Let focus on the topic of working hours to demonstrate how simple descriptive 

statistics can be used to provide numerical summaries of level and spread. The 

chapter will begin by examining data on working hours in Britain taken from the 



Univariate Analysis   3.5  

General Household Survey discussed in the previous chapter. These data are used to 

illustrate measures of level such as the mean and the median and measures of spread 

or variability such as the standard deviation and the midspread. 

Working hours of couples in Britain 

The histograms of the working hours distributions of men and women in the 2005 

General Household Survey are shown in figures 3.1 and 3.2. We can compare these 

two distributions in terms of the four features introduced in the previous chapter, 

namely level, spread, shape and outliers. We can then see that: 

 The male batch is at a higher level than the female batch  

 The two distributions are somewhat similarly spread out 

 The female batch is bimodal suggesting there are two rather different 

underlying populations  

 The male batch is uni-modal 

Summaries of level 

The level expresses where on the scale of numbers found in the dataset the 

distribution is concentrated 

Residuals 

Another way of expressing this is to say that the residual is the observed data 

value minus the predicted value and in this case 45 – 40 = 5. Any data value such as 

a measurement of hours worked or income earned can be thought of as being 

composed of two components: a fitted part and a residual part. This can be expressed 

as an equation: 

 Data = Fit + Residual  

The median 

The value of the case at the middle of an ordered distribution would seem to have 

an intuitive claim to typicality. Finding such a number is easy when there are very 

few cases. In the example of hours worked by a small random sample of 15 men 

(figure 3.4), the value of 48 hours per week fits the bill. There are six men who work 

fewer hours and seven men who work more hours while two men work exactly 48 
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hours per week. Similarly, in the female data, the value of the middle case is 3 7 

hours. The data value that meets this criterion is called the median: the value of the 

case that has equal numbers of data points above and below it. The median hours 

worked by women in this very small sample is 11 hours less than the median for 

men. This numeric summary of the level of the data therefore confirms our first 

impressions from simply looking at the histograms in figures 3.1 and 3.2 that women 

generally work shorter hours than men.0020 

Men’s working hours (ranked) 

30 

37 

39 

40 

45 

47 

48 

Median value 48 

50 

54 

55 

55 

67 

70 

80 

Fig. 3.4. Men’s working hours ranked to show the median 
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The arithmetic mean 

Another commonly used measure of the centre of a distribution is the arithmetic 

mean. Indeed, it is so commonly used that it has even become known as the average. 

It is conventionally written as A (pronounced 'A bar'). To calculate it, first all of the 

values are summed, and then the total is divided by the number of data points. In 

more mathematical terms: 

1

N
   

N

 i  =   1

  i  

We have come across N before. The symbol Y is conventionally used to refer to 

an actual variable. The subscript i  is an index to tell us which case is being referred 

to. So, in this case, Y; refers to all the values of the hours variable. The Greek letter 

2, pronounced 'sigma', is the mathematician's way of saying 'the sum of'. 

Summaries of Spread 

The second feature of a distribution visible in a histogram is the degree of 

variation or spread in the variable. 

Once again, there are many candidates we could think of to summarize the spread. 

One might be the distance between the two extreme values (the range). Or we might 

work out what was the most likely difference between any two cases drawn at 

random from the dataset.  

The midspread 

The range of the middle 5 0 per cent of the distribution is a commonly used 

measure of spread because it concentrates on the middle cases. It is quite stable from 

sample to sample. The points which divide the distribution into quarters are called 

the quartiles (or sometimes 'hinges' or 'fourths'). The lower quartile is usually 

denoted QL and the upper quartile Q0. (The middle quartile is of course the median.) 

The distance between QL and Q0 is called the midspread (sometimes the 

'interquartile range'), or the dQ for short. 
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 Men’s working hours (ranked)  

30 

37 

39 

40 

 

45 

47 

48 

48 

50 

54 

55 

 

55 

67 

70 

80 

 

 

 

 

QL = 42.5 

 

 

 

 

 

 

 

QU = 55 

Fig. 3.5. Men’s working hours ranked and showing the upper and lower quartiles 

There is a measure of spread which can be calculated from these squared distances 

from the mean. The standard deviation essentially calculates a typical value of these 

distances from the mean. It is conventionally denoted s , and defined as:  

 s  = 








 
 (Y i  – Y

–
 )2

(N – 1)
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The deviations from the mean are squared, summed and divided by the sample 

size and then the square root is taken to return to the original units. The order in 

which the calculations are performed is very important. As always, calculations 

within brackets are performed first, then multiplication and division, then addition 

(including summation) and subtraction. Without the square root, the measure is 

called the variance, s2• The layout for a worksheet to calculate the standard deviation 

of the hours worked by this small sample of men is shown in figure 3.6. 

Y Y – Y (Y – Y)2 

54 

30 

47 

39 

50 

48 

45 

40 

37 

48 

67 

55 

55 

80 

70 

Sum = 765 

3  

–21 

–4 

–12 

–1 

–3 

–6 

–11 

–14 

–3 

16 

4 

4 

29 

19 

9 

441 

16 

144 

1 

9 

36 

121 

196 

9 

256 

16 

16 

841 

361 

Sum of squared residuals = 2472 

Fig. 3.6. Worksheet for standard deviation of men’s weekly working hours 

 s  = 








 
 (Y i  – Y

–
 )2

(N – 1)
     =  

2472

14
    = 13.29 
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Interpreting Locational Summaries 

In the examples discussed above the locational statistics for only a very small 

subsample of data of 15 cases from the GHS 2005 have been calculated by hand. It is 

useful to experiment with calculating locational statistics in this way in order to reach 

a better understanding of the meaning of these summary statistics. However, with 

larger batches of data the median, quartiles (and deciles) can be calculated very 

easily using a package such as Excel or SPSS. 

Total Work Hours (Men) 

N 

 

Median 

Minimum 

Maximum 

Percentiles 

Valid 

Missing 

 

 

 

25 

50 

75 

6392 

8188 

39. 000 

.00 

97.00 

37.0000 

39.0000 

42.8750  

Total Work Hours (Women) 

N 

 

Median 

Minimum 

Maximum 

Percentiles 

Valid 

Missing 

 

 

 

25 

50 

75 

6127 

9362 

35.0000 

.00 

97.00 

20.0000 

35.0000 

37.5000 
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We can see that on average men tend to work more hours per week than women 

(39.2 hours vs 29.6 hours) and also the higher standard deviation for women, 12.3 vs 

11.6 for men indicates that there is more variation among women in terms of the 

hours they usually work per week. It should also be noted that the figures for the 

means and standard deviations are pasted directly from the SPSS output. We can see 

that in each case the number of decimal places provided is four for the mean and five 

for the standard deviation. 

Total Work Hours (Men) 

N 

 

Mean 

Std. Deviation 

Valid 

Missing 

 

 

6392 

8188 

39.2268 

11.64234 

Total Work Hours (Women) 

N 

 

Mean 

Std. Deviation 

Valid 

Missing 

 

 

6127 

9362 

29.5977 

12.31122 

Data are produced not given 

The word 'data' must be treated with caution. Literally translated, it means 'things 

that are given'. 

There are often problems with using official statistics, especially those which are 

the by-products of some administrative process like, for example, reporting deaths to 

the Registrar-General or police forces recording reported crimes. Data analysts have 

to learn to be critical of the measures available to them, but in a constructive manner. 

As well as asking 'Are there any errors in this measure?' we also have to ask 'Is there 

anything better available?' and, if not, 'How can I improve what I've got?' 
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Improvements can often be made to the material at hand without resorting to the 

expense of collecting new data. 

We must feel entirely free to rework the numbers in a variety of ways to achieve 

the following goals: 

 to make them more amenable to analysis 

 to promote comparability 

 to focus attention on differences. 

 

Fig. 3.7. Histogram 

Consider various manipulations that can be applied to the data to achieve the 

above goals: 

(i) Adding or subtracting a constant 

One way of focusing attention on a particular feature of a dataset is to add or 

subtract a constant from every data value. 
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For example, in a set of data on weekly family incomes, it would be possible to 

subtract the median from each of the data values, thus drawing attention to which 

families had incomes below or above a hypothetical typical family. 

The change made to the data by adding or subtracting a constant is fairly trivial. 

Only the level is affected; spread, shape and outliers remain unaltered. The reason for 

doing it is usually to force the eye to make a division above and below a particular 

point. A negative sign would be attached to all those incomes which were below the 

median in the example above. However, we sometimes add or subtract a constant to 

bring the data within a particular range. 

(ii) Mu1uItipIying or dividing by a constant 

Instead of adding a constant, we could change each data point by multiplying or 

dividing it by a constant. 

 

Fig. 3.8.(a) Histogram of weekly alcohol consumption of men who describe themselves as 

‘drinking quite a lot’ or ‘heavy drinkers’ 

A common example of this is the re-expression of one currency in terms of 

another. For example, in order to convert pounds to US dollars, the pounds are 

multiplied by the current exchange rate. Multiplying or dividing each of the values 
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has a more powerful effect than adding or subtracting. The result of multiplying or 

dividing by a constant is to scale the entire variable by a factor, evenly stretching or 

shrinking the axis like a piece of elastic. To illustrate this, let us see what happens if 

data from the General Household Survey on the weekly alcohol consumption of men 

who classify themselves as moderate or heavy drinkers are divided by seven to give 

the average daily alcohol consumption. 

 

Fig. 3.8. (b) Histogram of daily alcohol consumption of men who describe themselves as 

‘drinking quite a lot’ or ‘heavy drinkers’ 

The overall shape of the distributions in figures 3.8 (a) and 3.8 (b) are the same. 

The data points are all in the same order, and the relative distances between them 

have not been altered apart from the effects of rounding. The whole distribution has 

simply been scaled by a constant factor. 

In SPSS it is very straightforward to multiply or divide a set of data by a constant 

value. For example, using syntax, the command to create the variable drday ‘Average 
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daily alcohol consumption’ from the variable drating ‘Average weekly alcohol 

consumption’ is as follows: 

COMPUTE DRDAY — DRATING/7. 

Alternatively, to create a new variable ‘NEWVAR’ by multiplying an existing 

variable ‘OLDVAR’ by seven the syntax would be: 

COMPUTE NEWVAR = OLDVAR*7. 

The ‘Compute’ command can also be used to add or subtract a constant, 

for example: 

COMPUTE NEWVAR = OLDVAR + 100. 

COMPUTE NEWVAR = OLDVAR – 60. 

The value of multiplying or dividing by a constant is often to promote 

comparability between datasets where the absolute scale values are different. For 

example, one way to compare the cost of a loaf of bread in Britain and the United 

States is to express the British price in dollars. Percentages are the result of dividing 

frequencies by one particular constant - the total number of cases.  

 

(iii)  Standardized Variables 

In sections 3.2 and 3.3, we saw that subtracting a constant from every data value 

altered the level of the distribution and dividing by a constant scaled the values by a 

factor. In this section we will look at how these two ideas may be combined to 

produce a very powerful tool which can render any variable into a form where it can 

be compared with any other. The result is called a standardized variable. 

To standardize a variable, a typical value is first subtracted from each data point, 

and then each point is divided by a measure of spread. It is not crucial which 

numerical summaries of level and spread are picked. The mean and standard 

deviation could be used, or the median and midspread: 

Y i  – Y
–

 

s    or  
Y i  – M(Y)

dQ
  

A variable which has been standardized in this way is forced to have a mean or 

median of 0 and a standard deviation or midspread of 1. 

Two different uses of variable standardization are found in social science 

literature. The first is in building causal models, where it is convenient to be able to 

compare the effect that two different variables have on a third on the same scale.  
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The second use which is more immediately intelligible: standardized variables are 

useful in the process of building complex measures based on more than one 

indicator. In order to illustrate this, we will use some data drawn from the National 

Child Development Study (NCDS). This is a longitudinal survey of all children born 

in a single week of 1958.  

There is a great deal of information about children’s education in this survey. 

Information was sought from the children’s schools about their performance at state 

examinations, but the researchers also decided to administer their own tests of 

attainment. 

Rather than attempt to assess knowledge and abilities across the whole range of 

school subjects, the researchers narrowed their concern down to verbal and 

mathematical abilities. Each child was given a reading comprehension test which 

was constructed by the National Foundation for Educational Research for use in the 

study, and a test of mathematics devised at the University of Manchester. 

The two tests were administered at the child’s school and had very different 

methods of scoring. As a result they differed in both level and spread. As can be seen 

from the descriptive statistics in figure 3.4, the sixteen-year-olds in the National 

Child Development Study apparently found the mathematics test rather more 

difficult than the reading comprehension test. The reading comprehension was scored 

out of a total of 35 and sixteen-year- olds gained a mean score of 25.37, whereas the 

mathematics test was scored out of a possible maximum of 31, but the 16-year-olds 

only gained a mean score of 12.75. 

Descriptive Statistics 

 N Minimum Maximum Mean Std.Deviation 

Age 16 Test 1–reading 

Comprehension 

Age 16 Test 2- 

Mathematics 

Comprehension 

Valid N (listwise) 

11920 

 

11920 

 

 

11920 

0 

 

0 

35 

 

31 

25.37 

 

12.75 

7.024 

 

6.997 

Fig. 3.9. Descriptive statistics for reading comprehension and mathematics test scores 

from NCDS age 16 
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The first two columns of figure 3.11 show the scores obtained on the reading and 

mathematics test by fifteen respondents in this study. There is nothing inherently 

interesting or intelligible about the raw numbers. The first score of 31 for the reading 

test can only be assessed in comparison with what other children obtained. Both tests 

can be thought of as indicators of the child’s general attainment at school. It might be 

useful to try to turn them into a single measure of that construct. 

1 

Raw reading 

score 

2 

Raw maths 

score 

3 

Standardized 

reading score 

4 

Standardized 

maths score 

5 

Composite 

score of 

attainment 

31 

33 

31 

30 

28 

31 

29 

28 

23 

25 

19 

32 

31 

29 

30 

17 

20 

21 

14 

14 

11 

8 

17 

8 

13 

8 

25 

22 

8 

17 

0.8 

1.09 

0.8 

0.66 

0.37 

0.8 

0.52 

0.37 

–0.34 

–0.05 

–0.91 

0.94 

0.80 

0.52 

0.66 

0.61 

1.04 

1.18 

0.18 

0.18 

–0.25 

–0.68 

0.61 

–0.68 

0.04 

–0.68 

1.75 

1.32 

–0.68 

0.61 

1.41 

2.12 

1.98 

0.84 

0.55 

0.55 

–0.16 

0.98 

–1.02 

–0.02 

–1.59 

2.69 

2.12 

–0.16 

1.27 

Fig. 3.10. Scores of reading and mathematics tests at age 16 
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In order to create such a summary measure of attainment at age 16, we want to 

add the two scores together. But this cannot be done as they stand, because as we 

saw before, the scales of measurement of these two tests are different. If this is not 

immediately obvious try the following thought experiment. A 16-year-old who is 

average at reading but terrible at mathematics will perhaps score 25.4 (i.e. the mean 

score) on the reading comprehension test and 0 on the mathematics test. If these were 

summed the total is 25.4. However, a 16-year-old who is average at mathematics but 

can’t read is likely to score 12.7 (i.e. the mean score) on the maths score and 0 on the 

reading comprehension. If these are summed the total would only be 12.7. If the two 

tests can be forced to take the same scale, then they can be summed. 

This is achieved by standardizing each score. One common way of standardizing 

is to first subtract the mean from each data value, and then divide the result by the 

standard deviation. This process is summarized by the following formula, where the 

original variable ‘Y’ becomes the standardized variable ‘Z’ 

 Z = (Y i  – Y


) / St.Dev. 

For example, the first value of 31 in the reading test becomes: 

   (31 – 25.37) / 7 or  0.8 

The same individual’s mathematics score becomes (17 – 12.75) / 7, or 0.61. This 

first respondent is therefore above average in both reading and maths. To summarize, 

we can add these two together and arrive at a score of 1.41 for attainment in general. 

Similar calculations for the whole batch are shown in columns 3 and 4 of figure 

3.11. We can see that the sixth person in this extract of data is above average in 

reading but slightly below average (by a quarter of a standard deviation) in 

mathematics. It should also be noted that any individual scoring close to the mean for 

both their reading comprehension and their mathematics test will have a total score 

close to zero. For example, the tenth case in figure 3.11 has a total score of – 0.02. 

The final column of figure 3.11 now gives a set of summary scores of school 

attainment, created by standardizing two component scores and summing them, so 

attainment in reading and maths have effectively been given equal weight. 
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It is very straightforward to create standardized variables using SPSS. by using 

the Descriptives command, the SPSS package will automatically save a standardized 

version of any variable. 

First select the menus. 

Analyze > Descriptive Statistics > Descriptives 

The next stage is to select the variables that you wish to standardize, in this case 

N2928 and N2930, and check the box next to ‘Save standardized values as 

variables.’ The SPSS package will then automatically save new standardized 

variables with the suffix Z. In this example, two new variables ZN2928 and ZN2930 

are created. 

 

Fig. 3.11. Creating standardized variables using SPSS 

The syntax to achieve this is as follows: 

DESCRIPTIVES 

VARIABLES  = n2928 n2930 /  

SAVE /STATISTICS = MEAN  

STDDEV MIN MAX. 
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Standardizing the variables was a necessary, but not a sufficient condition for 

creating a simple summary score. It is also important to have confidence that the 

components are both valid indicators of the underlying construct of interest. 

 

Fig. 3.12. Selecting variables to standardize 

 (iv) The Gaussian distribution 

We are now ready to turn to the third feature of distributions, their shape. With 

level and spread taken care of, the shape of the distribution refers to everything that 

is left. In order to summarize the shape of a distribution, it would need to be simple 

enough to be able to specify how it should be drawn in a very few statements. For 

example, if the distribution were completely flat (a uniform distribution), this would 

be possible. We would only need to specify the value of the extremes an the number 

of cases for it to be reproduced accurately, and it would be possible to say exactly 

what proportion of the cases fell above and below a certain level. 

However, many distributions do have a characteristic shape — a lump in the 

middle and tails straggling out at both ends. How convenient it would be if there was 

an easy way to define a more complex shape like this and to know what proportion 

of the distribution would lie above and below different levels. 

One such shape, investigated in the early nineteenth century by the German 

mathematician and astronomer, Gauss, and therefore referred to as the Gaussian 
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distribution, is commonly used. It is possible to define a symmetrical, bell-shaped 

curve which looks like those in figure 3.14, and which contains fixed proportions of 

the distribution at different distances from the centre. The two curves in figure 3.14 

look different — (a) has a smaller spread than (b) — but in fact they only differ by a 

scaling factor. 

 

Fig. 3.13. The Gaussian distribution 

Any Gaussian distribution has a very useful property: it can be defined uniquely 

by its mean and standard deviation. Given these two pieces of information, the exact 

shape of the curve can be reconstructed, and the proportion of the area under the 

curve falling between various points can be calculated. 

This bell-shaped curve is often called ‘the normal distribution’. Its discovery was 

associated with the observation of errors of measurement. If sufficient repeated 

measurements were made of the same object, it was discovered that most of them 

centred around one value (assumed to be the true measurement), quite a few were 

fairly near the centre, and measurements fairly wide of the mark were unusual but 

did occur. The distribution of these errors of measurement often approximated to the 

bell-shape in figure 3.14. 
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(v) ) Standardizing with respect to an appropriate base 

In the scaling and standardizing techniques considered up to now, the same 

numerical adjustment has been made to each of the values in a batch of data. 

Sometimes, however, it can be useful to make the same conceptual adjustment to 

each data value, which may involve a different number in each case. 

A batch of numbers may be reworked in several different ways in order to reveal 

different aspects of the story they contain. A dataset which can be viewed from 

several angles is shown in figure 3.15: the value of the lower quartile, the median and 

the upper quartile of male and female earnings in the period between 1990 and 2000. 

The data are drawn from the New Earnings Survey that collects information about 

earnings in a fixed period each year from the employers of a large sample of 

employees. 

Year Male Earnings Female Earnings 

QL M Qu QL M Qu 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

193.4 

206.9 

219.3 

226.0 

231.1 

237.1 

245.2 

256.4 

265.3 

274.5 

284.7 

258.2 

277.5 

295.9 

304.6 

312.8 

323.2 

334.9 

349.7 

362.8 

374.3 

389.7 

347.5 

376.5 

401.9 

417.3 

427.3 

442.7 

460.7 

480.0 

499.0 

517.3 

537.7 

136.2 

150.6 

161.4 

168.2 

174.6 

179.5 

186.8 

196.1 

203.6 

213.3 

223.6 

177.5 

195.7 

211.3 

221.6 

229.4 

237.2 

248.1 

260.5 

270.0 

284.0 

296.7 

244.7 

271.6 

295.9 

309.1 

320.1 

332.5 

347.3 

364.7 

379.1 

398.2 

417.6 

Fig. 3.14. Male and female earnings 1990-2000 gross earnings in pounds per week for 

full-time workers on adult rates whose pay was not affected by absence 
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As the figures stand, the most dominant feature of the dataset is a rather 

uninteresting one: the change in the value of the pound. While the median and mid-

spreads of the money incomes each year have increased substantially in this period, 

real incomes and differentials almost certainly have not. How could we present the 

data in order to focus on the trend in real income differentials over time? 

One approach would be to treat the distribution of incomes for each sex in each 

year as a separate distribution, and express each of the quartiles relative to the 

median. The result of doing this is given in figure 3.16. 

Year Male Earnings Female Earnings 

QL M Qu QL M Qu 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

75 

75 

74 

74 

74 

73 

73 

73 

73 

73 

73 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

135 

136 

136 

137 

137 

137 

138 

137 

138 

138 

138 

77 

77 

76 

76 

76 

76 

75 

75 

75 

75 

75 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

138 

139 

140 

139 

140 

140 

140 

140 

140 

140 

141 

Fig. 3.15. Male and female earnings relative to medians for each sex 

Prosperity and Inequality : 

There are a number of reasons why we might want to reduce inequality in society. 

For example, as Layard (2005) argues, if we accept that extra income has a bigger 

impact on increasing the happiness of the poor than the rich, this means that if some 
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money is transferred from the rich to the poor this will increase the happiness of the 

poor more than it diminishes the happiness of the rich. This in turn suggests that the 

overall happiness rating of a country will go up if income is distributed more equally. 

Of course, as Layard acknowledges, the problem with this argument is that it only 

works if it is possible to reduce inequality without raising taxes to such an extent that 

there is no longer an incentive for individuals to strive to make money so that the 

total income is reduced as a result of policies aimed at redistribution. It is clearly 

important to understand the principal ways of measuring inequality if we are to 

monitor the consequences of changing levels of inequality in society. This chapter 

will focus on how we can measure inequality in such a way as to make it possible to 

compare levels of inequality in different societies and to look at changes in levels of 

inequality over time. 

Income and Wealth : 

Considered at the most abstract level, income and wealth are two different ways 

of looking at the same thing. Both concepts try to capture ways in which members of 

society have different access to the goods and services that are valued in that society. 

Wealth is measured simply in pounds, and is a snapshot of the stock of such valued 

goods that any person owns, regardless of whether this is growing or declining. 

Income is measured in pounds per given period, and gives a moving picture, telling 

us about the flow of revenue over time. 

For the sake of simplicity, we restrict our focus to the distribution of income. We 

will look in detail at the problems of measuring income and then consider some of 

the distinctive techniques for describing and summarizing inequality that have 

evolved in the literature on economic inequality. 

There are four major methodological problems encountered when studying the 

distribution of income: 

1. How should income be defined? 

2. What should be the unit of measurement? 

3. What should be the time period considered? 

4. What sources of data are available? 
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Definition of Income 

To say that income is a flow of revenue is fine in theory, but we have to choose 

between two approaches to making this operational. One is to follow accounting and 

tax practices, and make a clear distinction between income and additions to wealth. 

With this approach, capital gains in a given period, even though they might be used 

in the same way as income, would be excluded from the definition. This is the 

approach of the Inland Revenue, which has separate taxes for income and capital 

gains. In this context a capital gain is defined as the profit obtained by selling an 

asset that has increased in value since it was obtained. However, interestingly, in 

most cases this definition (for the purposes of taxation) does not include any profit 

made when you sell your main home. 

The second approach is to treat income as the value of goods and services 

consumed in a given period plus net changes in personal wealth during that period. 

This approach involves constantly monitoring the value of assets even when they do 

not come to the market. That is a very hard task. 

So, although the second approach is theoretically superior, it is not very practical and 

the first is usually adopted. 

The definition of income usually only includes money spent on goods and 

services that are consumed privately. But many things of great value to different 

people are organized at a collective level: health services, education, libraries, parks, 

museums, even nuclear warheads.   

The benefits which accrue from these are not spread evenly across all members of 

society. If education were not provided free, only families with children would need 

to use their money income to buy schooling. 

Sources of income are often grouped into three types: 

 earned income, from either employment or self-employment; 

 unearned income which increases from ownership of investments, 

property, rent and so on; 

 transfer income, that is benefits and pensions transferred on the basis of 

entitlement, not on the basis of work or ownership, mainly by the 

government but occasionally by individuals . 
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Lower boundary of group 

( ₤ per week gross income) 

2003/4 

2
nd

 decile 

3
rd

  decile 

4
th

 decile 

5
th

  decile 

6
th

 decile 

7
th

  decile 

8
th

  decile 

9
th

  decile 

10
th

 decile 

₤ 124 

₤ 193 

₤ 263 

₤ 351 

₤ 445 

₤ 558 

₤ 673 

₤ 828 

₤ 1092 

Fig. 3.16. Lower boundaries of each gross income decile group 

Measuring inequality: quantiles and quantileshares : 

Figure 3.17 illustrates one method for summarizing data on the income received 

by households. It displays the gross income of different deciles of the distribution 

(gross income is defined as income from employment, self-employment, 

investments, pensions, etc. plus any cash benefits or tax credits). For example, figure 

3.17 shows that in 2003/4 the poorest ten per cent of households had a gross income 

of less than 124 pounds per week, while the richest ten per cent of households had a 

gross income of over 1,092 pounds per week. The median gross income is 445 

pounds per week. 

An alternative technique for examining the distribution of incomes is to adopt the 

quantile shares approach. This is illustrated in figure 3.18, which is a modified 

version of a table produced as part of the annual report from the Office for National 

Statistics ’The effects of taxes and benefits on household:1 income’. The income of 

all units falling in a particular quantile group — for example, all those with income 

above the top decile, is summed and expressed as a proportion of the total income 

received by everyone. 



Univariate Analysis   3.27  

 Percentage shares of equivalized income for ALL 

households 

Original 

income 
Gross income 

Disposable 

Income 

Post-tax 

income 

Quintile group 

Bottom 

2
nd

 

3
rd

  

4
th

  

Top 

All households 

Decile group 

Bottom 

Top 

 

3 

7 

15 

24 

51 

 

7 

11 

16 

22 

44 

 

8 

12 

17 

22 

42 

 

7 

12 

16 

22 

44 

100 100 100 100 

 

1 

33 

 

3 

29 

 

3 

27 

 

2 

29 

Fig. 3.17. Percentage shares of household income, 2003-4 

Cumulative income shares and Lorenz curves : 

Neither quantiles nor quantile shares lend themselves to an appealing way of 

presenting the distribution of income in a graphical form. This is usually achieved by 

making use of cumulative distributions. The income distribution is displayed by 

plotting cumulative income shares against the cumulative percentage of the 

population. 

The cumulative distribution is obtained by counting in from one end only. Income 

distributions are traditionally cumulated from the lowest to the highest incomes. To 

see how this is done, consider the worksheet in figure 3.19. The bottom 5 percent 

receive 0.47 percent of the total original income, and the next 5 percent receive 0.51 

percent. In summing these, we can say that the bottom 10 per cent receive 0.98 per 

cent of the total original income. We work our way up through the incomes in this 
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fashion. It can be noted that the first two columns of this table are simply a more 

detailed version of the data presented in figure 3.18. For example, from figure 3.18 

we can see that the top quintile group receives 51 per cent of original income; this 

figure is also obtained if you sum the first three numbers in the first column of figure 

3.19. 

The cumulative percentage of the population is then plotted against the 

cumulative share of total income. The resulting graphical display is known as a 

Lorenz curve. It was first introduced in 1905 and has been repeatedly used for visual 

communication of income and wealth inequality. The Lorenz curve for pre-tax 

income in 2003/4 in the UK is shown in figure 3.20. 

 Percentage of total income 

received by the quantile 

Cumulative share of 

total income 

Cumulative share 

of population 

Original 

income 

Post-tax 

income 

Original 

income 

Post-tax 

income 

100 

95 

90 

80 

70 

60 

50 

40 

30 

20 

10 

5 

21.6 

11.8 

17.6 

13.5 

10.5 

8.5 

6.3 

4.6 

2.9 

1.72 

0.51 

0.47 

18.9 

9.8 

15 

12.1 

10 

8.6 

7.4 

6.3 

5.3 

4.3 

1.76 

0.54 

100 

78.4 

66.6 

49 

35.5 

25 

16.5 

10.2 

5.6 

2.7 

0.98 

0.47 

100 

81.1 

71.3 

56.3 

44.2 

34.2 

25.6 

18.2 

11.9 

6.6 

2.3 

0.54 

Fig. 3.18. Cumulative income shares : 2003-4 
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Lorenz curves have visual appeal because they portray how near total equality or 

total inequality a particular distribution falls. If everyone in society had the same 

income, then the share received by each decile group, for example, would be 10 per 

cent, and the Lorenz curve would be completely straight, described by the diagonal 

line. 

 

Fig. 3.19. Lorenz curves of income: 2003-4 

Desirable properties in a summary measure of inequality 

Scale independence 

However, it is important that the measure be sensitive to the level of the 

distribution. Imagine a hypothetical society containing three individuals who earned 

5,000, 10,000 and 15,000 pounds respectively. If they all had an increase in their 

incomes of l million pound, we would expect a measure of inequality to decline, 

since the differences between these individuals would have become trivial. The 

standard deviation and midspread would be unaffected. A popular approach is to log 

income data before calculating the numerical summaries of spread. If two 

distributions differ by a scaling factor, the logged distributions will differ only in 
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level. However, if they differ by an arithmetic constant, they will have different 

spreads when logged. The existence of units with zero incomes leads to problems, 

since the log of zero cannot be defined mathematically. An easy technical solution to 

this problem is to add a very small number to each of the zeros. If a numerical 

summary of spread in a logged distribution met the other desirable features of a 

measure of inequality, we could stop here. Unfortunately, it does not. 

The principle of transfers  

It makes intuitive sense to require that a numerical summary of inequality should 

decline whenever money is given by a rich person to a poor person, regardless of 

how poor or how rich, and regardless of how much money is transferred (provided of 

course that the amount is not so big that the previously poor person becomes even 

richer than the previously rich person).One numerical summary — the income share 

of a selected quantile group — fails to meet this principle. By focusing on one part of 

the distribution only, perhaps the top 5 per cent, it would fail to record a change if a 

transfer occurred elsewhere in the distribution. Similar objections apply to another 

commonly used summary, the decile ratio, which simply expresses the ratio of the 

upper decile to the lower decile. Other inequality measures meet this principle, and 

so are to be preferred. 

However, they unfortunately still fail to agree on an unambiguous ranking of 

different societies in terms of income inequality, because they are sensitive in 

different ways to transfers of varying amounts and at different points in the income 

scale. Cowell (1977) argues that the principle of transfers should be strengthened to 

specify that the measure of inequality should be sensitive only to the distance on the 

income scale over which the transfer is made, not to the amount transferred. 

He also adds a third principle to the two considered here, that of decomposition: a 

decline in inequality in part of a distribution should lead to a decline in inequality 

overall. We shall return to these more stringent criteria below. 

Time series such as that shown in the second column of figure 3.21 are displayed 

by plotting them against time, as shown in figure 3.22. When such trend lines are 

smoothed, the jagged edges are sawn off. A smoothed version of the total numbers of 



Univariate Analysis   3.31  

recorded crimes over the thirty years from the mid 1960s to the mid 1990s is 

displayed in figure 3.23. 

Year Total Recorded Crimes Year Total Recorded Crimes 

1965 

1966 

1967 

1968 

1969 

1970 

1971 

1972 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1,133,882 

1,199,859 

1,207.354 

1,289,090 

1,488,638 

1,555,995 

1,646,081 

1,690,219 

1,657,669 

1,963,360 

2,105,631 

2,135,713 

2,636,517 

2,561,499 

2,536,737 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

2,688,235 

2,963,764 

3,262,422 

3,247,030 

3,499,107 

3,611,883 

3,847,410 

3,892,201 

3,715,767 

3,870,748 

4,543,611 

5,276,173 

5,591,717 

5,526,255 

5,252,980 

Fig. 3.20. Total numbers of recorded crimes:1965-94 

Most people, if asked to smooth the data by eye, would probably produce a curve 

similar to that in figure 3.23, which has been derived using a well-defined arithmetic 

procedure described later in the chapter. However, smoothing by an arithmetic 

procedure can sometimes reveal patterns not immediately obvious to the naked eye. 

The aim of smoothing 

Figure 3.22 was constructed by joining points together with straight lines. Only 

the points contain real information of course. The lines merely help the reader to see 
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the points. The result has a somewhat jagged appearance. The sharp edges do not 

occur because very sudden changes really occur in numbers of recorded crimes. 

They are an artefact of the method of constructing the plot, and it is justifiable to 

want to remove them. According to Tukey (1977, p. 205), the value of smoothing is 

'the clearer view of the general, once it is unencumbered by detail'. The aim of 

smoothing is to remove any upward or downward movement in the series that is not 

part of a sustained trend. 

Sharp variations in a time series can occur for many reasons. Part of the variation 

across time may be error. For example, it could be sampling error. The opinion-poll 

data used later in this chapter were collected in monthly sample surveys, each of 

which aimed to interview a cross-section of the general public, but each of which 

will have deviated from the parent population to some extent. Similarly, repeated 

measures may each contain a degree of measurement error. In such situations, 

smoothing aims to remove the error component and reveal the underlying true trend. 

But the variable of interest may of course genuinely swing around abruptly. For 

example, the monthly count of unemployed people rises very sharply when school-

leavers come on to the register. In these cases, we may want to smooth to remove the 

effect of events which are unique, or which are simply not the main trend in which 

we are interested. It is good practice to plot the rough as well as the smooth values, to 

inspect exactly what has been discarded. 

In engineering terms we want to recover the signal from a message by filtering out 

the noise. The process of smoothing time series also produces such a decomposition 

of the data. In other words, what we might understand in engineering as  

 Message = Signal +Noise 

                        becomes 

 Data =  Smooth+ Rough 

This choice of words helps to emphasize that we impose no a priori structure on 

the form of the fit. The smoothing procedure may be determined in advance, but this 

is not the case for the shape and form of the final result: the data are allowed to speak 

for themselves. Put in another way, the same smoothing recipe applied to different 
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time series will produce different resulting shapes for the smooth, which, as we will 

see in, is not the case when fitting straight lines.  

As so often, this greater freedom brings with it increased responsibility. The 

choice of how much to smooth will depend on judgement and needs. If we smooth 

too much, the resulting rough will itself exhibit a trend. Of course, more work is 

required to obtain smoother results, and this is an important consideration when 

doing calculations by hand. The smoothing recipe described later in the chapter 

generally gives satisfactory results and involves only a limited amount of 

computational effort. 

Most time series have a past, a present and a future. For example, the rising crime 

figures plotted in figure 3.22 and figure 3.23 are part of a story that begins well 

before the 1960s and continues to the present day. However, the goal of the 

smoothing recipes explained in this chapter is not the extrapolation of a given series 

into the future. The following section provides the next instalment in this story and 

discusses what happened after the very dramatic increases in total recorded crime in 

the early 1990s. 

 

Fig. 3.21. Total number of recorded crimes: unsmoothed 
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Fig. 3.22. Total recorded crimes 1965-94: smoothed 

 

 

 

1. What is a Univariate analysis 

Among all the forms of analytical methods that data analysts practice, 

univariate analysis is considered one of the basic forms of analysis. It is typically 

the first step to understanding a dataset. The idea of univariate analysis is to first 

understand the variables individually. Then, you move into analyzing two or 

more variables simultaneously.  

2. What is the basis for data analysis? 

Two organizing concepts have become the basis of the language of 

data analysis: cases and variables. The cases are the basic units of analysis, 

the things about which information is collected. The word variable expresses 

the fact that this feature varies across different cases. 
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3. Distinguish Bar charts and pie charts 

One simple device is the bar chart, a visual display in which bars are drawn to 

represent each category of a variable such that the length of the bar is 

proportional to the number of cases in the category. 

A pie chart can be used to display the above said information but in a 

different perspect as whether data from a categorical variable are displayed in a 

bar chart or a pie chart. In general, pie charts are to be preferred when there are 

only a few categories and when the sizes of the categories are very different. 

4. Define level and spread in data exploration 

We will focus on the working hours to demonstrate how simple descriptive 

statistics can be used to provide numerical summaries of level and spread. We 

begin by examining data on working hours in Britain taken from the General 

Household Survey. These data are used to illustrate measures of level such as the 

mean and the median and measures of spread or variability such as the standard 

deviation and the midspread. 

5. What is a mid-spread? 

The points which divide the distribution into quarters are called the quartiles 

(or sometimes 'hinges' or 'fourths'). The lower quartile is usually denoted QL and 

the upper quartile Q0. (The middle quartile is of course the median.) The 

distance between QL and Q0 is called the midspread (sometimes the 

'interquartile range'), or the dQ for short. 

6. Differentiate scaling and standardizing. 

Subtracting a constant from every data value altered the level of the 

distribution and dividing by a constant scaled the values by a factor. These two 

ideas may be combined to produce a very powerful tool which can render any 

variable into a form where it can be compared with any other. The result is 

called a standardized variable. 

7. Define a Gaussian Distribution. 

Many distributions do have a characteristic shape a lump in the middle and 

tails straggling out at both ends. One such shape, investigated in the early 
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nineteenth century by the German mathematician, Gauss, and therefore referred 

to as the Gaussian distribution, is commonly used. It is possible to define a 

symmetrical, bell-shaped curve which contains fixed proportions of the 

distribution at different distances from the centre. 

8. Why there is a need to reduce in-equality? 

If we accept that extra income has a bigger impact on increasing the 

happiness of the poor than the rich, this means that if some money is transferred 

from the rich to the poor this will increase the happiness of the poor more than it 

diminishes the happiness of the rich. This in turn suggests that the overall 

happiness rating of a country will go up if income is distributed more equally. 

9. What Is a Lorenz Curve? 

A Lorenz curve, developed by American economist Max Lorenz in 1905, is a 

graphical representation of income inequality or wealth inequality. The graph 

plots percentiles of the population on the horizontal axis according to income 

or wealth and plots cumulative income or wealth on the vertical axis. 

10. Define smoothing time series 

Smoothing is usually done to help us better see patterns, trends for example, 

in time series. Generally smooth out the irregular roughness to see a clearer 

signal. For seasonal data, we might smooth out the seasonality so that we can 

identify the trend. Smoothing doesn’t provide us with a model, but it can be a 

good first step in describing various components of the series. The term filter is 

sometimes used to describe a smoothing procedure. For instance, if the 

smoothed value for a particular time is calculated as a linear combination of 

observations for surrounding times, it might be said that we’ve applied a linear 

filter to the data 

11. What is the Gini Coefficient? 

The Gini coefficient (Gini index or Gini ratio) is a statistical measure of 

economic inequality in a population. The coefficient measures the dispersion 

of income or distribution of wealth among the members of a population. What is 

the Gini Coefficient? 
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The Gini coefficient (Gini index or Gini ratio) is a statistical measure of 

economic inequality in a population. The coefficient measures the dispersion 

of income or distribution of wealth among the members of a population. 

 

1. Categorize variables and explain its distribution. 

2. Define level and summarize in detail. 

3. Summarize spread depicting an example. 

4. Elaborate scaling and standardizing with an example. 

5. Clarify in-equality with a proper example. 

6. Explain the concept smoothing time series with an example. 
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UNIT IV 

BIVARIATE ANALYSIS  

Relationships between two variables (bivariate relationships) are of interest 

because they can suggest hypotheses about the way in which the world works. In 

particular, they are interesting when one variable can be considered a cause and the 

other an effect. It is customary to call these variables by different names. We shall call 

the variable that is presumed to be the cause the explanatory variable (and denote it 

X) and the one that is presumed to be the effect the response variable (denoted Y); 

they are termed independent and dependent variables respectively. 

Causal reasoning is often assisted by the construction of a schematic model of the 

hypothesized causes and effects: a causal path model. If we believe that the social 

class a child comes from is likely to have an effect on its school performance, we 

could model the relationship as in the sketch. 

 

Fig. 4.1.  

Such models are drawn up according to a set of conventions: 

1. The variables are represented inside boxes or circles and labelled; in this 

example the variables are class background and performance at school. 

2. Arrows run from the variables which we consider to be causes to those we 

consider to be effects; class background is assumed to have a causal effect 

on school performance. 
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3. Positive effects are drawn as unbroken lines and negative effects are drawn 

as dashed lines. 

4. A number is placed on the arrow to denote how strong the effect of the 

explanatory variable is. 

5. An extra arrow is included as an effect on the response variable, often 

unlabelled, to act as a reminder that not all the causes have been specified 

in the model. 

 

Fig. 4.2.  

Proportions, Percentages and Probabilities 

To express a variable in proportional terms, the number in each category is divided 

by the total number of cases N. Percentages are proportions multiplied by 100. 

Figure 4.1 shows the proportions of young people aged 19 from different social 

class backgrounds, measured using family's socio-economic classification. The data 

were collected in 2005 and from the eleventh cohort of the Youth Cohort Study. 

Parental Occupation (NS-SEC) Number of Cases Proportion Percentage 

Higher professional 

Lower professional 

Intermediate 

Lower supervisory 

Routine 

Other/unclassified 

Total 

1036 

1708 

1384 

687 

900 

465 

6180 

0.168 

0.276 

0.224 

0.111 

0.146 

0.075 

1.000 

16.8 

27.6 

22.4 

11.1 

14.6 

7.5 

100.0 

Fig. 4.3. Social class (NS-SEC) background of individuals ages 19 in 2005 
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Proportions and percentages are bounded numbers, in that they have a floor of 

zero, below which they cannot go, and a ceiling of 1.0 and 100 respectively. 

Proportions can be used descriptively as in figure 4.1 to represent the relative size 

of different subgroups in a population. But they can also be thought of as 

probabilities. For example, we can say that the probability of an individual aged 19 in 

2005 having a parent in a 'Higher professional' occupation is 0.168. 

Contingency Tables 

A contingency table does numerically what the three-dimensional bar chart does 

graphically. The Concise Oxford Dictionary defines contingent as 'true only under 

existing or specified conditions'. A contingency table shows the distribution of each 

variable conditional upon each category of the other. The categories of one of the 

variables form the rows, and the categories of the other variable form the columns. 

Each individual case is then tallied in the appropriate pigeonhole depending on its 

value on both variables. The pigeonholes are given the more scientific name cells, and 

the number of cases in each cell is called the cell frequency. Each row and column 

can have a total presented at the right-hand end and at the bottom respectively; these 

are called the marginals, and the univariate distributions can be obtained from the 

marginal distributions. Figure 4.4 shows a schematic contingency table with four rows 

and four columns. 

 

Fig. 4.4. Anatomy of a contingency table 



 4.4    Data Exploration and Visualization 

Parental Occupation 

(NS-SEC) 

Main activity at age 19 

Full-time 

education 

Govt. 

supported 

training 

Full-

time 

job 

Part-

time 

Job 

Out 

of 

work 

Lookin

g after 

home/ 

family 

Other Total 

Higher professional 

Lower professional 

Intermediate 

Lower supervisory 

Routine 

Other/unclassified  

Total 

663 

854 

498 

158 

189 

149 

2511 

41 

102 

97 

69 

90 

19 

418 

249 

529 

554 

330 

369 

144 

2175 

41 

85 

69 

55 

72 

56 

378 

21 

85 

83 

41 

99 

65 

394 

0 

17 

42 

27 

36 

28 

150 

21 

34 

28 

7 

36 

9 

135 

1036 

1706 

1371 

687 

891 

470 

6161 

Fig. 4.5. Main activity by class background (frequencies) 

The contingency table in figure 4.5 depicts the bivariate relationship between the 

two variables, but it is hard to grasp. 

The common way to make contingency tables readable is to cast them in 

percentage form. There are three different ways in which this can be done, as shown 

in the three panels of figure 4.6. 

The first table, shown in panel (a) of figure 4.6, was constructed by dividing each 

cell frequency by the grand total. We now know that the 663 respondents with higher 

professional parents who were in full-time education at age 19 represented 10.8 per 

cent of the total population aged time education at age 19 represented 10.8 per cent of 

the total population aged 19 in 2005. But the table as a whole is scarcely more 

readable than the raw frequencies were, because there is nothing we can compare this 

19 per cent with. For this reason, total percentage tables are not often constructed. 
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Panel (b) of figure 4.6 shows the percentage of young people within each category 

of social class background who are in each main activity grouping at age 19. The table 

was constructed by dividing each cell frequency by its appropriate row total. We can 

see that whereas nearly two-thirds of those with a parent in a higher professional 

occupation are still in full-time education at age 19, less than a quarter of those with 

parents in Lower supervisory or Routine occupations are still in full-time education by 

this age. Tables that are constructed by percentaging the rows are usually read down 

the columns (reading along the rows would probably only confirm two things we 

already know: the broad profile of the marginal distribution and the fact that the 

percentages sum to 100). This is sometimes called an 'outflow' table. The row 

percentages show the different outcomes for individuals with a particular social class 

background. 

It is also possible to tell the story in a rather different way, and look at where 

people who ended up doing the same main activity at age 19 came from: the 'inflow 

table'. This is shown in panel (c) of figure 4.6. 

(a) Total Percentages 

Parental 

Occupation 

(NS-SEC) 

Main activity at age 19 

Full-time 

education 

Govt. 

supported 

training 

Full-

time 

job 

Part-

time 

Job 

Out 

of 

work 

Looking 

after 

home/family 

Other Total 

Higher 

professional 

Lower 

professional 

Intermediate 

Lower 

supervisory 

Routine 

Other/unclassified  

Total 

10.8 

13.9 

8.1 

2.6 

3.1 

2.4 

40.8 

0.7 

1.7 

1.6 

1.1 

1.5 

0.3 

6.8 

4.0 

8.6 

9.0 

5.4 

6.0 

2.3 

35.3 

0.7 

1.4 

1.1 

0.9 

1.2 

0.9 

6.1 

0.3 

1.4 

1.3 

0.7 

1.6 

1.1 

6.4 

0.0 

0.3 

0.7 

0.4 

0.6 

0.5 

2.4 

0.3 

0.6 

0.5 

0.1 

0.6 

0.1 

2.2 

16.8 

27.7 

22.3 

11.2 

14.5 

7.6 

100.0 
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(b)Row Percentages 

Parental 

Occupation 

(NS-SEC) 

Main activity at age 19 

Full-time 

education 

Govt. 

supported 

training 

Full-

time 

job 

Part-

time 

Job 

Out 

of 

work 

Looking 

after 

home/family 

Other Total 

Higher 

professional 

Lower 

professional 

Intermediate 

Lower 

supervisory 

Routine 

Other/unclassified  

64 

50 

36 

23 

21 

32 

4 

6 

7 

10 

10 

4 

24 

31 

40 

48 

41 

31 

4 

5 

5 

8 

8 

12 

2 

5 

6 

6 

11 

14 

- 

1 

3 

4 

4 

6 

2 

2 

2 

1 

4 

2 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

 (c) Column Percentages 

Parental 

Occupation 

(NS-SEC) 

Main activity at age 19 

Full-time 

education 

Govt. 

supported 

training 

Full-

time 

job 

Part-

time 

Job 

Out of 

work 

Looking after 

home/family 
Other Total 

Higher 

professional 

Lower professional 

Intermediate 

Lower supervisory 

Routine 

Other/unclassified  

Total 

26.4 

34.0 

19.8 

6.3 

7.5 

5.9 

100.0 

9.8 

24.4 

23.2 

16.5 

21.5 

4.5 

100.0 

11.4 

24.3 

25.5 

15.2 

17.0 

6.6 

100.0 

10.8 

22.5 

18.3 

14.6 

19.0 

14.8 

100.0 

5.3 

21.6 

21.1 

10.4 

25.1 

16.5 

100.0 

0.0 

11.3 

28.0 

18.0 

24.0 

18.7 

100.0 

15.6 

25.2 

20.7 

5.2 

26.7 

6.7 

100.0 

16.8 

27.7 

22.3 

11.2 

14.5 

7.6 

100.0 

Fig. 4.6. Main activity at age 19 by class background 
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Good Table Manners 

A well-designed table is easy to read, but takes effort, time and perhaps many 

drafts to perfect. Clear display of data not only aids the final consumer of the research 

but also helps the data analyst. It pays to take care over the presentation of your own 

working and calculations, however preliminary. This can help reveal patterns in the 

data, and can save time at a later stage. Here are some guidelines on how to construct 

a lucid table of numerical data. 

(i) Reproducibility versus Clarity 

We are often trying to do two jobs at once when we present data: to tell a story 

while also allowing readers to check the conclusions by inspecting the data for 

themselves. These two jobs tend to work against one another, although the techniques 

of exploratory data analysis allow the researcher to pursue both at once to a much 

greater extent than more traditional techniques. For clarity we prefer visual displays, 

and we leave out extraneous detail to focus attention on the story line. To allow others 

to inspect and possibly reinterpret the results we want to leave as much of the original 

data as possible in numerical form. Think hard about which job any particular table is 

aiming to achieve. Dilemmas can often be solved by simplifying a table in the text 

and placing fuller details in an appendix, although in general it is desirable to place a 

table as near as possible to the text which discusses it. There are some elementary 

details which must always appear. 

(ii) Labelling 

The title of a table should be the first thing the reader looks at. A clear title should 

summarize the contents. It should be as short as possible, while at the same time 

making clear when the data were collected, the geographical unit covered, and the 

unit of analysis. 

(iii) Sources 

The reader needs to be told the source of the data. It is not good enough to say that 

it was from Social Trends. The volume and year, and either the table or page, and 

sometimes even the column in a complex table must be included. When the data are 

first collected from a published source, all these things should be recorded, or a return 

trip to the library will be needed. 
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(iv) Sample Data 

If data are based on a sample drawn from a wider population, it always needs 

special referencing. The reader must be given enough information to assess the 

adequacy of the sample. The following details should be available somewhere: the 

method of sampling, the achieved sample size, the response rate or refusal rate, the 

geographical area which the sample overs and the frame from which it was drawn. 

(v) Missing data 

Providing details of the overall response rate in a survey does not usually tell the 

whole story about missing information. Many particular items in a survey attract 

refusals or responses that cannot be coded, and the extent of such item non response 

should be reported. 

(vi) Definitions 

There can be no hard and fast rule about how much definitional information to 

include in your tables. They could become unreadable if too much were included. If 

complex terms are explained elsewhere in the text, include a precise section or page 

reference. 

(vii) Opinion Data 

When presenting opinion data, always give the exact wording of the question put 

to respondents, including the response categories if these were read out. There can be 

big differences in replies to open questions such as: 'Who do you think is the most 

powerful person in Britain today?' 

(viii) Ensuring frequencies can be reconstructed 

It should always be possible to convert a percentage table back into the raw cell 

frequencies. To retain the clarity of a percentage table, present the minimum number 

of base Ns needed for the entire frequency table to be reconstructed. 

(ix) Layout 

The effective use of space and grid lines can make the difference between a table 

that is easy to read and one which is not. In general, white space is preferable, but grid 

lines can help indicate how far a heading or subheading extends in a complex table. 
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Tables of monthly data can be broken up by spaces between every December and 

January, for example. Labels must not be allowed to get in the way of the data. Set 

variable headings off from the table, and further set off the category headings. 

Make a decision about which variable to put in the rows and which in the columns 

by combining the following considerations: 

1. Closer figures are easier to compare 

2. Comparisons are more easily made down a column 

3. A variable with more than three categories is best put in the rows so that 

there is plenty of room for category labels. 

In the previous topic, we introduced percentage tables as a way of making 

contingency data more readable. The properties of percentages and proportions will 

be scrutinized more closely, and other ways of analysing contingency data considered 

in the quest for a summary measure of the effect of one variable upon another. First, 

however we must come back to the question of how to read a contingency table when 

one variable can be considered a likely cause of the other i.e. when one variable is 

interpreted as the explanatory variable and the other as the response or outcome 

variable. 

(i) Which way should proportions run? 

When we have a hypothesis about the possible causal relationship between 

variables, this can be conveyed by the choice of which proportions one uses in the 

analysis. Over the last two decades researchers have consistently found age to be 

associated with whether individuals feel safe walking alone after dark: older people, 

and particularly older women, are more likely to feel unsafe than younger individuals. 

In this example, the explanatory variable must be old age and the response or outcome 

variable is feeling unsafe, we would not suggest that feeling unsafe causes people to 

be old. This means that in a cross-tabulation of age by feeling unsafe, it is more 

natural to examine the proportion of each age group who feel unsafe, rather than the 
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proportion of each category of a 'feeling safe walking alone after dark' variable who 

are old. This can be formalized into a rule when dealing with contingency data: 

Construct the proportions so that they sum to one within the categories of the 

explanatory variable. 

The rule is illustrated by the following diagram. 

 

Fig. 4.7.  

Note that it cannot be formulated as 'always calculate proportions along the rows'. 

This would only work if the explanatory variable was always put in the rows, and no 

such convention has been established. 

(ii) The base for comparison 

One category is picked to act as the base for comparison with all other categories. 

By making comparisons with this base, quantitative estimates of the likely causal 

effect of one variable on another can be made, and positive and negative relationships 

between nominal level variables can be distinguished. 

Example: 

Age 

group 

Very safe / fairly 

safe / a bit unsafe 
Very unsafe Total 

p N p N p N 

16-39 

40-59 

60+ 

Total 

0.93 

0.93 

0.84 

13,589 

13,861 

12,722 

40,172 

0.07 

0.07 

0.16 

1083 

1099 

2432 

4614 

1 

1 

1 

14,672 

14,960 

15,154 

44,786 

Fig. 4.8. How safe do you feel walking alone after dark? 2004-05  
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Which categories should be selected as bases for comparison among age groups 

feeling unsafe walking alone after dark? An important rule of thumb is to choose a 

category with a relatively large number of individuals within it. In this case, since the 

age-groups are all of similar size, any one of them could be used as the base category 

for the age-group variable.  

If we select the youngest age group as the base and then pick feeling very unsafe as 

the base for comparison in the fear of walking alone after dark variable, we will 

almost certainly avoid too many negative relationships. In summary, each age group 

can be compared with those aged 16-39 in their feeling very unsafe when walking 

alone after dark. 

In order to represent one three-category variable, like age group, in a causal path 

model, we have to present it as two dichotomous variables. Instead of coding the age 

of respondents as 1, 2 or 3 to denote 60 and over, 40-59, or 16-39, for example, the 

information is effectively presented as two dichotomous variables - whether someone 

is aged 60 and over or not, and aged 40-59 or not. 

Someone who was in neither of these age groups would, by elimination, be in the 

youngest age group. 

Age group as a three-category variable 
Age group as two dichotomies 

Aged 60+ or not Aged 40-59 or not 

60+ 

40-59 

16-39 

1 

2 

3 

1 

0 

0 

0 

1 

0 

Choosing one category as a base effectively turns any polytomous variable into a 

series of dichotomous variables known as dummy variables. Figure 4.9 shows how 

the effect of a three - category explanatory variable on a dichotomous response 

variable can be portrayed in a causal path model. Age group is represented by two 

dummy variables. The effect of the first is denoted b1 and the effect of the second b2. 

A line is drawn under which the base category of the explanatory variable is noted; 

the fact that some young people are afraid of walking alone after dark (path a) 
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reminds us that there are some factors influencing feeling very unsafe that this 

particular model does not set out to explain. 

 

Fig. 4.9. Casual path model of age group and feeling unsafe walking alone after dark 

(iii) Summarizing effects by Subtracting Proportions 

In figure 4.9, the effect of being in the oldest age group on feeling unsafe when 

walking alone after dark is denoted b1 and the effect of being in the middle age group 

is denoted b2. How are these to be quantified? There is no answer to this question that 

commands universal acceptance. In this section we will consider d, the difference in 

proportions (Davis, 1976). This measure of effect has two virtues: it is simple and 

intuitively appealing. 

The effect d is calculated by subtracting this proportion in the base category of the 

explanatory variable from this proportion in the non-base category of the explanatory 

variable. 

In this particular example, path b represents the effect of being in the oldest age 

group as opposed to being in the youngest age group on the chances of feeling very 

unsafe walking alone after dark. It is found by subtracting the proportion of the 

youngest age group feeling very unsafe from the proportion of the oldest age group 

class giving the same response. If we look back at figure 7 .1, in this case, d = 0.16 - 

0.07, or +0.09. The result is positive, as we expected: older people are more likely to 

be afraid of walking alone after dark than are the youngest age group. 

lf we had selected different base categories, we could have ended up with negative 

values of d. For example, if we were trying to explain feeling safe when walking 
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alone after dark, the d for the oldest age group would have been 0.84 - 0.93, or -0.09. 

The magnitude of effect would not have altered but the sign would have been 

reversed. 

Path b2 represents the effect of being in the middle age group on feeling very 

unsafe walking alone after dark. We might expect this to be lower than the effect of 

being in the oldest age group. It is. In fact, d = 0.07 - 0.07, or O; the younger two age 

groups are extremely similar in their fear of walking alone after dark. While the paths 

b1 and b2 are the focus of our attention, it is also important to remember the other 

factors which lead to people being afraid to walk alone after dark: age group is not a 

complete determinant of who is fearful, since some in the youngest age group report 

feeling very unsafe about walking alone after dark. Path a reminds us of this. 

The value of path a is given by the proportion of cases in the base category of the 

explanatory variable who fall in the non-base category of the response variable. 

The quantified model is shown in figure 4.10. The model allows us to decompose 

the proportion of older people who are fearful of walking alone after dark (0.16) into a 

fitted component (0.07) and an effect ( +0.09). 

 

Fig. 4.10. Quantifying model in figure 4.5 

A simple relationship between an explanatory variable X and a response variable Y 

as Y = a + bX. Lf the idea is familiar to you, you may like to note here that 

proportions can also be expressed in this way. The overall proportion Y who feel very 

unsafe when walking alone after dark is 4,614/44, 786, or 0.103 (figure 4.9 ). 
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Calculating the Chi-square Statistic 

In order to understand how the chi-square statistic is calculated and how its value 

should be interpreted, it is helpful to refer to a concrete example, but one in which the 

numbers are very straightforward. Therefore let's start with an imaginary piece of 

research in which 100 men and 100 women are asked about their fear of walking 

alone after dark. Until we conduct the survey we have no information other than the 

number of men and women in our sample and therefore we have figure 4.11. 

 

 Very safe / fairly 

safe / a bit unsafe 
Very unsafe Total 

p N p N p N 

Male 

Female 

Total 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

1 

1 

1 

100 

100 

200 

Fig. 4.11. Feeling safe walking alone after dark by gender (hypothetical survey of 200 

individuals) 

Once we carry out the survey let us imagine that we find that in total 20 individuals 

i.e. 0.1 of the sample state that they feel very unsafe when walking alone after dark. 

We therefore now have some more information that we can add to our table and this is 

entered as the column marginals in figure 4.12 below. 

 Very safe / fairly 

safe / a bit unsafe 
Very unsafe Total 

p N p N p N 

Male 

Female 

Total 

? 

? 

0.9 

? 

? 

180 

? 

? 

0.1 

? 

? 

20 

1 

1 

 

100 

100 

200 

Fig. 4.12. Feeling safe walking alone after dark by gender  

(hypothetical survey of 200 individuals) 
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If, in the population as a whole, the proportion of men who feel very unsafe 

walking alone after dark is the same as the proportion of women who feel very unsafe 

walking alone after dark, we would expect this to be reflected in our sample survey. 

The expected proportions and frequencies would then be as shown in figure 4.13. 

 Very safe / fairly 

safe / a bit unsafe 
Very unsafe Total 

p N p N p N 

Male 

Female 

Total 

0.9 

0.9 

0.9 

90 

90 

180 

0.1 

0.1 

0.1 

10 

10 

20 

1 

1 

 

100 

100 

200 

Fig. 4.13. Feeling safe walking alone after dark by gender-expected values if men and 

women in the population are equally likely to feel unsafe  

(hypothetical survey of 200 individuals) 

Once we have carried out our survey and cross-tabulated fear of walking alone 

after dark by gender we will have 'observed' values that we are able to put in our table 

as shown in figure 4.14. 

 Very safe / fairly 

safe / a bit unsafe 
Very unsafe Total 

p N p N p N 

Male 

Female 

Total 

0.95 

0.85 

0.9 

95 

85 

180 

0.05 

0.15 

0.1 

5 

15 

20 

1 

1 

 

100 

100 

200 

Fig. 4.14. Feeling safe walking alone after dark by gender – observed values following the 

survey (hypothetical survey of 200 individuals) 

In order to be able to judge whether there is a relationship between gender and fear 

of walking alone after dark we need to compare the values we actually observed, 

following our survey, with the values that we would expect if there were no 

differences between men and women. The chi-square statistic provides a formalized 
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way of making this comparison. The equation for chi-square is given below. In 

practical terms we need to find the difference between the observed and expected 

frequencies for each cell of the table. We then square this value before dividing it by 

the expected frequency for that cell. Finally we sum these values over all the cells of 

the table.  

 

Fig. 4.15.  

For the previous example, the computational details are provided in figure 4.16. 

The total chi-square value is calculated as 5.56. Although this provides a measure of 

the difference between all the observed and expected values in the table. 

Observed Expected O-E (O – E)2 (O – E)2 / E 

95 

5 

85 

15 

200 

90 

10 

90 

10 

200 

5 

– 5 

– 5 

5 

25 

25 

25 

25 

0.28 

2.5 

0.28 

2.5 

Total sum: 5.56 

Fig. 4.16. Computation of chi-square from figure 4.13 and 4.14 

Type I and Type 2 Errors 

Clearly, using the method described above for deciding whether a result is 

statistically significant or not can never give us a definitive answer as to whether the 

relationship we observe in our sample reflects what we would observe if we could 

collect data on the population as a whole. However, the level of probability associated 

with a particular chi-square gives us a measure of how likely we are to be mistaken. 



Bivariate Analysis   4.17  

This probability is sometimes thought of as the likelihood that we will make what is 

called a 'Type 1' error. 

In some surveys, particularly where the sample size is small, we may obtain what 

looks like an interesting difference between two groups, but find that the probability 

associated with the chi- square is above the conventional cut-off of 0.05. It is in this 

situation that we run the risk of making a 'Type 2' error. 

Degrees of Freedom 

A table with two rows and two columns is said have one degree of freedom 

because only one cell is known (e.g. once we know how many women are afraid to 

walk alone after dark) the values in the other cells can be calculated based on the row 

and column marginals. Similarly, a table with two columns and three rows is said to 

have two degrees of freedom. In formal terms the number of degrees of freedom for a 

table with r rows and c columns is given by the equation below: 

 Degrees of freedom(Df) = (r  – 1)  (c  – 1) 

In this, a new graphical method the boxplot, will be presented which facilitates 

comparisons between distributions, and the idea of an unusual data value will be 

given more systematic treatment than previously. 

Boxplots 

Most people agree that it is important to display data well when communicating it 

to others. Pictures are better at conveying the story line than numbers. However, 

visual display also has a role that is less well appreciated in helping researchers 

themselves understand their data and in forcing them to notice features that they did 

not suspect. We have already looked at one pictorial representation of data, the 

histogram. Its advantage was that it preserved a great deal of the numerical 

information. For some purposes, however, it preserves too much. 

The boxplot is a device for conveying the information in the five number 

summaries economically and effectively. The important aspects of the distribution are 

represented schematically as shown in figure 4.17. 



 4.18    Data Exploration and Visualization 

 

Fig. 4.17. Anatomy of a boxplot 

The middle 50 per cent of the distribution is represented by a box. The median is 

shown as a line dividing that box. Whiskers are drawn connecting the box to the end 

of the main body of the data. They are not drawn right up to the inner fences because 

there may not be any data points that far out. They extend to the adjacent values, the 

data points which come nearest to the inner fence while still being inside or on them. 

The outliers are drawn in separately. They can be coded with symbols (such as those 

in figure 4.17) to denote whether they are ordinary or far outliers, and are often 

identified by name. Outliers are points that are unusually distant from the rest of the 

data. They are discussed in more detail in the next section. To identify the outliers in a 

particular dataset, a value 1.5 times the dQ, or a step, is calculated; as usual, fractions 

other than one-half are ignored. Then the points beyond which the outliers fall (the 
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inner fences) and the points beyond which the far outliers fall (the outer fences) are 

identified; inner fences lie one step beyond the quartiles and outer fences lie two steps 

beyond the quartiles. 

The boxplot of unemployment in the East Midlands is shown in figure 4.18. It 

contains the same data as figure 8.4: 

 

Fig. 4.18. Unemployment in the East Midlands in 2005 boxplot 

Outliers 

Some datasets contain points which are a lot higher or lower than the main body of 

the data. These are called outliers. They are always point that require the data 

analyst’s special attention. They are important and arise for one of four reasons: 

1. They may just result from a fluke of the particular sample that was 

drawn. The probability of this kind of fluke can be assessed by 

traditional statistical tests, if sensible assumptions can be made about the 

shape of the distribution. 

2. They may arise through measurement or transcription errors, which can 

occur in official statistics as well as anywhere else. We always want to 

be alerted to such errors, so that they can be corrected, or so that the 

points can be omitted from the analysis. 

3. They may occur because the whole distribution is strongly skewed. In 

this case they point to the need to transform the data. As we will see in, 

transformations such as logging or squaring the values may remove these 

outliers. 
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4. Most interesting of all, they may suggest that these particular data 

points do not really belong substantively to the same data batch. 

Moving to the individual as a unit of analysis and using a statistical test 

It is possible to use boxplots to carry out exploratory analysis of how 

unemployment rates vary between and within region. 

Example: Comparing the mathematics scores of boys and girls 

Let us now turn to a rather different topic, but use the same approach to examine 

whether there are any differences between the mathematics scores of boys and girls. 

Figure 4.19 displays two boxplots, one for girls' mathematics score and one for boys' 

mathematics score at age eleven. 

 

Fig. 4.19. Boxplots comparing girls and boys mathematics scores at age 11 

In the example above, mathematics score is an interval level variable and we 

therefore need a different statistical test to check whether the results are significant. In 

this specific example we have two groups (boys and girls) defined by a dichotomous 

variable and we are comparing them on an interval level variable (mathematics score). 

In these circumstances the statistical test that we need to use is called the T-test. 

The T-Test 

T-Test provide a measure of the difference between the means of two groups. 
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T-test Formula 

The formula for a two-sample t-test where the samples are independent as in the 

example of boys and girls mathematics test scores) is 

 t  = 
X1

––
 – X2

––

S
X1 X2

  
1

n1
  + 

1

n2
   

  

where X1 and X2 are the means of the two samples and S
X1 X2

  is known as the 

pooled standard deviation and is calculated as follows: 

 S
X1 X2

  =  

(n1  – 1) S2
X1

  + (n2  – 1) S2
X2

 

n1  + n2  – 2
    

here S
X1

 is the standard deviation of one sample and S
X2

  is the standard deviation 

of the other sample. In these formulae n1  is the sample size of the first sample and n2  

is the sample size of the second sample. In simple terms therefore the size of the t-

statistic depends on the size of the difference between the two means adjusted for the 

amount of spread and the sample sizes of the two samples. 

Scatterplots 

To depict the information about the value of two interval level variables at once, 

each case is plotted on a graph known as a scatterplot, such as figure. Visual 

inspection of well-drawn scatterplots of paired data can be one of the most effective 

ways of spotting important features of a relationship. 

A scatterplot has two axes – a vertical axis, conventionally labeled Y and a 

horizontal axis, labeled X. The variable that is thought of as a cause (the explanatory 

variable) is placed on the X-axis and the variable that is thought of as an effect (the 

response variable) is placed on the Y-axis. Each case is entered on the plot at the 

point representing its X and Y values. 

Scatterplots depict bivariate relationships. To show a third variable would require 

a three-dimensional space, and to show four would be impossible. 
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Fig. 4.20. A Scatterplot showing a moderately strong relationship 

Scatterplots are inspected to see if there is any sort of pattern visible, to see if the 

value of Y could be predicted from the value of X, or if the relationship is patternless. 

If there does appear to be something interesting going on, there are several further 

useful questions that we can ask: 

1. Is the relationship monotonic? In other words, does Y rise or fall 

consistently as X rises? The relationship in figure 9.1 is monotonic. A U-

shaped relationship would not be. 

2. Are the variables positively or negatively related? Do the points slope 

from bottom left to top right (positive) or from top left to bottom right 

(negative)? 

3. Can the relationship be summarized as a straight line or will it need a 

curve? 

4. How much effect does X have on Y? In other words, how much does Y 

increase (or decrease) for every unit increase of X? 

5. How highly do the variables correlate? In other words, how tightly do the 

points cluster around a fitted line or curve? 

6. Are there any gaps in the plot? Do we have examples smoothly ranged 

across the whole scale of X and Y, or are there gaps and discontinuities? 
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Caution may need to be exercised when one is making statements about 

the relationship in the gap. 

7. Are there any obvious outliers? One of the major goals of plotting is to 

draw attention to any unusual data points. 

Lone Parents 

The data in figure 4.21 relate to the percentage of households that are headed by a 

lone parent and contain dependent children, and the percentage of households that 

have no car or van. 

Government Office 

Region (2001) 

% Lone parent 

households 

% Households with no 

car or van 

North East 

North West 

Yorkshire/Humber 

East Midlands 

West Midlands 

Eastern 

London 

South East 

South West 

Wales 

7.35 

7.67 

6.58 

6.08 

6.73 

5.29 

7.60 

5.22 

5.42 

7.28 

35.94 

30.21 

30.31 

24.25 

26.77 

19.80 

37.49 

19.43 

20.21 

25.95 

Fig. 4.21. Lone parent households and households with no car or van, % by region 

Linear Relationships 

 Y = a  + bX 

always describe lines. In this equation, Y and X are the variables, and a  and b  are 

coefficients that quantify any particular line; figure shows this diagrammatically. 
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Fig. 4.22. Lone parent households with no car or van scatterplot 

 

Fig. 4.23. Anatomy of a straight line 

The degree of slope or gradient of the line is given by the coefficient b; the steeper 

the slope, the bigger the value of b. As we can see from figure 9.4, the coefficient b 

gives a measure of how much Y increases for a unit increase in the value of X. The 

slope is usually the item of scientific interest, showing how much change in Y is 

associated with a given change in X. The intercept a is the value of Y when X is zero, 

or where the line starts. Frequently, the intercept makes little substantive sense - for 
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example, a mortality rate of zero is an impossibility. This value is also sometimes 

described as the constant. 

The slope of a line can be derived from any two points on it. If we choose two 

points on the line, one on the left-hand side with a low X value (called XL, YL), and 

one on the right with a high X value (called XR, YR), then the slope is  

YR – YL

XR – XL
  

If the line slopes from top left to bottom right, YR - YL will be negative and thus 

the slope will be negative. 

We will consider a family of transformations of the scale of measurement which 

help make the variables easier to handle in data analysis. 

Log Transformation 

One method for transforming data or re-expressing the scale of measurement is to 

rake the logarithm of each data point. This keeps all the data points in the same order 

but stretches or shrinks the scale by varying amounts at different points. 

 
GNI per capita in 

2000 ($US) 
Log GNI per capita 

Australia 

Benin 

Burundi 

China 

Czech Republic 

Estonia 

Germany 

Haiti 

Israel 

Korea, Rep. 

20060 

340 

120 

930 

5690 

4070 

25510 

490 

17090 

9790 

4.3 

2.53 

2.08 

2.97 

3.76 

3.61 

4.41 

2.69 

4.23 

3.99 
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GNI per capita in 

2000 ($US) 
Log GNI per capita 

Lithuania 

Malta 

Mozambique 

Nigeria 

Philippines 

Sudan 

United States 

Togo 

Zimbabwe 

Tanzania 

3180 

9590 

210 

280 

1040 

310 

34400 

270 

460 

260 

3.5 

3.98 

2.32 

2.45 

3.02 

2.49 

4.54 

2.43 

2.66 

2.41 

Fig. 4.24. Logging the numbers in figure 

 

Fig. 4.25. Logging GNI per capita in 2000 in 20 selected countries 
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You will notice that all the GNI per capita figures between 100 and 1000 have 

been transformed, by taking logs, to lie between 2 and 3 (e.g. Benin with a GNI per 

capita of 340 has a log GNI per capita of 2.53 ). While all the data lying between 

10,000 and 100,000 have been transformed to lie between 4 and 5 (e.g. Australia with 

a GNI per capita of 20,060 has a log GNI per capita of 4.3 ). The higher values have 

therefore been pulled down towards the centre of the batch, bringing the United States 

and Germany into the main body of the data, and the bottom of the scale has been 

stretched out correspondingly. The shape is now more symmetrical. 

The Ladder of Powers 

There are an infinite number of possible powers to which data can be raised. The 

commonest values are shown in figure 4.26, placed, as Tukey (1977) suggests, on a 

'ladder' in terms of their effect on distributions. There are many other points besides 

the ones on this ladder of powers, both in between the values shown and above and 

beneath them, but we shall rarely have any need to go beyond those shown. 

 

Fig. 4.26. The ladder of powers 
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Going up the ladder of powers corrects downward straggle, whereas going down 

corrects upward straggle. 

The goals of transformation 

1. Data batches can be made more symmetrical. 

2. The shape of data batches can be made more Gaussian. 

3. Outliers that arise simply from the skewness of the distribution can be 

removed, and previously hidden outliers may be forced into view'. 

4. Multiple batches can be made to have more similar spreads. 

5. Linear, additive models may be fitted to the data. 

Promoting Equality of Spread 

It is important for the spread to be independent of level in data analysis, whether 

fitting lines, smoothing, or dealing with multiple boxplots. No simple statement can 

be made summarizing typical differences in GNI between the country groups in figure 

10.3, for example, because they differ systematically in spread as well as in level. 

 

Fig. 4.27. Logged GNI per capita in 2000 by country group 
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Figure 10.9 shows the effect of taking logs on the distribution of GNI in the 

different country groups. Logging GNI per capita goes a long way towards holding 

the midspreads constant by making them similar in size. This means that statements 

can be made describing typical differences in wealth between the country groups 

without needing to mention the differences in spread in the same breath. But, by 

transforming, progress has also been made towards the first three goals: the batches 

are more symmetrical and bell-shaped, and some of the outliers in the original batch 

were not really unusual values, but merely a product of the upward straggle of the raw 

numbers. 

1. What is a bivariate analysis? 

Bivariate analysis is one of the statistical analysis where two variables are 

observed. One variable here is dependent while the other is independent. These 

variables are usually denoted by X and Y. So, here we analyse the changes 

occured between the two variables and to what extent.  

2. What is a causal path model? 

Causal reasoning is often assisted by the construction of a schematic model of 

the hypothesized causes and effects: a causal path model. If we believe that the 

social class a child comes from is likely to have an effect on its school 

performance, we could model the relationship as in the sketch. 

 

Fig. 4.28.  

3. What is Proportions, percentages and probabilities. 

To express a variable in proportional terms, the number in each category is 

divided by the total number of cases N. Percentages are proportions multiplied by 
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100. Proportions and percentages are bounded numbers, in that they have a floor 

of zero, below which they cannot go, and a ceiling of 1.0 and 100 respectively. 

Proportions can be used descriptively to represent the relative size of different 

subgroups in a population. But they can also be thought of as probabilities. 

4. Define a contingency table 

A contingency table does numerically what the three-dimensional bar chart 

does graphically. A contingency table shows the distribution of each variable 

conditional upon each category of the other. The categories of one of the 

variables form the rows, and the categories of the other variable form the 

columns. Each individual case is then tallied in the appropriate pigeonhole 

depending on its value on both variables. The pigeonholes are given the more 

scientific name cells, and the number of cases in each cell is called the cell 

frequency. Each row and column can have a total presented at the right-hand end 

and at the bottom respectively; these are called the marginals, and the univariate 

distributions can be obtained from the marginal distributions. 

5. What is a percentage table? 

The common way to make contingency tables readable is to cast them in 

percentage form. There are three different ways in which this can be done. The 

table was constructed by dividing each cell frequency by its appropriate row total. 

Tables that are constructed by percentaging the rows are usually read down the 

columns. This is sometimes called an 'outflow' table. 

6. What are the guidelines for a  well designed table? 

(i) Reproducibility versus clarity 

(ii) Labelling 

(iii) Sources 

(iv) Sample data 

(v) Missing data 

(vi) Opinion data 

(vii) Layout 
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7. What is a chi-square test? 

The chi-square statistic provides a formalized way of making this comparison. 

The equation for chi-square is given below. In practical terms we need to find the 

difference between the observed and expected frequencies for each cell of the 

table. We then square this value before dividing it by the expected frequency for 

that cell. Finally we sum these values over all the cells of the table. 

 

Fig. 4.29.  

8. Define degree of freedom 

A table with two rows and two columns is said have one degree of freedom 

because only one cell is known (e.g. once we know how many women are afraid to 

walk alone after dark) the values in the other cells can be calculated based on the 

row and column marginals. Similarly, a table with two columns and three rows is 

said to have two degrees of freedom. In formal terms the number of degrees of 

freedom for a table with r rows and c columns is given by the equation below: 

9. What is a Box plot? 

The method to summarize a set of data that is measured using an interval scale is 

called a box and whisker plot. These are maximum used for data analysis. We use 

these types of graphs or graphical representation to know: 

 Distribution Shape 

 Central Value of it 

 Variability of it 

10. What is an outlier? 

In data analytics, outliers are values within a dataset that vary greatly from the 

others - they’re either much larger, or significantly smaller. Outliers may indicate 
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variabilities in a measurement, experimental errors, or a novelty. When going 

through the process of data analysis, outliers can cause anomalies in the results 

obtained. This means that they require some special attention and, in some cases, 

will need to be removed in order to analyze data effectively. 

11. What is a T-test?  

T-test Formula 

The formula for a two-sample t-test where the samples are independent as in the 

example of boys and girls mathematics test scores) is 

 t  = 
X1

––
 – X2

––

S
X1 X2

  
1

n1
  + 

1

n2
   

  

where X1 and X2 are the means of the two samples and S
X1 X2

  is known as the 

pooled standard deviation and is calculated as follows: 

 S
X1 X2

  =  

(n1  – 1) S2
X1

  + (n2  – 1) S2
X2

 

n1  + n2  – 2
    

here S
X1

 is the standard deviation of one sample and S
X2

  is the standard deviation 

of the other sample. In these formulae n1  is the sample size of the first sample and n2  

is the sample size of the second sample. In simple terms therefore the size of the t-

statistic depends on the size of the difference between the two means adjusted for the 

amount of spread and the sample sizes of the two samples. 

12. What are scatter plots? 

Scatter plots are the graphs that present the relationship between two 

variables in a data-set. It represents data points on a two-dimensional plane or on 

a Cartesian system. The independent variable or attribute is plotted on the X-

axis, while the dependent variable is plotted on the Y-axis. These plots are often 

called scatter graphs or scatter diagrams. 

13. What is a resistant line? 

We explore paired data where you suspect a relationship between xx and yy. 

The focus here on how to fit a line to data in a “resistant” fashion, so the fit is 

relatively insensitive to extreme points. The first step to fitting a line, 
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 divides the data into three groups and then 

 finds a summary point in each group 

14. What is meant by log transformation? 

One method for transforming data or re-expressing the scale of 

measurement is to rake the logarithm of each data point. This keeps all the 

data points in the same order but stretches or shrinks the scale by varying 

amounts at different points. 

15. What are the goals of transformation 

1. Data batches can be made more symmetrical. 

2. The shape of data batches can be made more Gaussian. 

3. Outliers that arise simply from the skewness of the distribution can be 

removed, and previously hidden outliers may be forced into view'. 

4. Multiple batches can be made to have more similar spreads. 

5. Linear, additive models may be fitted to the data. 

 

1. Explain the concept percentage table with a clear picture. 

2. What are the process involved in analyzing contingency tables. 

3. Explain scatter plots and resistant lines with a clear example. 

4. Describe Box plots with an appropriate example 

5. Explain the idea transformation in bi-variate analysis. 
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UNIT V 

MULTIVARIATE AND TIME 

SERIES ANALYSIS  

We consider ways of holding a third variable constant while assessing the 

relationship between two others. 

5.1.1.  CAUSAL EXPLANATIONS 

We will now developed some experience of handling batches of data, 

summarizing features of their distributions, and investigating relationships between 

variables. We must now change gear somewhat and ask what it would take for such 

relationships to be treated as satisfactory explanations. Hume suggested that 'We may 

define a cause to be an object followed by another, and where all the objects, similar 

to the first, are followed by objects similar to the second. Or, in other words, where, 

if the first object had not been, the second never had existed'. 

Direct and Indirect Effects 

Causality should not necessarily be understood as a simple process in which one 

factor or variable has an impact on another. For example, it is likely in many cases 

that two or more factors will tend to work together to produce an effect. Moreover, 

the factors or variables contributing to the effect may themselves be causally 

related. For this reason, we have to keep a clear idea in our heads of the relationships 

between the variables in the whole causal process. In investigating the causes 

of absenteeism from work, for example, researchers have found different 

contributory factors. We will consider two possible causal factors: being female 

and being in a low status job. Let us construct a causal path diagram depicting one 

possible set of relationships between these variables. 
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Fig. 5.1. Causes of absenteeism 

The diagram in figure 11.1 represents a simple system of multiple causal paths. 

There is an arrow showing that those in low status jobs are more likely to go absent. 

Being female has a causal effect in two ways. There is an arrow straight to absentee 

behaviour; this says that women are more likely to be absent from work than men, 

regardless of the kind of job they are in. This is termed a direct effect of gender on 

absenteeism. There is also another way in which being female has an effect; women 

are more likely to be in the kind of low status, perhaps unpleasant, jobs where 

absenteeism is more likely, irrespective of gender. We can say that being female 

therefore also has an indirect effect on absenteeism, through the type of work 

performed. Without some empirical evidence we cannot be sure that this 'model' of 

the relationships between the variables is correct. 

Controlling the world to learn about causes 

It is one thing to declare confidently that causal chains exist in the world out there. 

However, it is quite another thing to find out what they are. Causal processes are not 

obvious. They hide in situations of complexity, in which effects may have been 

produced by several different causes acting together. When investigated, they will 

reluctantly shed one layer of explanation at a time, but only to reveal another deeper 

level of complexity beneath. For this reason, something that is accepted as a 

satisfactory causal explanation at one point in time can become problematic at 

another. 

Researchers investigating the causes of psychological depression spent a long 

time carefully documenting how severe, traumatizing events that happen to people, 

such as bereavement or job loss, can induce it. Now that the causal effect of such life 

events has been established, the research effort is turning to ask how an event such as 

unemployment has its effect: is it through the loss of social esteem, through the 

decline of self evaluation and self-esteem, through lack of cash or through the 

sheer effect of inactivity? 
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Do opinion polls influence people? 

Let us take an example to illustrate the different inferences which can be drawn 

from experiments and non-experiments. 

Some people believe that hearing the results of opinion polls before an election 

always individuals towards the winning candidate. Imagine two ways in which 

empirical evidence could be collected for this proposition. An experiment could be 

conducted by taking a largish group of electors, splitting them into two at random, 

telling half that the polls indicated one candidate would win and telling the other half 

that they showed a rival would win. As long as there were a substantial number of 

people in each group, the groups would start the experiment having the same 

political preferences on average, since the groups were formed at random. If they 

differed substantially in their subsequent support for the candidates, then we could be 

almost certain that the phony poll information they were fed contributed to which 

candidate they supported. 

Alternatively, the proposition could be researched in a non-experimental way. A 

survey could be conducted to discover what individuals believed recent opinion polls 

showed, and to find out which candidates the individuals themselves supported. 

The preferences of those who believed that one candidate was going to win would 

be compared with those who believed that the rival was going to win. The 

hypothesis would be that the former would be more sympathetic to the candidate 

than the latter. 

If the second survey did reveal a strong relationship between individuals' 

perception of the state of public opinion and their own belief, should this be taken as 

evidence that opinion polls have a causal effect on people's voting decisions? Should 

policy-makers consider banning polls in pre-election periods as a result? Anyone 

who tried this line of argument would be taken to task by the pollsters, who have a 

commercial interest in resisting such reasoning. They would deny that the effect in 

any way proves that polls influence opinion; it could, for instance, be that supporters 

of a right-wing candidate are of a generally conservative predisposition, and 

purchase newspapers which only report polls sympathetic to their candidate. 

In short, comparing individuals in a survey who thought that candidate A would 

win with those who believed that candidate B would win, would not be 

comparing two groups similar in all other possible respects, unlike the 
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experiment discussed above. An experiment would have a better chance of 

persuading people that the publication of opinion polls affected individual views. 

Assumptions required to infer causes 

Imagine a common situation. A survey is conducted and an interesting statistical 

association between X and Y is discovered. There are two basic assumptions that 

have to be made if we wish to infer from this that X may cause Y. These involve the 

relationship between X and Y and other variables which might be operating. They 

are designed to ensure that when we compare groups which differ on X, we are 

comparing like with like. Before giving an exposition of these assumptions, we need 

a bit more terminology: other variables can be causally prior to both X and Y, 

intervene between X and Y, or ensue from X and Y, as shown in figure 5.2. These 

terms are only relative to the particular causal model in hand: in a different model we 

might want to explain what gave rise to the prior variable. 

 

Fig. 5.2. Different casual relationships between variables 

Let us discuss each of the two core assumptions in turn. 

Assumption 1 

X is casually prior to Y 

There is nothing in the data to tell us whether X causes Y or Y causes X, so we 

have to make the most plausible assumption we can, based on our knowledge of the 

subject matter and our theoretical framework. 

Assumption 2 

Related prior variables have been controlled 

All other variables which affect both X and Y must be held constant. In an 

experiment, we can be sure that there are no third variables which give rise to both X 
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and Y because the only way in which the randomized control groups are allowed to 

vary is in terms of X. No such assumption can be made with non-experimental data. 

Assumption 3 

All variables intervening between X and Y have been controlled. 

This assumption is not required before you can assume that there is a causal link 

between X and Y, but it is required if you aim to understand how X is causing Y. 

Let us first consider a hypothetical example drawn from the earlier discussion of 

the causes of absenteeism. Suppose previous research had shown a positive bivariate 

relationship between low social status jobs and absenteeism. The question arises: is 

there something about such jobs that directly causes the people who do them to go 

off sick more than others? Before we can draw such a conclusion, two assumptions 

have to be made. 

There are many possible outcomes once the relationship between all three 

variables is considered at once, four of which are shown in figure 5.3. 

 

Fig. 5.3. The effect of job status on absenteeism: controlling a prior variable 
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Fig. 5.4. Outcome I from figure 5.3 

 

Fig. 5.5. Outcome II from figure 5.3 

 

Fig. 5.6. Outcome III from figure 5.3 

If the relationship between two variables entirely disappears when a causally prior 

variable is brought under control, we say that the original relationship was spurious. 

By this we do not mean that the bivariate effect did not really exist, but rather that 

any causal conclusions drawn from it would be incorrect. We can now introduce 

another meaning for that verb 'to explain': in this situation, many researchers say that 

the proportion of females in a job 'explains' the relationship between the status of the 

job and absenteeism, in the sense that it accounts for it entirely. 

But what of the fourth situation which is actually the most likely outcome? It was 

the situation portrayed in figure 5.1. 

 

Fig. 5.7. Outcome IV from figure 5.3 

Simpson's Paradox 

In some cases the relationship between two variables is not simply reduced when 

a third, prior, variable is taken into account but indeed the direction of the 

relationship is completely reversed. This is often known as Simpson's paradox 
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(named after Edward Simpson who wrote a paper describing the phenomenon that 

was published by the Royal Statistical Society in 1951). However, the insight that a 

third variable can be vitally important for understanding the relationship between two 

other variables is also credited to Karl Pearson in the late nineteenth century. 

Simpson's paradox can be succinctly summarized as follows: every statistical 

relationship between two variables may be reversed by including additional factors in 

the analysis. 

Department 

Men Women 

Accepted Rejected Accepted Rejected 

N % N % N % N % 

A 

B 

C 

D 

E 

F 

Total 

512 

353 

121 

138 

53 

16 

3714 

62% 

63% 

37% 

33% 

28% 

6% 

44% 

311 

207 

204 

279 

138 

256 

4728 

38% 

37% 

63% 

67% 

72% 

94% 

56% 

89 

17 

202 

131 

94 

24 

1512 

82% 

68% 

34% 

35% 

24% 

7% 

35% 

19 

8 

391 

244 

299 

317 

2809 

18% 

32% 

66% 

65% 

76% 

93% 

65% 

Fig. 5.8. Success of application to graduate school by gender and department: an example 

of Simpson’s paradox 

The set of paths of causal influence, both direct and indirect, that we want to 

begin to consider are represented in figure 12.5. In this causal model we are trying to 

explain social trust, the base is therefore the belief that 'You can't be too careful'. The 

base categories selected for the explanatory variables are having lower levels of 

qualifications and not being a member of a voluntary organization, to try and avoid 

negative paths. Each arrow linking two variables in a causal path diagram represents 
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the direct effect of one variable upon the other, controlling all other relevant 

variables. The rule for identifying the relevant variables was given in chapter 11: 

when we are assessing the direct effect of one variable upon another, any third 

variable which is likely to be causally connected to both variables and prior to one of 

them should be controlled. Coefficient b in figure 12.5 shows the direct effect of 

being in a voluntary association on the belief that most people can be trusted. To find 

its value, we focus attention on the proportion who say that most people can be 

trusted, controlling for level of qualifications. 

 

Fig. 5.9. Social trust by membership of voluntary association and level of qualifications: 

casual path diagram 

More complex models: going beyond three variables 

Clearly there are likely to be many other factors or 'variables' that will have an 

influence, both on volunteering behaviour and on social trust. For example, in the 

model discussed above we have not considered gender or age, and both of these may 

have an impact on all of the variables in our model.  

As can be seen from the discussion above, it becomes quite complicated even to 

calculate the direct and indirect causal paths when we have a simple model with 

three variables. We therefore need to go beyond these paper and pencil techniques if 

we are going to build more complex models that aim to compare the impact of a 

number of different explanatory variables on an outcome variable such as social 
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trust. The following section describes the conceptual foundations that underlie 

models to examine the factors influencing a simple dichotomous (two-category) 

variable. 

Logistic Regression Models 

Regression analysis is a method for predicting the values of a continuously 

distributed dependent variable from an independent, or explanatory, variable. The 

principles behind logistic regression are very similar and the approach to building 

models and interpreting the models is virtually identical. However, whereas 

regression (more properly termed Ordinary Least Squares regression, or OLS 

regression) is used when the dependent variable is continuous, a binary logistic 

regression model is used when the dependent variable can only take two values. In 

many examples this dependent variable indicates whether an event occurs or not and 

logistic regression is used to model the probability that the event occurs. In the 

example we have been discussing above, therefore, logistic regression would be used 

to model the probability that an individual believes that most people can be trusted. 

When we are just using a single explanatory variable, such as volunteering, the 

logistic regression can be written as 

It is important to distinguish longitudinal data from the time series data. Although 

time series data can provide us with a picture of aggregate change, it is only 

longitudinal data that can provide evidence of change at the level of the individual. 

Time series data could perhaps be understood as a series of snapshots of society, 

whereas longitudinal research entails following the same group of individuals over 

time and linking information about those individuals from one time point to another. 

For example, in a study such as the British Household Panel Survey, individuals 

are interviewed each year about a range of topics including income, political 

preferences and voting. This makes it possible to link data about individuals over 

time and examine, for example, how an individual's income may rise (or fall) year on 

year and how their political preferences may change. 
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The first part provides a brief introduction to longitudinal research design and 

focuses on some of the issues in collecting longitudinal data and problems of 

attrition. The second part then provides a brief conceptual introduction to the analysis 

of longitudinal data. 

Collecting longitudinal data 

Prospective and retrospective research designs 

Longitudinal data are frequently collected using a prospective longitudinal 

research design, i.e. the participants in a research study are contacted by researchers 

and asked to provide information about themselves and their circumstances on a 

number of different occasions. This is often referred to as a panel study. However, it 

is not necessary to use a longitudinal research design in order to collect longitudinal 

data and there is therefore a conceptual distinction between longitudinal data and 

longitudinal research. Indeed, the retrospective collection of longitudinal data is very 

common.  

 Prob(event) = 
1

1 + e
–X

 
  

or more specifically Prob (trust) = 
1

1 + e
–  volunteering

 
  

In particular, it has become an established method for obtaining basic information 

about the dates of key life events such as marriages, separations and divorces and the 

birth of any children (i.e. event history data). This is clearly an efficient way of 

collecting longitudinal data and obviates the need to re-contact the same group of 

individuals over a period of time. 

A potential problem is that people may not remember the past accurately enough 

to provide good quality data. While some authors have argued that recall is not a 

major problem for collecting information about dates of significant life events, other 

research suggests that individuals may have difficulty remembering dates accurately, 

or may prefer not to remember unfavourable episodes or events in their lives. Large-

scale quantitative surveys often combine a number of different data collection 

strategies so they do not always fit neatly into the classification of prospective or 

retrospective designs. In particular, longitudinal event history data are frequently 

collected retrospectively as part of an ongoing prospective longitudinal study. 
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Time series data is a collection of quantities that are assembled over even 

intervals in time and ordered chronologically. The time interval at which data is 

collected is generally referred to as the time series frequency. 

 

Fig. 5.10. Yellowstone Park 

For example, the time series graph above plots the visitors per month to 

Yellowstone National Park with the average monthly temperatures. The data ranges 

from January 2014 to December 2016 and is collected at a monthly frequency. 

Time series analysis is a specific way of analyzing a sequence of data points 

collected over an interval of time. In time series analysis, analysts record data points 

at consistent intervals over a set period of time rather than just recording the data 

points intermittently or randomly. However, this type of analysis is not merely the 

act of collecting data over time.  

 Time-series data 

 Structured data 

 No updates on data 

 Single data source 

 The ratio of read/write is smaller 
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 The trend is more important 

 Retention policy 

 Aggregation over time or a set of devices 

 Real-time computing or analysis is required 

 Traffic is stable 

 Special computing is needed 

 Data volume is huge 

Data cleaning is the process of fixing or removing incorrect, corrupted, incorrectly 

formatted, duplicate, or incomplete data within a dataset. When combining multiple 

data sources, there are many opportunities for data to be duplicated or mislabeled. If 

data is incorrect, outcomes and algorithms are unreliable, even though they may look 

correct. There is no one absolute way to prescribe the exact steps in the data cleaning 

process because the processes will vary from dataset to dataset. But it is crucial to 

establish a template for your data cleaning process so you know you are doing it the 

right way every time. 

How to clean data 

While the techniques used for data cleaning may vary according to the types of 

data your company stores, you can follow these basic steps to map out a framework 

for your organization. 

Step 1: Remove duplicate or irrelevant observations 

Remove unwanted observations from your dataset, including duplicate 

observations or irrelevant observations. Duplicate observations will happen most 

often during data collection. When you combine data sets from multiple places, 

scrape data, or receive data from clients or multiple departments, there are 

opportunities to create duplicate data. De-duplication is one of the largest areas to be 

considered in this process. Irrelevant observations are when you notice observations 

that do not fit into the specific problem you are trying to analyze. For example, if you 
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want to analyze data regarding millennial customers, but your dataset includes older 

generations, you might remove those irrelevant observations. This can make analysis 

more efficient and minimize distraction from your primary target—as well as creating 

a more manageable and more performant dataset. 

Step 2: Fix structural errors 

Structural errors are when you measure or transfer data and notice strange naming 

conventions, typos, or incorrect capitalization. These inconsistencies can cause 

mislabeled categories or classes. For example, you may find ―N/A‖ and ―Not 

Applicable‖ both appear, but they should be analyzed as the same category. 

Step 3: Filter unwanted outliers 

Often, there will be one-off observations where, at a glance, they do not appear to 

fit within the data you are analyzing. If you have a legitimate reason to remove an 

outlier, like improper data-entry, doing so will help the performance of the data you 

are working with. However, sometimes it is the appearance of an outlier that will 

prove a theory you are working on. Remember: just because an outlier exists, doesn‘t 

mean it is incorrect. This step is needed to determine the validity of that number. If 

an outlier proves to be irrelevant for analysis or is a mistake, consider removing it. 

Step 4: Handle missing data 

You can‘t ignore missing data because many algorithms will not accept missing 

values. There are a couple of ways to deal with missing data. Neither is optimal, but 

both can be considered. 

1. As a first option, you can drop observations that have missing values, but 

doing this will drop or lose information, so be mindful of this before you 

remove it. 

2. As a second option, you can input missing values based on other 

observations; again, there is an opportunity to lose integrity of the data 

because you may be operating from assumptions and not actual 

observations. 

3. As a third option, you might alter the way the data is used to effectively 

navigate null values. 
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Step 5: Validate and QA 

At the end of the data cleaning process, you should be able to answer these 

questions as a part of basic validation: 

 Does the data make sense? 

 Does the data follow the appropriate rules for its field? 

 Does it prove or disprove your working theory, or bring any insight to 

light? 

 Can you find trends in the data to help you form your next theory? 

 If not, is that because of a data quality issue? 

False conclusions because of incorrect or ―dirty‖ data can inform poor business 

strategy and decision-making. False conclusions can lead to an embarrassing moment 

in a reporting meeting when you realize your data doesn‘t stand up to scrutiny. 

Before you get there, it is important to create a culture of quality data in your 

organization. To do this, you should document the tools you might use to create this 

culture and what data quality means to you. 

Advantages and Benefits of Data Cleaning 

Having clean data will ultimately increase overall productivity and allow for the 

highest quality information in your decision-making. Benefits include: 

 Removal of errors when multiple sources of data are at play. 

 Fewer errors make for happier clients and less-frustrated employees. 

 Ability to map the different functions and what your data is intended to do. 

 Monitoring errors and better reporting to see where errors are coming 

from, making it easier to fix incorrect or corrupt data for future 

applications. 

 Using tools for data cleaning will make for more efficient business 

practices and quicker decision-making. 

A time series is a series of data points indexed in time order. If you index the 

dataset by date, you can easily carry out a time series analysis.  
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There are three index types of time series:  

1. DatetimeIndex - The index type for timestamped data is DatetimeIndex. 

2. PeriodIndex - The index type for period data, which shows the fixed 

interval date data, is PeriodIndex 

3. TimedeltaIndex - The index type for the Timedelta data, which shows the 

time between two dates, is TimedeltaIndex 

Creating a time series 

To show how to create a time series, first, let me import pandas and numpy. 

In  [1]: 1 import  pandas  as  pd  ;  import  numpy  as  np. 

Let‘s create a variable named date with the start date and end date. 

In  [2]: 1 

2 

date = pd.date_range( 

 start =”2018”,end =”2019”, freq=”BM”) 

Let‘s create a time series named ts using the date variable. 

In [3]: 

 

1 

2 

3 

ts = pd.Series( 

 np.random.randn(len(date)),index = date) 

ts 

 Out [3]: 2018-01-31 – 1.977003 

  2018-02-28 – 0.339459 

  2018-03-30 – 0.587687 

  2018-04-30    1.141997 

  2018-05-31 – 0.125199 

  2018-06-29 – 1.090406 

  2018-07-31 – 0.435640 

  2018-08-31   0.181651 

  2018-09-28 – 2.518869 

  2018-10-31   1.428868 

  2018-11-30 – 0.357551 

  2018-12-31   0.612771 
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  Freq:  BM,  dtype:  float64 

Let‘s take a look at the index of this data. 

In  [4]: 1 ts.index 

 Out [4]: DatetimeIndex([‗2018-01-31‘, ‗2018-02-28‘, ‗2018 

  -03-30‘, ‗2018-04-30‘, 

   ‗2018-05-31‘, ‗2018-06-29‘, ‗2018‘ 

  -07-31‘, ‗2018-08-31‘, 

   ‗2018-09-28‘, ‗2018-10-31‘, ‗2018 

  -11-30‘, ‗2018-12-31‘], 

  dtype=‘datetime64[ns]‘, freq=‘BM‘) 

As you can see, the index structure of the ts is DatetimeIndex. With these indexes, 

we can play like a ball. To slice indexes, let‘s print the first 5 of the indexes. 

In  [5]: 1 ts [ :5] .index 

 Out [5]: DatetimeIndex([‗2018-01-31‘, ‗2018-02028‘, 2018 

  -03-30‘, ‗2018-04-30‘, 

   ‗2018-05-31‘], 

   dtype=‘datetime64[ns]‘, freq=‘BM‘) 

Reading a time series dataset 

Now, let‘s use a real-world dataset showing the stock market values of Facebook. 

Let me read this dataset with the read_csv method. 

In  [6]: 1 fb=pd.read_csv(“FB.csv”) 

You can find this dataset here. Let‘s see the first 5 rows of the dataset with the 

head method. 

In  [7]: 1 fb.head ( ) 
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Out [7]:  Date Open High Low Close  

 0 2018-

07-30 

175.300003 175.300003 166.559998 171.059998 1 

 1 2018-

07-31 

170.669998 174.240005 170.000000 172.580002 1 

 2 2018-

08-01 

173.929993 175.080002 170.899994 171.649994 1 

 3 2018-

08-02 

170.679993 176.789993 170.270004 176.369995 1 

 4 2018-

08-03 

177.690002 178.850006 176.149994 177.779999 1 

Converting dates into indexes 

Let‘s take a look at the column types. 

In  [8]: 1 fb.dtypes 

 

Out [8]: Date object 

 Open float64 

 High float64 

 Low float64 

 Close float64 

 Adj Close float64 

 Volume int64 

 dtype: object  

As you can see, the type of the date column is an object. Let‘s convert this date 

column to the DateTime type. To do this, I‘m going to use the parse_dates parameter 

when reading the dataset. 
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In  [9]: 1 

2 

fb=pd.read_csv( 

 “FB.csv”,parse_dates=[“Date”]) 

Let‘s convert the date column into the index with the index_col parameter. 

In  [10]: 1 

2 

3 

4 

fb=pd.read_csv( 

 “FB.csv”, 

 parse_dates=[―Date‖], 

 index_col=‖Date‖) 

Let‘s take a look at the indexes of the dataset. 

In  [11]: 1 fb.index 

 Out [11]: DatetimeIndex([‗2018-07-30‘, ‗2018-07-31‘, ‗2018 

  -08-01‘,  ‗2018-08-02‘, 

   ‗2018-08-03‘,‗2018-08-06‘, ‗2018 

  -08-07‘,  ‗2018-08-08‘, 

   ‗2018-08-09‘, ‗2018-08-10‘, 

    

   ‗2019-07-16‘, ‗2019-07-17‘, ‗2019 

  -07-18‘, ‗2019-07-19‘, 

   ‗2019-07-22‘, ‗2019-07-23‘, ‗2019 

  - 07-24‘, ‗2019-07-25‘, 

   ‗2019-07-26‘, ‗2019-07-29‘], 

   dtype=‘datetime64[ns]‘, name=‘Dat 

  e‘, ‗length=251, freq=None) 

As you can see, the index structure has changed and turned into a DatetimeIndex 

object. Let‘s see the first rows of the dataset. 

In  [12]: 1 fb.head ( ) 
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Out [12]: Date Open High Low Close Adj 

 2018-

07-30 

175.300003 175.300003 166.559998 171.059998 171.0 

 2018-

07-31 

170.669998 174.240005 170.000000 172.580002 172.5 

 2018-

08-01 

173.929993 175.080002 170.899994 171.649994 171.6 

 2018-

08-02 

170.679993 176.789993 170.270004 176.369995 176.3 

 2018-

08-03 

177.690002 178.850006 176.149994 177.779999 177. 7 

 

In  [13]: 1 fb[“2019-06”] 

 

Out [13]: Date Open High Low Close Adj 

 2019-

06-03 

175.000000 175.050003 161.009995 164.149994 164.1 

 2019-

06-04 

163.710007 168.279999 160.839996 167.500000 167.5 

 2019-

06-05 

167.479996 168.720001 164.630005 168.169998 168.1 

 2019-

06-06 

168.300003 169.699997 167.229996 168.330002 168.3 

 2019-

06-07 

170.169998 173.869995 168.839996 173.350006 173.3 

 2019-

06-10 

174.750000 177.860001 173.800003 174.820007 174.8 

 2019-

06-11 

178.479996 179.979996 176.789993 178.100006 178.1 
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It is very useful to convert the dates into the DatetimeIndex structure. For 

example, you can easily select the values of the 6 months of 2019.  

Working with Indexes 

To see the mean of the closing prices for a date, you first write the Close column 

and then use the mean function. 

In  [14]: 1 fb[“2019-06”].Close.mean( ) 

 Out[14]: 181.27450025000002 

 

In  [15]: 1 fb[“2019-07-05” :”2019-07-10”] 

 

Out [15]: Date Open High Low Close Adj 

 2019-

07-05 

196.179993 197.070007 194.169998 196.399994 196.3 

 2019-

07-08 

195.190002 196.679993 193.639999 195.759995 195.7 

 2019-

07-09 

194.970001 199.460007 194.889999 199.210007 199.2 

 2019-

07-10 

100.000000 202.960007 199669996 202.729996 202.7 

Since dates are indexes, you can slice them as follows: 

You can convert a date into the timestamp. 

In  [16]: 1 

2 

t=pd.to_datetime(“7/22/2019”) 

t 

 Out[16]: Timestamp(‗2019-07-22 00:00:00‘) 

You can compare this date with the dates in the dataset with the loc method. 

In  [17]: 1 fb.loc]fb.index>=t,:] 
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Out [17]: Date Open High Low Close Adj 

 2019-

07-22 

199.910004 202.570007 198.809996 202.320007 202.3 

 2019-

07-23 

202.839996 204.240005 200.960007 202.360001 202.3 

 2019-

07-24 

197.630005 204.809998 197.220004 204.660004 204.6 

 2019-

07-25 

206.699997 208.660004 198.259996 200.710007 200.7 

 2019-

07-26 

200.190002 202.880005 196.250000 199.750000 199.7 

 2019-

07-29 

199.000000 199.590302 197.880005 198.059998 198.0 

Dating a Dataset 

To perform a time series analysis, you need to assign date values. To show this, 

I‘m going to use a dataset without dates. Let‘s read this dataset. 

In  [18]: 1 fb1=pd.read_csv(“FB-no-date.csv”,sep=”;”) 

Let‘s have a look at the first rows of the dataset. 

In  [19]: 1 fb1.head( ) 

 

Out [19]:  Open High Low Close Adj Close 

 0 162600006 163130005 161690002 162279999 162279999 

 1 163899994 167500000 163830002 167369995 167369995 

 2 167369995 171880005 166550003 171259995 171259995 

 3 172899994 173570007 171270004 172509995 172509995 

 4 171500000 171740005 167610001 169130005 169130005 
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Notice that there is no date column in the dataset. Let‘s add a date column to this 

dataset. To do this, let me generate a date with the date_range function. I‘m going to 

use the start, end, and freq parameters. Here, B represents business days. 

In  [20]: 1 

2 

3 

4 

dates=pd.date_range(start=”03/01/2019”, 

 end=”03/29/2019”, 

 freq=”B”) 

dates 

 Out [20]: DatetimeIndex([‗2019-03-01‘, ‗2019-03-04‘, ‗2019 

  -03-05‘, ‗2019-03-06‘, 

    ‗2019-03-07‘,‗2019-03-08‘, ‗2019 

  -03-11‘, ‗2019-03-12‘, 

    ‗2019-03-13‘, ‗2019-03-14‘, ‗2019 

  -03-15‘, ‗2019-03-18‘, 

    ‗2019-03-19‘, ‗2019-03-20‘, ‗2019 

  -03-21‘, ‗2019-03-22‘, 

    ‗2019-03-25‘, ‗2019-03-26‘, ‗2019 

  -03-27‘, ‗2019-03-28‘, 

    ‗2019-03-29‘] 

   dtype=‘datetime64[ns]‘, freq=‘B‘) 

Now, let‘s assign this created date variable to the dataset as an index. 

Let‘s see the first five rows of the dataset. 

In  [22]: 1 fb1.head( ) 
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Out [22]:  Open High Low Close 
Adj 

Close 

 2019-

03-01 

162600006 163130005 161690002 162279999 162279 

 2019-

03-04 

163899994 167500000 163830002 167369995 167369 

 2019-

03-05 

167369995 171880005 166550003 171259995 17259 

 2019-

03-06 

172899994 173570007 171270004 172509995 172509 

 2019-

03-07 

171500000 171740005 167610001 169130005 16913 

As you can see, working days have been added to the dataset. Let‘s look at the 

index of the dataset 

Since the dataset is indexed with time, you can easily work with time series. 

In  [23]: 1 fb1.index 

 Out [23]: DatetimeIndex([‗2019-03-01‘, ‗2019-03-04‘, ‗2019 

  -03-05‘, ‗2019-03-06‘, 

    ‗2019-03-07‘,‗2019-03-08‘, ‗2019 

  -03-11‘, ‗2019-03-12‘, 

    ‗2019-03-13‘, ‗2019-03-14‘, ‗2019 

  -03-15‘, ‗2019-03-18‘, 

    ‗2019-03-19‘, ‗2019-03-20‘, ‗2019 

  -03-21‘, ‗2019-03-22‘, 

    ‗2019-03-25‘, ‗2019-03-26‘, ‗2019 

  -03-27‘, ‗2019-03-28‘, 

    ‗2019-03-29‘] 

    dtype=‘datetime64[ns]‘, freq=‘B‘) 
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Let‘s draw a graph showing closing prices. First, I‘m going to use the % 

matplotlib inline magic command to see the graph between lines. 

In  [24]: 1 %matplotlib inline 

 

In  [25]: 1 1 fb1.close.plot( ) 

  

 Out[25]: <AxesSubplot:> 

 

Fig. 5.11.  

Let‘s draw a line plot. 

How to use the asfreq method? 

There are no stock values for holidays in our dataset since stock values are fixed 

during holidays. If you want to add these holidays to the dataset, you can use the as 

freq method. This method is optionally used to fill missing values. 

In  [26]: 1 fb1.asfreq(“H”,method=”pad”).head( ) 
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Out 

[26]: 
 Open High Low Close 

Adj 

Close 

 2019-03-01 

00:00:00 

162600006 163130005 161690002 162279999 1622 

 2019-03-01 

01:00:00 

162600006 163130005 161690002 162279999 1622 

 2019-03-01 

02:00:00 

162600006 163130005 161690002 162279999 1622 

 2019-03-01 

03:00:00 

162600006 163130005 161690002 162279999 1622 

 2019-03-01 

04:00:00 

162600006 163130005 161690002 162279999 1622 

Let‘s fill in the missing values weekly 

In  [27]: 1 fb1.asfreq(“W”,method=”pad”) 

 

Out 

[27]: 

 
Open High Low Close 

Adj 

Close 

 2019-

03-03 

162600006 163130005 161690002 162279999 162279 

 2019-

03-10 

166199997 169619995 165970001 169600006 169600 

 2019-

03-17 

167160004 167580002 162509995 165979996 165979 

 2019-

03-24 

165649994 167419998 164089996 164339996 164339 
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Creating time series the date range method 

Let‘s generate dates with the start, periods, and freq parameters. 

In  [29]: 1 

2 

3 

z=pd.date_range(start=”3/1/2019”, 

 periods=60 , freq=”B”) 

z 

 Out [29]: DatetimeIndex([‗2019-03-01‘, ‗2019-03-04‘, ‗2019 

  -03-05‘, ‗2019-03-06‘, 

    ‗2019-03-07‘, ‗2019-03-08‘, ‗2019 

  -03-11‘, ‗2019-03-12‘, 

    ‗2019-03-13‘, ‗2019-03-14‘, ‗2019 

  -03-15‘, ‗2019-03-18‘, 

    ‗2019-03-19‘, ‗2019-03-20‘, ‗2019 

  -03-21‘, ‗2019-03-22‘, 

    ‗2019-03-25‘, ‗2019-03-26‘, ‗2019 

  -03-27‘, ‗2019-03-28‘, 

    ‗2019-03-29‘, ‗2019-04-01‘, ‗2019 

  -04-02‘, ‗2019-04-03‘, 

    ‗2019-04-04‘, ‗2019-04-05‘, ‗2019 

  -04-08‘, ‗2019-04-09‘, 

    ‗2019-04-10‘, ‗2019-04-11‘, ‗2019 

  -04-12‘, ‗2019-04-15‘, 

You can set the frequency as hourly the H value. 

In  [30]: 1 

2 

3 

z=pd.date_range 

 (start=”3/1/2019”, periods=30 , freq=”H”) 

z 
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 Out [30]: DatetimeIndex([‗2019-03-01 00:00:00‘,  ‗2019-03-0 

  1  01:00:00‘,  

   ‗2019-03-01   02:00:00‘, ‗2019-03-0 

  1  03:00:00‘,  

   ‗2019-03-01   04:00:00‘, ‗2019-03-0 

  1  05:00:00‘,  

   ‗2019-03-01   06:00:00‘, ‗2019-03-0 

  1  07:00:00‘,  

   ‗2019-03-01   08:00:00‘, ‗2019-03-0 

  1  09:00:00‘,  

   ‗2019-03-01   10:00:00‘, ‗2019-03-0 

  1  11:00:00‘,  

   ‗2019-03-01   12:00:00‘, ‗2019-03-0 

  1  13:00:00‘,  

   ‗2019-03-01   14:00:00‘, ‗2019-03-0 

  1  15:00:00‘,  

   ‗2019-03-01   16:00:00‘, ‗2019-03-0 

  1  17:00:00‘,  

   ‗2019-03-01   18:00:00‘, ‗2019-03-0 

Let‘s create a time series with the z variable. 

In  [31]: 1 

2 

3 

ts=pd.Series( 

 np.random.randint(1,10,len(z)),index=z) 

ts.head( ) 

 Out [31]: 2019-03-01 00:00:00 7 

  2019-03-01 01:00:00 1 

  2019-03-01 02:00:00 6 

  2019-03-01 03:00:00 2 

  2019-03-01 04:00:00 7 

  Freq:   H,  dtype:   int32 
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Group Time Series (GTS) reports contain raw or aggregated data for a group of 

resources over a particular reporting period. 

Raw data can be displayed for daily and weekly reporting periods only. 

Aggregated data can be displayed for any reporting period, but different reporting 

periods support different granularity values. 

GTS reports support the following features: 

 Near Real Time (NRT) data points. NRT data is raw data collected during 

the current hour that has not yet been written to the database. 

 Access to all branches of a group hierarchy. Subelement groups are 

organized within a tree structure. When a GTS report is deployed against a 

particular group in a group tree, resources in that group and in groups at all 

levels of the tree below it are included in the aggregation. If a particular 

resource appears in multiple groups within the group tree, that resource is 

included in the aggregation only once. 

Reports on GTS 

 Spatial aggregation - Spatial aggregation is the aggregation of all data 

points for a group of resources over a specified period (the granularity). 

Data aggregations in Group Time Series reports are of the spatial 

aggregation type. 

 Sum of Average Reports - A Sum of Average (sumOfAvg) report is an 

extension of the Group Time Series report. It calculates two data points for 

each granularity period. 

While dealing with time-Series data analysis we need to combine data into certain 

intervals like with each day, a week, or a month. 

We will solve these using only 2 Pandas APIs i.e. resample() and GroupBy(). 
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The resample() function is used to resample time-series data. Convenience method 

for frequency conversion and resampling of time series. The object must have a 

DateTime-like index(DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass 

DateTime-like values to the on or level keyword. 

If one wants to arrange the time series data in patterns like monthly, weekly, daily, 

etc., this function is very useful. This function is available in Pandas library. 

Resampling 

Resampling is for frequency conversion and resampling of time series. So, if one 

needs to change the data instead of daily to monthly or weekly etc. or vice versa. For 

this, we have resample option in pandas library[2]. In the resampling function, if we 

need to change the date to datetimeindex there is also an option of parameter ―on‖ 

but the column must be datetime-like. 

  df.resample(„w‟, on=‟LastUpdated‟).mean ( )   

 

LastUpdated Capacity Occupancy 

2016-10-09 

2016-10-16 

2016-10-23 

2016-10-30 

2016-11-06 

2016-11-10 

2016-11-20 

2016-11-27 

2016-12-04 

2016-12-11 

2016-12-18 

2016-12-25 

1363.275862 

1395.311828 

1406.956522 

1391.326531 

1405.492228 

1396.000000 

1391.530612 

1402.783505 

1392.357143 

1436.475410 

1383.288645 

1420.153846 

546.699234 

612.520908 

597.105878 

628.676871 

600.865285 

609.621368 

627.790533 

678.044674 

713.621825 

712.380996 

696.309159 

844.256410 
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Below from resampling with option ―D‖, the data got changed into daily data, i.e., 

all the dates will be taken into account. 375717 records downsampled to 77 records. 

  df3.resample(“D”).mean( ) # daily option   

 

LastUpdated Occupancy 

2016-10-04 

2016-10-05 

2016-10-06 

2016-10-07 

2016-10-08 

- 

2016-12-15 

2016-12-16 

2016-12-17 

2016-12-18 

2016-12-19 

655.543651 

655.185185 

636.942130 

576.282407 

428.036232 

- 

736.445110 

675.021073 

726.115385 

613.589583 

844.256410 

77 rows  1 columns 

A resample option is used for two options, i.e., upsampling and downsampling. 

Upsampling: In this, we resample to the shorter time frame, for example monthly 

data to weekly/biweekly/daily etc. Because of this, many bins are created with NaN 

values and to fill these there are different methods that can be used as pad method 

and bfill method. For example, changing weekly data to daily data and using bfill 

method following results are obtained, so bfill filling backward the new missing 

values in the resampled data: 

  dd.resample („D‟).pad ( ) [:15]   
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LastUpdated Capacity Occupancy 

2016-10-09 

2016-10-10 

2016-10-11 

2016-10-12 

2016-10-13 

2016-10-14 

2016-10-15 

2016-10-16 

2016-10-17 

2016-10-18 

2016-10-19 

2016-10-20 

2016-10-21 

2016-10-22 

2016-10-23 

1363.275862 

1363.275862 

1363.275862 

1363.275862 

1363.275862 

1363.275862 

1363.275862 

1395.311828 

1395.311828 

1395.311828 

1395.311828 

1395.311828 

1395.311828 

1395.311828 

1406.956522 

546.699234 

546.699234 

546.699234 

546.699234 

546.699234 

546.699234 

546.699234 

612.520908 

612.520908 

612.520908 

612.520908 

612.520908 

612.520908 

612.520908 

597.105878 

  dd.resample („D‟).bfill ( ) [:15]   

 

LastUpdated Capacity Occupancy 

2016-10-09 

2016-10-10 

2016-10-11 

2016-10-12 

2016-10-13 

2016-10-14 

2016-10-15 

1363.275862 

1395.311828 

1395.311828 

1395.311828 

1395.311828 

1395.311828 

1395.311828 

546.699234 

612.520908 

612.520908 

612.520908 

612.520908 

612.520908 

612.520908 
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LastUpdated Capacity Occupancy 

2016-10-16 

2016-10-17 

2016-10-18 

2016-10-19 

2016-10-20 

2016-10-21 

2016-10-22 

2016-10-23 

1395.311828 

1406.956522 

1406.956522 

1406.956522 

1406.956522 

1406.956522 

1406.956522 

1406.956522 

612.520908 

597.105878 

597.105878 

597.105878 

597.105878 

597.105878 

597.105878 

597.105878 

Other method is pad method, it forward fills the values as above right: 

We can also use asfreq() or fillna() methods in upsamling. 

Downsampling: In this we resample to the wider time frame, for example 

resample daily data to weekly/biweekly/monthly etc. For this we have options like 

sum(), mean(), max() etc. For example, daily data got resampled to month start data 

and mean function is used as below: 

  df3.resample(“MS”).mean( ) [ : ]   

 

LastUpdated Occupancy 

2016-10-01 

2016-11-01 

2016-12-01 

600.6633861 

637.142419 

714.497266 

Graphical Representation of Resampling 

After resampling data by four different rules, i.e., hourly, daily, weekly, and 

monthly, following graphs are obtained. We can clearly see the difference in shorter 

vs wider time frames. In the hourly plot, more noise is there and it is decreasing from 

daily to weekly to monthly. As per study objective, we can decide which option for 

rule would be best. 
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Fig. 5.12.  



 5.34    Data Exploration and Visualization 

1. Define a multivariate analysis. 

Multivariate data analysis is a type of statistical analysis that involves more 

than two dependent variables, resulting in a single outcome. Many problems in 

the world can be practical examples of multivariate equations as whatever 

happens in the world happens due to multiple reasons.  

 One such example of the real world is the weather. The weather at any 

particular place does not solely depend on the ongoing season, instead many 

other factors play their specific roles, like humidity, pollution, etc. Just like this, 

the variables in the analysis are prototypes of real-time situations, products, 

services, or decision-making involving more variables.  

2. Differentiate longtidudinal data and time series data. 

It is important to distinguish longitudinal data from the time series data. 

Although time series data can provide us with a picture of aggregate change, it is 

only longitudinal data that can provide evidence of change at the level of the 

individual. Time series data could perhaps be understood as a series of snapshots 

of society, whereas longitudinal research entails following the same group of 

individuals over time and linking information about those individuals from one 

time point to another. 

3. What are the fundamentals of TSA? 

Time series data is a collection of quantities that are assembled over even 

intervals in time and ordered chronologically. The time interval at which data is 

collected is generally referred to as the time series frequency. 

4. Write in brief the characteristics of time series data. 

 Single data source 

 The ratio of read/write is smaller 

 The trend is more important 

 Retention policy 

 Aggregation over time or a set of devices 

 Real-time computing or analysis is required 

 Traffic is stable 
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 Special computing is needed 

 Data volume is huge 

5. List down the steps in data cleaning. 

 Remove duplicate or irrelevant observations 

 Fix structural errors 

 Filter unwanted outliers 

 Handle missing data 

 Validate and QA 

6. Write down the benefits of data cleaning. 

 Removal of errors when multiple sources of data are at play. 

 Fewer errors make for happier clients and less-frustrated employees. 

 Ability to map the different functions and what your data is intended to do. 

 Monitoring errors and better reporting to see where errors are coming 

from, making it easier to fix incorrect or corrupt data for future 

applications. 

 Using tools for data cleaning will make for more efficient business 

practices and quicker decision-making. 

7. State Time-based indexing. 

A time series is a series of data points indexed in time order. If you index the 

dataset by date, you can easily carry out a time series analysis. There are three 

index types of time series:  

DatetimeIndex - The index type for timestamped data is DatetimeIndex. 

PeriodIndex - The index type for period data, which shows the fixed interval 

date data, is PeriodIndex 

TimedeltaIndex - The index type for the Timedelta data, which shows the 

time between two dates, is TimedeltaIndex 

8. What do you mean by Grouping? 

Group Time Series (GTS) reports contain raw or aggregated data for a group 

of resources over a particular reporting period. Raw data can be displayed for 
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daily and weekly reporting periods only. Aggregated data can be displayed for 

any reporting period, but different reporting periods support different granularity 

values. 

9. List the featutes of GTS. 

 Near Real Time (NRT) data points. NRT data is raw data collected during 

the current hour that has not yet been written to the database. 

 Access to all branches of a group hierarchy. Subelement groups are 

organized within a tree structure. When a GTS report is deployed against a 

particular group in a group tree, resources in that group and in groups at all 

levels of the tree below it are included in the aggregation. If a particular 

resource appears in multiple groups within the group tree, that resource is 

included in the aggregation only once. 

10. What is Resampling. 

While dealing with time-Series data analysis we need to combine data into 

certain intervals like with each day, a week, or a month. We will solve these 

using only 2 Pandas APIs i.e. resample() and GroupBy(). 

The resample() function is used to resample time-series data. Convenience 

method for frequency conversion and resampling of time series. The object must 

have a DateTime-like index(DatetimeIndex, PeriodIndex, or TimedeltaIndex), or 

pass DateTime-like values to the on or level keyword. 

1. Explain three variable contingency table with example. 

2. Elaborate the term longitudinal data. 

3. Define TSA, Explain broadly. 

4. Explain the concept data cleaning and its steps involved. 

5. Describe time based indexing. 

6. Explain the methods of visualizing time series data. 

 

****************** 



1. Install the data Analysis and Visualization tool: R/ Python /Tableau Public/ 

Power BI.  

Program 1: 

# importing the pands package 

import pandas as pd 

# creating rows 

hafeez = ['Hafeez', 19] 

aslan = ['Aslan', 21] 

kareem = ['Kareem', 18] 

# pass those Series to the DataFrame 

# passing columns as well 

data_frame = pd.DataFrame([hafeez, aslan, kareem], columns = ['Name', 'Age']) 

# displaying the DataFrame 

print(data_frame) 

Output 

If you run the above program, you will get the following results. 

Name Age 

0 Hafeez 19 

1 Aslan 21 

2 Kareem 18 

Program 2: 

# importing the pyplot module to create graphs 

import matplotlib.pyplot as plot 

# importing the data using pd.read_csv() method 

data = pd.read_csv('CountryData.IND.csv') 
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# creating a histogram of Time period 

data['Time period'].hist(bins = 10) 

Output 

If you run the above program, you will get the following results. 

<matplotlib.axes._subplots.AxesSubplot at 0x25e363ea8d0> 

 

2. Perform exploratory data analysis (EDA) on with datasets like email data 

set. Export all your emails as a dataset, import them inside a pandas data 

frame, visualize them and get different insights from the data.  

Create a CSV file with only the required attributes: 

 with open('mailbox.csv', 'w') as outputfile: 

 writer =csv.writer(outputfile)  

 writer.writerow(['subject','from','date','to','label','thread']) 

 for message in mbox:  

 writer.writerow([ 

 message['subject'],  

 message['from'], 
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 message['date'], 

 message['to'], 

 message['X-Gmail-Labels'],  

 message['X-GM-THRID'] 

The output of the preceding code is as follows: 

subject object  

from object date  

object 

to object label  

object 

thread float64  

dtype: object 

 def plot_number_perdhour_per_year(df, ax, label=None, dt=1, 

smooth=False, 

 weight_fun=None, **plot_kwargs): 

 

 tod = df[df['timeofday'].notna()]['timeofday'].values year =  

 df[df['year'].notna()]['year'].values 

 Ty = year.max() - year.min() T  

 = tod.max() - tod.min() bins = 

  int(T / dt) 

 

 if weight_fun is None: 

 weights = 1 / (np.ones_like(tod) * Ty * 365.25 / dt) else: 

 weights = weight_fun(df) if 

  smooth: 
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 hst, xedges = np.histogram(tod, bins=bins, weights=weights); x = 

 np.delete(xedges, -1) + 0.5*(xedges[1] - xedges[0]) 

 hst = ndimage.gaussian_filter(hst, sigma=0.75) f =  

 interp1d(x, hst, kind='cubic') 

 x = np.linspace(x.min(), x.max(), 10000) hst =  

 f(x) 

 

 ax.plot(x, hst, label=label, **plot_kwargs) else: 

 ax.hist(tod, bins=bins, weights=weights, label=label, 

 **plot_kwargs); 

 ax.grid(ls=':', color='k') 

 orientation = plot_kwargs.get('orientation') 

 if orientation is None or orientation == 'vertical': 

 ax.set_xlim(0,                                                                                      24)  

 ax.xaxis.set_major_locator(MaxNLocator(8)) 

 ax.set_xticklabels([datetime.datetime.strptime(str(int(np.mod(ts, 24))), 

"%H").strftime("%I %p") 

 for ts in ax.get_xticks()]); elif  

 orientation == 'horizontal': 

 ax.set_ylim(0,   24)  

 ax.yaxis.set_major_locator(MaxNLocator(8)) 

 

 ax.set_yticklabels([datetime.datetime.strptime(str(int(np.mod(ts, 24))), 

"%H").strftime("%I %p") 

 

 for ts in ax.get_yticks()]); 
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3. Working with Numpy arrays, Pandas data frames, Basic plots using 

Matplotlib.  

Program 1: 

import numpy as np  

from matplotlib import pyplot as plt  
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x = np.arange(1,11)  

y = 2 * x + 5  

plt.title("Matplotlib demo")  

plt.xlabel("x axis caption")  

plt.ylabel("y axis caption")  

plt.plot(x,y)  

plt.show() 

The above code should produce the following output − 

 

Program 2: 

import pandas as pd 

import matplotlib.pyplot as plt 

# creating a DataFrame with 2 columns 

dataFrame = pd.DataFrame( 

   { 

      "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], 

         "Reg_Price": [2000, 2500, 2800, 3000, 3200, 3500], 
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         "Units": [100, 120, 150, 170, 180, 200] 

   } 

) 

 

# plot a line graph 

plt.plot(dataFrame["Reg_Price"], dataFrame["Units"]) 

plt.show() 

Output 

This will produce the following output − 

 

4. Explore various variable and row filters in R for cleaning data. Apply 

various plot features in R on sample data sets and visualize.  

install.packages("data.table")                                # Install data.table package 

library("data.table")                                         # Load data.table 

We also create some example data. 

dt_all <- data.table(x = rep(month.name[1:3],     each = 3),  

                    y = rep(c(1, 2, 3),           times = 3),  

                    z = rep(c(TRUE, FALSE, TRUE), each = 3))  # Create data.table 

head(dt_all)    
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Table 1 

 x  y  z  

1 January 1 TRUE 

2 January 2 TRUE 

3 January 3 TRUE 

4 February 1 FALSE 

5 February 2 FALSE 

6 February 3 FALSE 

Filter Rows by Column Values 

In this example, I’ll demonstrate how to select all those rows of the example data 

for which column x is equal to February. With the use of %in%, we can choose a set 

of values of x. In this example, the set only contains one value. 

dt_all[x %in% month.name[c(2)], ]            # Rows where x is February 

  

Table 2 

 x  y  z  

1 February 1 FALSE 

2 February 2 FALSE 

3 February 3 FALSE 

Filter Rows by Column Values 

In this example, I’ll demonstrate how to select all those rows of the example data 

for which column x is equal to February. With the use of %in%, we can choose a set 

of values of x. In this example, the set only contains one value. 

dt_all[x %in% month.name[c(2)], ]                             # Rows where x is February 
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  Table 2 

 x  y  z  

1 February 1 FALSE 

2 February 2 FALSE 

3 February 3 FALSE 

Filter Rows by Multiple Column Value 

In the previous example, we addressed those rows of the example data for which 

one column was equal to some value. In this example, we condition on the values of 

multiple columns. 

dt_all[x %in% month.name[c(2)] & y == 1, ]  # Rows, where x is February and y is 1 

Table 3 

 x  y  z  

1 February 1 FALSE 

 

5. Perform Time Series Analysis and apply the various visualization 

techniques. 

import matplotlib as mpl 

import matplotlib.pyplot as plt 

import seaborn as sns 

import numpy as np 

import pandas as pd 

plt.rcParams.update({'figure.figsize': (10, 7), 'figure.dpi': 120}) 

# Import as Dataframe 

df=pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', 

parse_dates=['date']) 

df.head() 

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Logic.html
https://raw.githubusercontent.com/selva86/datasets/master/a10.csv
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 Date Value 

0 

1 

2 

3 

4 

1991-07-01 

1991-08-01 

1991-09-01 

1991-10-01 

1991-11-01 

3.526591 

3.180891 

3.252221 

3.611003 

3.565869 

# Time series data source: fpp pacakge in R. 

import matplotlib.pyplot as plt 

df=pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', 

parse_dates=['date'], index_col='date') 

# Draw Plot 

def plot_df(df, x, y, title="", xlabel='Date', ylabel='Value', dpi=100): 

plt.figure(figsize=(16,5), dpi=dpi) 

plt.plot(x, y, color='tab:red') 

plt.gca().set(title=title, xlabel=xlabel, ylabel=ylabel) 

plt.show() 

plot_df(df, x=df.index, y=df.value, title='Monthly anti-diabetic drug sales in 

Australia from 1992 to 2008.')    

 

https://raw.githubusercontent.com/selva86/datasets/master/a10.csv
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6. Perform Data Analysis and representation on a Map using various Map 

data sets with Mouse Rollover effect, user interaction, etc.. 22  

# 1. Draw the map background 

fig = plt.figure(figsize=(8, 8)) 

m = Basemap(projection='lcc', resolution='h',  

            lat_0=37.5, lon_0=-119, 

            width=1E6, height=1.2E6) 

m.shadedrelief() 

m.drawcoastlines(color='gray') 

m.drawcountries(color='gray') 

m.drawstates(color='gray') 

 

# 2. scatter city data, with color reflecting population 

# and size reflecting area 

m.scatter(lon, lat, latlon=True, 

          c=np.log10(population), s=area, 

          cmap='Reds', alpha=0.5) 

 

# 3. create colorbar and legend 

plt.colorbar(label=r'$\log_{10}({\rm population})$') 

plt.clim(3, 7) 

 

# make legend with dummy points 

for a in [100, 300, 500]: 

    plt.scatter([], [], c='k', alpha=0.5, s=a, 

                label=str(a) + ' km$^2$') 

plt.legend(scatterpoints=1, frameon=False, 

           labelspacing=1, loc='lower left'); 
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7. Build cartographic visualization for multiple datasets involving various 

countries of the world;  

alt.Chart(zipcodes).transform_filter( 

   '-150 < datum.longitude && 22 < datum.latitude && datum.latitude < 55' 

).transform_calculate( 

    digit='datum.zip_code[0]' 

).mark_line( 

    strokeWidth=0.5 

).encode( 

    longitude='longitude:Q', 

    latitude='latitude:Q', 

    color='digit:N', 

    order='zip_code:O' 
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).project( 

    type='albersUsa' 

).properties( 

    width=900, 

    height=500 

).configure_view( 

    stroke=None 

) 

 

alt.layer( 

    alt.Chart(alt.topo_feature(usa, 'states')).mark_geoshape( 

        fill='#ddd', stroke='#fff', strokeWidth=1 

    ), 

    alt.Chart(airports).mark_circle(size=9).encode( 

        latitude='latitude:Q', 

        longitude='longitude:Q', 

        tooltip='iata:N' 

    ) 

).project( 

    type='albersUsa' 

).properties( 



 P.14    Data Exploration and Visualization 

    width=900, 

    height=500 

).configure_view( 

    stroke=None 

) 

 

8. Perform EDA on Wine Quality Data Set.  

#importing libraries 

import numpy as np 

import pandas as pd 

importmatplotlib.pyplot as plt 

import seaborn as sns 

%matplotlib inline 

In  [4]: 1 #features in data 

df.columns 

Out [4]:  Index([‘fixed acidity’, volatile acidity’, ‘citric acid’, ‘residual su 

  gar’, 

   ;chlorides’, ‘free sulfur dioxide’, total sulfur dioxide’, ‘den 

  sity’, 

   ‘pH’, ‘sulphates’, ‘alcohol’, ‘quality’], 

   dtype=’object’)
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In  [5]: #few  datapoints 

df.head( ) 

 

In  [13]: sns.catplot(x=‘quality’,data=df,kind=‘count’) 

 

     Out [13]:  <seaborn.axisgrid.facegrid at022b7de0dba8  ??  > 

Out 

[5]: 

Fixed 

acidity 

Volatile 

acidity 

citric 

acid 

residual 

sugar 
chlorides 

free 

sulphur 

dioxide 

total 

sulphur 

dioxide 

density pH Sulphates alcohol Quality 

 

 0 

1 

2 

3 

4 

7.0 

6.3 

8.1 

7.2 

7.2 

0.27 

0.30 

0.28 

0.23 

0.23 

 

0.36 

0.34 

0.40 

0.32 

0.32 

20.7 

1.6 

6.9 

8.5 

8.5 

0.045 

0.049 

0.050 

0.068 

0.068 

45.0 

14.0 

30.0 

47.0 

47.0 

170.0 

132.0 

97.0 

186.0 

186.0 

1.0010 

0.9940 

0.9951 

0.9956 

0.9956 

3.00 

3.30 

3.26 

3.19 

3.19 

0.45 

0.49 

0.44 

0.40 

0.40 

8.8 

9.5 

10.1 

9.9 

9.9 

6 

6 

6 

6 

6 
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9. Use a case study on a data set and apply the various EDA and visualization 

techniques and present an analysis report. 

  import datetime  

import math 

import pandas as pd  

import random 

import radar 

from faker import Faker  

fake = Faker() 

 

def generateData(n):  

 listdata = [] 

 start = datetime.datetime(2019, 8, 1) 

 end = datetime.datetime(2019, 8, 30)  

 delta = end - start 

 for _ in range(n): 



Practical Exercises    P.17  

 date = radar.random_datetime(start='2019-08-1', stop='2019-08- 

30').strftime("%Y-%m-%d") 

 price = round(random.uniform(900, 1000), 4) 

 

Date Price 

2019-08-01 

2019-08-02 

2019-08-04 

2019-08-05 

2019-08-06 

2019-08-07 

2019-08-08 

2019-08-10 

2019-08-13 

2019-08-14 

999.598900 

957.870150 

978.674200 

963.380375 

978.092900 

987.847700 

952.669900 

973.929400 

971.485600 

977.036200 

 

 listdata.append([date, price]) 

 df = pd.DataFrame(listdata, columns = ['Date', 'Price']) df['Date']  

 = pd.to_datetime(df['Date'], format='%Y-%m-%d') df =  

 df.groupby(by='Date').mean() 

import matplotlib.pyplot as plt 

 

plt.rcParams['figure.figsize'] = (14, 10)  

plt.plot(df) 



 P.18    Data Exploration and Visualization 

And the plotted graph looks something like this: 

 

 

 

 

****************** 
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