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COURSE   OBJECTIVES:  

 

• To understand and need and principles of deep neural networks  

• To understand CNN and RNN architectures of deep neural networks 

 • To comprehend advanced deep learning models 

• To learn the evaluation metrics for deep learning models  

 

UNIT I                               DEEP  NETWORKS  BASICS                                                                                             

Linear Algebra: Scalars -- Vectors -- Matrices and tensors; Probability Distributions -- Gradient-based 

Optimization – Machine Learning Basics: Capacity -- Overfitting and underfitting --Hyperparameters and 

validation sets -- Estimators -- Bias and variance -- Stochastic gradient descent -- Challenges motivating 

deep learning; Deep Networks: Deep feedforward networks; Regularization -- Optimization. 

UNIT II       CONVOLUTIONAL NEURAL NETWORKS                                                           

Convolution Operation -- Sparse Interactions -- Parameter Sharing -- Equivariance -- Pooling -- 

Convolution Variants: Strided -- Tiled -- Transposed and dilated convolutions; CNN Learning: 

Nonlinearity Functions -- Loss Functions -- Regularization -- Optimizers --Gradient Computation. 

UNIT III             RECURRENT NEURAL NETWORKS                                                             

Unfolding Graphs -- RNN Design Patterns: Acceptor -- Encoder --Transducer; Gradient Computation -- 

Sequence Modeling Conditioned on Contexts -- Bidirectional RNN -- Sequence to Sequence RNN – Deep 

Recurrent Networks -- Recursive Neural Networks -- Long Term Dependencies; Leaky Units: Skip 

connections and dropouts; Gated Architecture: LSTM. 
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Performance metrics -- Baseline Models -- Hyperparameters: Manual Hyperparameter -- Automatic 

Hyperparameter -- Grid search -- Random search -- Debugging strategies. 
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Autoencoders: Undercomplete autoencoders -- Regularized autoencoders -- Stochastic encoders and 
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adversarial networks. 
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UNIT  -  I 

 

DEEP NETWORKS BASICS 

 

Linear Algebra: Scalars -- Vectors -- Matrices and tensors; Probability Distributions -- 

Gradientbased Optimization – Machine Learning Basics: Capacity -- Overfitting and 

underfitting -- Hyperparameters and validation sets -- Estimators -- Bias and variance -- 

Stochastic gradient descent -- Challenges motivating deep learning; Deep Networks: Deep 

feedforward networks; Regularization -- Optimization. 
 

Two Marks    /     Part - A 

1. What is Deep Learning? 

Deep learning is a part of machine learning with an algorithm inspired by the structure 

and function of the brain, which is called an artificial neural network. In the mid-1960s, 

Alexey Grigorevich Ivakhnenko published the first general, while working on deep 

learning network. Deep learning is suited over a range of fields such as computer 

vision, speech recognition, natural language processing, etc 

2. What are the main differences between AI, Machine Learning, and Deep Learning? 

AI stands for Artificial Intelligence. It is a technique which enables machines to mimic 

human behavior. 

Machine Learning is a subset of AI which uses statistical methods to enable machines 

to improve with experiences. 

Deep learning is a part of Machine learning, which makes the computation of multi- 

layer neural networks feasible. It takes advantage of neural networks to simulate 

human-like decision making. 

3. Differentiate supervised and unsupervised deep learning procedures. 

Supervised learning is a system in which both input and desired output data are 

provided. Input and output data are labeled to provide a learning basis for future data 

processing. 

Unsupervised procedure does not need labeling information explicitly, and the 

operations can be carried out without the same. The common unsupervised learning 

method is cluster analysis. It is used for exploratory data analysis to find hidden 

patterns or grouping in data. 
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4. What are the applications of deep learning? 

There are various applications of deep learning: 

Computer vision 

Natural language processing and pattern recognition 

Image recognition and processing 

Machine translation 

Sentiment analysis 

Question answering system 

Object Classification and Detection 

Automatic Handwriting Generation 

Automatic Text Generation. 

 
5. What is scalar and vector? 

A scalar is just a single number, in contrast to most of the other objects like Vectors, 

which are usually arrays of multiple numbers. 

 
6. What are matrices and tensors? 

Matrices: A matrix is a 2D array of numbers, so each element is identified by two 

subscripts instead of just one. We usually give matrices uppercase variable names with 

bold characters, such as A. 

 

We usually identify the elements of a matrix by using its name in italics but not in bold, 

and the subscripts are listed with separating commas. 

 

Tensors: In some cases, we’ll need an array with more than two axes. In the general 

case, an array of numbers arranged on a regular grid with a varying number of axes is 

called a tensor. We note a tensor named “A” with this font: A. 

 

7. Why probability is important in deep learning? 

Probability is the science of quantifying uncertain things. Most of machine learning and 

deep learning systems utilize a lot of data to learn about patterns in the data. Whenever 

data is utilized in a system rather than sole logic, uncertainty grows up and whenever 

uncertainty grows up, probability becomes relevant. 

 

By introducing probability to a deep learning system, we introduce common sense to 

the system. Otherwise the system would be very brittle and will not be useful.In deep 

learning, several models like Bayesian models, probabilistic graphical models, hidden 

markov models are used. They depend entirely on probability concepts. 

 

8. Define Random Variable. 

A random variable is a variable that can take on different values randomly. We typically 

denote the random variable itself with a lower case letter in plain typeface, and the 

values it can take on with lower case script letters. For example, x1 and x2 are both 

possible values that the random variable x can take on. 
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9. Do random variables is discrete or continuous? 
 

Random variables may be discrete or continuous. A discrete random variable is one that 

has a finite or countably infinite number of states. Note that these states are not 

necessarily the integers; they can also just be named states that are not considered to 

have any numerical value. A continuous random variable is associated with a real value. 

 

10. What are probability distributions? 

A probability distribution is a description of how likely a random variable or set of 

random variables is to take on each of its possible states. The way we describe 

probability distributions depends on whether the variables are discrete or continuous. 

 

11. Define Probability mass function? 

A probability distribution over discrete variables may be described using a probability 

mass function (PMF). We typically denote probability mass functions with a capital P. 

Often we associate each random variable with a different probability mass function and 

the reader must infer which probability mass function to use based on the identity of the 

random variable, rather than the name of the function; P(x) is usually not the same as 

P(y). 

 

12. List the properties that probability mass function satisfies? 

• The domain of P must be the set of all possible states of x. 

 

• ∀x ∈ x,0 ≤ P(x) ≤ 1. An impossible event has probability 0 and no state can be less 

probable than that. Likewise, an event that is guaranteed to happen has probability 1, 

and no state can have a greater chance of occurring. 

 

• ∑x∈x P(x) = 1. We refer to this property as being normalized. Without this property, we 

could obtain probabilities greater than one by computing the probability of one of many 

events occurring. 

 

13. List the properties that probability density function satisfies? 

When working with continuous random variables, we describe probability distributions 

using a probability density function (PDF) rather than a probability mass function. 

 

To be a probability density function, a function p must satisfy the following properties: 
• The domain of p must be the set of all possible states of x. 

• ∀x ∈ x, p(x) ≥ 0. Note that we do not require p(x) ≤ 1. 

• ʃp(x)dx = 1. 
 

14. What is Gradient based optimizer? 

Gradient descent is an optimization algorithm that’s used when training deep learning 

models. It’s based on a convex function and updates its parameters iteratively to 

minimize a given function to its local minimum. 
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The notation used in the above Formula is given below, 

In the above formula, 

• α is the learning rate, 

• J is the cost function, and 

• ϴ is the parameter to be updated. 

As you can see, the gradient represents the partial derivative of J(cost function) with 

respect to ϴj 
 

15. Why overfitting and underfitting in ML? 

Factors determining how well an ML algorithm will perform are its ability to: 

1. Make the training error small 

2. Make gap between training and test errors small 

 

• They correspond to two ML challenges 

Underfitting - Inability to obtain low enough error rate on the training set 

Overfitting - Gap between training error and testing error is too large 

 

We can control whether a model is more likely to overfit or underfit by altering its 

capacity 

 

16. What is capacity of a model? 

Model capacity is ability to fit variety of functions 

– Model with Low capacity struggles to fit training set 

– A High capacity model can overfit by memorizing properties of training set not useful 

on test set 

• When model has higher capacity, it overfits – One way to control capacity of a 

learning algorithm is by choosing the hypothesis space 

• i.e., set of functions that the learning algorithm is allowed to select as being the 

solution 

 

17. How to control the capacity of learning algorithm? 

One way to control the capacity of a learning algorithm is by choosing its hypothesis 

space, the set of functions that the learning algorithm is allowed to select as being the 

solution. For example, the linear regression algorithm has the set of all linear functions 

of its input as its hypothesis space. We can generalize linear regression to include 

polynomials, rather than just linear functions, in its hypothesis space. Doing so increases 

the model’s capacity 

 

18. Define Bayes error. 

Ideal model is an oracle that knows the true probability distributions that generate the 

data • Even such a model incurs some error due to noise/overlap in the distributions • 

The error incurred by an oracle making predictions from the true distribution p(x,y) is 

called the Bayes error 

 

19. Why hyperparameters in ML? 

Most ML algorithms have hyperparameters 

– We can use to control algorithm behavior 

– Values of hyperparameters are not adapted by learning algorithm itself 

• Although, we can design nested learning where one learning algorithm 

– Which learns best hyperparameters for another learning algorithm. 
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20. How to solve overfitting problem caused by learning hyperparameters on training 

dataset? 

• To solve the problem, we use a validation set 

– Examples that training algorithm does not observe 

• Test examples should not be used to make choices about the model hyperparameters • 

Training data is split into two disjoint parts 

– First to learn the parameters 

– Other is the validation set to estimate generalization error during or after training 

• allowing for the hyperparameters to be updated 

– Typically, 80% of training data for training and 20% for validation 

 
21. What are point estimators? 

Point estimators are functions that are used to find an approximate value of a population 

parameter from random samples of the population. They use the sample data of a population 

to calculate a point estimate or a statistic that serves as the best estimate of an 

unknown parameter of a population. 

Most often, the existing methods of finding the parameters of large populations are 

unrealistic. For example, when finding the average age of kids attending kindergarten, it will 

be impossible to collect the exact age of every kindergarten kid in the world. Instead, a 

statistician can use the point estimator to make an estimate of the population parameter. 

 

 
22. List the characteristics or Properties of Point Estimators? 

The following are the main characteristics of point estimators: 

1. Bias 

The bias of a point estimator is defined as the difference between the expected value of the 

estimator and the value of the parameter being estimated. When the estimated value of the 

parameter and the value of the parameter being estimated are equal, the estimator is 

considered unbiased. 

Also, the closer the expected value of a parameter is to the value of the parameter being 

measured, the lesser the bias is. 

2. Consistency 

 
 

          Shree SATHYAM College of Engg. & Technology, Sankari    /AI&DS 

https://corporatefinanceinstitute.com/resources/knowledge/other/parameter/
https://corporatefinanceinstitute.com/resources/knowledge/other/expected-value/


 

 

8 

Consistency tells us how close the point estimator stays to the value of the parameter as it 

increases in size. The point estimator requires a large sample size for it to be more consistent 

and accurate. 

You can also check if a point estimator is consistent by looking at its corresponding 

expected value and variance. For the point estimator to be consistent, the expected value 

should move toward the true value of the parameter. 

3. Most efficient or unbiased 

The most efficient point estimator is the one with the smallest variance of all the unbiased 

and consistent estimators. The variance measures the level of dispersion from the estimate, 

and the smallest variance should vary the least from one sample to the other. 

 

23. Define Stochastic Gradient Descent with merits and demerits. 

Stochastic Gradient Descent (SGD) is a variant of the Gradient Descent algorithm used for 

optimizing machine learning models. In this variant, only one random training example is 

used to calculate the gradient and update the parameters at each iteration. Here are some of 

the advantages and disadvantages of using SGD: 

Advantages of Gradient Descent 

Speed: SGD is faster than other variants of Gradient Descent such as Batch Gradient 

Descent and Mini-Batch Gradient Descent since it uses only one example to update the 

parameters. 

Memory Efficiency: Since SGD updates the parameters for each training example one 

at a time, it is memory-efficient and can handle large datasets that cannot fit into 

memory. 

Avoidance of Local Minima: Due to the noisy updates in SGD, it has the ability to 

escape from local minima and converges to a global minimum. 

 

Disadvantages of Gradient Descent 

Noisy updates: The updates in SGD are noisy and have a high variance, which can 

make the optimization process less stable and lead to oscillations around the minimum. 

 

Slow Convergence: SGD may require more iterations to converge to the minimum 

since it updates the parameters for each training example one at a time. 

 

Sensitivity to Learning Rate: The choice of learning rate can be critical in SGD since 

using a high learning rate can cause the algorithm to overshoot the minimum, while a 

low learning rate can make the algorithm converge slowly. 
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Less Accurate: Due to the noisy updates, SGD may not converge to the exact global 

minimum and can result in a suboptimal solution. This can be mitigated by using 

techniques such as learning rate scheduling and momentum-based updates 

 

24. What is a deep feedforward network? 

In a feedforward network, the information moves only in the forward direction, from the 

input layer, through the hidden layers (if they exist), and to the output layer. There are no 

cycles or loops in this network. Feedforward neural networks are sometimes 

ambiguously called multilayer perceptron’s. 

 

25. What is the working principle of a feed forward neural network? 

 
 

When the feed forward neural network gets simplified, it can appear as a single layer 

perceptron. 

This model multiplies inputs with weights as they enter the layer. Afterward, the 

weighted input values get added together to get the sum. As long as the sum of the 

values rises above a certain threshold, set at zero, the output value is usually 1, while if it 

falls below the threshold, it is usually -1. 

 
26. What are the Layers of feed forward neural network? 

 
 



 

 

 

 

27. Brief on classification of activation function. 

An activation function can be classified into three major categories: sigmoid, Tanh, and 

Rectified Linear Unit (ReLu). 

• Sigmoid: 
 

Input values between 0 and 1 get mapped to the output values. 

 

• Tanh: 
 

A value between -1 and 1 gets mapped to the input values. 

• Rectified linear Unit: 
 

Only positive values are allowed to flow through this function. Negative values get 

mapped to 0. 

28. What is Regularization? 

Regularization is a technique used in machine learning and deep learning to prevent 

overfitting and improve the generalization performance of a model. It involves adding a 

penalty term to the loss function during training. This penalty discourages the model 

from becoming too complex or having large parameter values, which helps in 

controlling the model’s ability to fit noise in the training data. Regularization methods 

include L1 and L2 regularization, dropout, early stopping, and more. 

 
29. What is dropout in neural network? 

Dropout is a regularization technique used in neural networks to prevent overfitting. 

During training, a random subset of neurons is “dropped out” by setting their outputs to 

zero with a certain probability. This forces the network to learn more robust and 

independent features, as it cannot rely on specific neurons. Dropout improves 

generalization and reduces the risk of overfitting. 

 
30. Difference between regularization and optimization. 

The main conceptual difference is that optimization is about finding the set of 

parameters/weights that maximizes/minimizes some objective function (which can also 

include a regularization term), while regularization is about limiting the values that your 

parameters can take during the optimization/learning/training, so optimization with 

regularisation (especially, with L1 and L2 regularization) can be thought of as 

constrained optimization, but, in some cases, such as dropout, it can also be thought of 

as a way of introducing noise in the training process. 



 

 

 

UNIT II  

CONVOLUTIONAL NEURAL NETWORKS 

Convolution Operation -- Sparse Interactions -- Parameter Sharing -- Equivariance -- Pooling -- 

Convolution Variants: Strided -- Tiled -- Transposed and dilated convolutions; CNN Learning: 

Nonlinearity Functions -- Loss Functions -- Regularization -- Optimizers -- Gradient 

Computation. 

Part -  A 
 
 

1. What is convolutional neural network? 

A Convolutional  Neural Network (CNN) is a type of Deep Learning neural network 

architecture commonly used in Computer Vision. Computer vision is a field of Artificial 

Intelligence that enables a computer to understand and interprehe image or visual data. 

 
2. What are the three types of layers in neural network? 

In a regular Neural Network there are three types of layers: 

Input Layers: It’s the layer in which we give input to our model. The number of 

neurons in this layer is equal to the total number of features in our data (number of 

pixels in the case of an image). 

Hidden Layer: The input from the Input layer is then feed into the hidden layer. There 

can be many hidden layers depending upon our model and data size. Each hidden layer 

can have different numbers of neurons which are generally greater than the number of 

features. The output from each layer is computed by matrix multiplication of output of 

the previous layer with learnable weights of that layer and then by the addition of 

learnable biases followed by activation function which makes the network nonlinear. 

Output Layer: The output from the hidden layer is then fed into a logistic function like 

sigmoid or softmax which converts the output of each class into the probability score of 

each class. 

 
3. Define feed forward and Back propagation. 

The data is fed into the model and output from each layer is obtained from the above 

step is called feed forward, we then calculate the error using an error function, some 

common error functions are cross-entropy, square loss error, etc. The error function 

measures how well the network is performing. After that, we backpropagate into the 



 

 

model by calculating the derivatives. This step is called Backpropagation which 

basically is used to minimize the loss. 

 
4. What is convolution operation with the representation of equation? 

Applying a weighted average operation at every moment with respective to time , a new 

estimated function s is obtained 

s(t) = ʃx(a)w(t − a)da 

This operation is called convolution. The convolution operation is denoted as asterick. 

s(t) = (x ∗ w)(t) 

Where 

w= valid probability density function and w needs to 0 for all negative arguments. In general, 

convolution is defined for any functions for which the above integral is defined, and may be 

used for other purposes besides taking weighted averages. 

In convolutional network terminology, the first argument (in this example, the function x) to 

the convolution is often referred to as the input and the second argument (in this example, the 

function w) as the kernel. The output is sometimes referred to as the feature map. 

5. What are the motivation of convolution? 

1. Sparse interactions 

2. Parameter Sharing 

3. Equivariant representations. 

6. Define Sparse Connectivity or Sparse interactions. 

A Convolution layer defines a window or filter or kernel by which they examine a subset of the 

data, and subsequently scans the data looking through this window. his is what we call sparse 

connectivity or sparse interactions or sparse weights. Actually, it limits the activated 

connections at each layer. In the example below an 5x5 input with a 2x2 filter produces a 

reduced 4x4 output. The first element of feature map is calculated by the convolution of the 

input area with the filter i.e. 
 

Apply 2x2 filter to the input and get the first convolutional layer (a feature map) 

 

 
First element of the feature map 



 

 

 
 

7. How many filters use at each layer? 

1) hyperparameter which is called the depth of the output volume. 

 
2) Another hyperparameter is the stride that defines how much we slide the 

filter over the data. For example if stride is 1 then we move the window 

by 1 pixel at a time over the image, when our input is an image. When 

we use larger values of stride 2 or 3 we allow jumping 2 or pixels at a 

time. This reduces significantly the output size. 

 
3) The last hyperparameter is the size of zero-padding, when sometimes is 

convenient to pad the input volume with zeros around the border. 

 
8. Write the formula to find how many neurons fit for a network? 

To compute the spatial size of the output volume as a function of the input volume size (W), 

the receptive field size of the Conv Layer neurons (F), the stride with which they are applied 

(S), and the amount of zero padding used (P) on the border. The formula for calculating how 

many neurons “fit” is given by 
 
 

 

 
 

9. Why parameter sharing is used in CNN? 

Parameter sharing is used in the convolutional layers to reduce the number of parameters 

in the network. For example in the first convolutional layer let’s say we have an output 

of 15x15x4 where 15 is the size of the output and 4 the number of filters used in this 

layer. For each output node in that layer we have the same filter, thus reducing 

dramatically the storage requirements of the model to the size of the filter. 
 

The same filter 

(weights) (1, 0, -1) are used for that layer. 

 

 

 

 

 



 

 

10. What is equivariant representations? 

Equivariant means varying in the similar or equivalent proportion. Equivariant to 

translation means that a translation of input features results in an equivalent translation 

of outputs. It makes the CNN understand the rotation or proportion change. The 

equivariance allows the network to generalize edge, texture, shape, detection in different 

locations. 
 
 

11. Why pooling layer in CNN? 

A pooling layer is another building block of a CNN. Pooling Its function is to 

progressively reduce the spatial size of the representation to reduce the network 

complexity and computational cost. 

 
12. What are the two types of pooling widely used? 

There are two types of widely used pooling in CNN layer: 

 
Max Pooling 

Average Pooling 

 
13. Outline the problem arise due to convolution. 

1. Every time after convolution operation, original image size get shrinks. 

2. The second issue is that, when kernel moves over original images, it touches the 

edge of the image less number of times and touches the middle of the image 

more number of times and it overlaps also in the middle. So, the corner features 

of any image or on the edges aren’t used much in the output. 

 
14. Define Padding and Stride. 

• Padding preserves the size of the original image. 

• Stride is the number of pixels shifts over the input matrix. For padding p, filter size 

∗ and input image size  ∗  and stride ‘’ our output image dimension will be [ {( + 2 

−  + 1) / } + 1] ∗ [ {( + 2 −  + 1) / } + 1]. 

 
15. What is the difference between normal convolution and transposed convolution? 

Traditional convolution determines the output value as the dot product between filter 

and input, by moving the filter kernel for two pixels in every step, the input is down 

sampled by factor two. For transposed convolution, the input value determines the filter 

values that will be written to the output. 

 
16. What is a transposed convolution? 

Transposed convolutions are standard convolutions but with a modified input feature 

map. The stride and padding do not correspond to the number of zeros added around the 



 

 

image and the amount of shift in the kernel when sliding it across the input, as they 

would in a standard convolution operation. 

 
17. What does non-linearity mean? 

It means that the neural network can successfully approximate functions that do not 

follow linearity or it can successfully predict the class of a function that is divided by a 

decision boundary which is not linear. 

 
18. What is linear and non-linear in deep learning? 

Linearity refers to the property of a system or model where the output is directly 

proportional to the input, while nonlinearity implies that the relationship between input 

and output is more complex and cannot be expressed as a simple linear function. 

 
19. What is the loss function in CNN machine learning? 

A loss function is a function that compares the target and predicted output values; measures 

how well the neural network models the training data. When training, we aim to minimize this 

loss between the predicted and target outputs. 

 

20. List any two loss function. 

1. Regression 

 
MSE(Mean Squared Error) 

MAE(Mean Absolute Error) 

Hubber loss 

2. Classification 

Binary cross-entropy 

Categorical cross-entropy 
 

 
21. Differentiate loss function and cost function. 

Loss Function: 

 
A loss function/error function is for a single training example/input. 

Cost Function: 

A cost function, on the other hand, is the average loss over the entire training dataset. 

 

 
22. Give details on some of regularization techniques used in CNN? 

L1 and L2 Regularization (Weight Decay), Dropout, Batch Normalization, Data 

Augmentation and Early Stopping. 

 

 

 

 



 

 

23. Define Mean Absolute Error (MAE) 

Mean absolute error (MAE) also called L1 Loss is a loss function used for regression problems. It represents 

the difference between the original and predicted values extracted by averaging the absolute difference over 

the data set. 

 

 

24. What is regularization in CNN? 

Regularization is a technique that helps prevent overfitting, which occurs when a neural network learns too 

much from the training data and fails to generalize well to new data. 

 

 

 
25. What are the commonly used non linearity function using CNN? 

1. Rectified Linear Unit (ReLU) 

2. Leaky ReLU 

3. Sigmoid 

4. Hyperbolic Tangent (Tanh) 

5. Softmax 

 
 

 

26. Why is it important to place non-linearities between the layers of neural networks? 

 Non-linearity introduces more degrees of freedom to the model. It lets it capture more complex 

representations which can be used towards the task at hand. A deep neural network without non-linearities is 

essentially a linear regression. 
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1. Introduction: 

 

Today, Artificial Intelligence (AI) is a thriving field with many practical applications and active research 

topics. We look to intelligent software to automate routine labor, understand speech or images, make 

diagnoses in medicine and support basic scientific research. In the early days of artificial intelligence, the 

field rapidly tackled and solved problems that are intellectually difficult for human beings but relatively 

straightforward for computers—problems that can be described by a list of formal, mathematical rules. The 

true challenge of AI lies in solving more intuitive problems. The solution is to allow computers to learnfrom 

experience and understand the world in terms of a hierarchy of concepts, with each concept defined in terms 

of its relation to simpler concepts. By gathering knowledge from experience, this approach avoids the need 

for human operators to formally specify all of the knowledge that the computer needs. Thehierarchyof 

concepts allows the computer to learn complicated concepts by building them out of simpler ones. If one 

draws a graph showing how these concepts are built on top of each other, the graph is deep, with many 

layers. For this reason, this approach is called as deep learning. 

A computer can reason about statements in these formal languages automatically using logical inference 

rules. This is known as the knowledge base approach to artificial intelligence. The difficulties faced by 

systems relying on hard-coded knowledge suggest that AI systems need the ability to acquire their own 

knowledge, by extracting patterns from raw data. This capability is known as machine learning. The 

introduction of machine learning allowed computers to tackle problems involving knowledge of the real 

world and make decisions that appear subjective. A simple machine learning algorithm called logistic 

regression can determine whether to recommend cesarean delivery. A simple machine learning algorithm 

called naive Bayes can separate legitimate e-mail from spam e-mail. 

The performance of these simple machine learning algorithms depends heavily on the representation of the 

data they are given. For example, when logistic regression is used to recommend cesarean delivery, the AI 

system does not examine the patient directly. Instead, the doctor tells the system several pieces of relevant 

information, such as the presence or absence of a uterine scar. Each piece of information included in the 

representationofthepatientisknownasafeature.Logisticregressionlearnshoweachofthesefeaturesof 
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the patient correlates with various outcomes. However, it cannot influence the way that the features are 

defined in any way. If logistic regression was given an MRI scan of the patient, rather than the doctor‘s 

formalized report, it would not be able to make useful predictions. Individual pixels in an MRI scan have 

negligible correlation with any complications that might occur during delivery. 

This dependence on representations is a general phenomenon that appears throughout computer science and 

even daily life. In computer science, operations such as searching a collection of data can proceed 

exponentially faster if the collection is structured and indexed intelligently. People can easily perform 

arithmetic on Arabic numerals, but find arithmetic on Roman numerals much more time-consuming. It is 

not surprising that the choice of representation has an enormous effect on the performance of machine 

learning algorithms. Many artificial intelligence tasks can be solved by designing the right set of features to 

extract for that task, then providing these features to a simple machine learning algorithm. However, for 

many tasks, it is difficult to know what features should be extracted. For example, suppose that we would 

like to write a program to detect cars in photographs. We know that cars have wheels, so we might like to 

use the presence of a wheel as a feature. Unfortunately, it is difficult to describe exactly what a wheel looks 

like in terms of pixel values. 

One solution to this problem is to use machine learning to discover not only the mapping from 

representation to output but also the representation itself. This approach is known as representation 

learning. Learned representations often result in much better performance than can be obtained with hand- 

designed representations. They also allow AI systems to rapidly adapt to new tasks, with minimal human 

intervention. A representation learning algorithm can discover a good set of features for a simple task in 

minutes, or a complex task in hours to months. 

The quintessential example of a representation learning algorithm is the autoencoder. An autoencoder is the 

combination of an encoder function that converts the input data into a different representation, and adecoder 

function that converts the new representation back into the original format. Autoencoders are trained to 

preserve as much information as possible when an input is run through the encoder and then the decoder, 

but are also trained to make the new representation have various nice properties. Different kinds of 

autoencoders aim to achieve different kinds of properties. When designing features or algorithms for 

learning features, our goal is usually to separate the factors of variation that explain the observed data. A 

major source of difficulty in many real-world artificial intelligence applications is that many of the factors 

of variation influence every single pieceofdata weareable to observe. The individual pixels in animageof a 

red car might be very close to black at night. The shape of the car‘s silhouette depends on the viewing angle. 

It can be very difficult to extract such high-level, abstract features from raw data. Deep learning solves this 

central problem in representation learning by introducing representations that are expressed in terms of 

other, simpler representations. 

Deep learning allows the computer to build complex concepts out of simpler concepts. Fig. 1.1showshowa 

deep learning system can represent the concept of an image of a person by combining simpler concepts, 

such as corners and contours, which are in turn defined in terms of edges. The quintessential example of a 

deep learning model is the feed forward deep network or multilayer perceptron (MLP). A multilayer 

perceptron is just a mathematical function mapping some set of input values to output values. The function 

is formed by composing many simpler functions. The idea of learning the right representation for the data 

provides one perspective on deep learning. Another perspective on deep learning is that depth allows the 

computer to learn a multi-step computer program. Each layer of the representation can be thought of as the 

state of the computer‘s memory after executing another set of instructions in parallel. Networks with greater 
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depth can execute more instructions in sequence. Sequential instructions offer great power because later 

instructions can refer back to the results of earlier instructions. 

The input is presented at the, so named because it contains visible layer the variables that we are able to 

observe. Then a series of hidden layers extracts increasingly abstract features from the image. These layers 

are called ―hidden‖ because their values are not given in the data; instead the model must determine which 

concepts are useful for explaining the relationships in the observed data. The images here are visualizations 

of the kind of feature represented by each hidden unit. Given the pixels, the first layer can easily identify 

edges, by comparing the brightness of neighboring pixels. Given the first hidden layer‘s description of the 

edges, the second hidden layer can easily search for corners and extended contours, which are recognizable 

as collections of edges. Given the second hidden layer‘s description of the image in terms of corners and 

contours, the third hidden layer can detect entire parts of specific objects, by finding specific collections of 

contours and corners. Finally, this description of the image in terms of the object parts it contains can be 

used to recognize the objects present in the image. 

 

 
Fig.1.1 Illustration of deep learning model 

There are two main ways of measuring the depth of a model. The first view is based on the number of 

sequential instructions that must be executed to evaluate the architecture. Another approach, used by deep 

probabilistic models, regards the depth of a model as being not the depth of the computational graph but the 

depth of the graph describing how concepts are related to each other. Machine learning is the only viable 

approach to building AI systems that can operate in complicated, real-world environments. Deep learning is 

a particular kind of machine learning that achieves great power and flexibility by learning to represent the 

world as a nested hierarchy of concepts,with each concept defined in relation to simpler concepts, and more 

abstract representations computed in terms of less abstract ones. Fig. 1.2 illustrates the relationship between 

these different AI disciplines. Fig. 1.3 gives a high-level schematic of how each works. 

 



 

 

 

 

Fig.1.2 Venn diagram representing relationship between AI disciplines 
 

 

 
Fig.1.3 High level schematics representing relationship between AI disciplines 



 

 

AI is basically the study of training your machine (computers) to mimic a human brain and its 

thinking capabilities.AI focuses on three major aspects (skills): learning, reasoning, and self- 

correction to obtain the maximum efficiency possible. Machine Learning (ML) is an application or 

subset of AI. The major aim of ML is to allow the systems to learn by themselves through experience 

withoutany kind of human intervention or assistance. Deep Learning(DL)is basically a sub-part of the 

broader familyof Machine Learning which makes use of Neural Networks (similar to the neurons working 

in our brain) to mimic human brain-like behavior. DL algorithms focus on information processing 

patterns mechanism to possibly identify the patterns just like our human brain does and classifies the 

information accordingly. DL works on larger sets of data when compared to ML and the prediction 

mechanism is self-administered by machines. The differences between AI, ML and DL are presented as 

Table 1 as below. 

Table1.Difference between Artificial Intelligence, Machine Learning & Deep Learning 
 

Artificial Intelligence Machine Learning Deep Learning 

AI stands for Artificial 

Intelligence, and is basically the 

study/process which enables 

machines to mimic human 

behaviour through particular 

algorithm. 

ML stands for Machine 

Learning, and is the study 

that uses statistical methods 

enabling machines to improve 

with experience. 

DL stands for Deep 

Learning, and is the study 

that makes use of Neural 

Networks (similar to 

neuronspresentinhumanbrai

n) 

toimitatefunctionalityjustli

ke 

ahuman brain. 
AI is the broader family 
consisting of 

ML and DL asit‘s components. 

ML is the subset of AI. DL is the subset of ML. 

AI is a computer algorithm which 

exhibits intelligence through 

decision making. 

ML is an AI algorithm which 

allows system to learn from 

data. 

DL is a ML algorithm that 

uses deep (more than one 

layer) 

neuralnetworkstoanalyzeda

ta 

andprovideoutput 

accordingly. 

Search Trees and much complex 

math are involved in AI. 

Having a clear idea about the 

logic (math) involved in behind 

and can visualize the

 complex 

functionalities like K-Mean, 

Support Vector Machines, 

etc., then it defines the ML 

aspect. 

With clear about the math 

involved in it but don‘t have 

idea about the features, so 

one break the

 complex 

functionalities into 

linear/lower dimension 

features by adding 



 

 

morelayers,thenitdefinesth

e 

DLaspect. 

The aim is to basically

 increase chances of success 

and not accuracy. 

Theaimistoincreaseaccuracyno

t caring much about the 

success ratio. 

It attains the highest rank 

in terms of accuracy when 

it is 

trainedwithlargeamountof 

data. 
The efficiency of AI is 
basicallythe 

efficiencyprovidedbyMLandDL 

respectively. 

LessefficientthanDLasitcan‘t 

workforlongerdimensionsor 

higher amount of data. 

MorepowerfulthanMLasit 

caneasilyworkforlargersets 

of data. 

 

 



 

 

 

Artificial Intelligence Machine Learning Deep Learning 
Threebroadcategories/typesOfAI Threebroadcategories/typesof DLcanbeconsideredasneural 
are: Artificial Narrow
 Intelligence 

ML are: Supervised Learning, networkswithalargenumber 

(ANI),ArtificialGeneralIntelligenc
e 

Unsupervised Learning and ofparameterslayerslyingin 

(AGI)andArtificialSuper 
Intelligence 

Reinforcement Learning oneofthefourfundamental 

(ASI)  network
 architectur
es: 

  Unsupervised Pre-
trained 

  Networks, Convolutional 

  Neural Networks,
 Recurrent 

  NeuralNetworksandRecursiv
e 

  NeuralNetworks 

Examples ofAIapplicationsinclude: 

Google‘s AI-Powered

 Predictions, 

Examples of ML
 applications 

include: Virtual Personal 

ExamplesofDLapplications 

include:Sentimentbasednews 

RidesharingAppsLikeUberandLyft, Assistants:Siri,Alexa,Google, aggregation,Imageanalysisan
d 

Commercial Flights Use an AI etc.,EmailSpamandMalware captiongeneration,etc. 
Autopilot,etc. Filtering.  

 
2. Linear Algebra: 

 

Agoodunderstandingoflinearalgebraisessentialforunderstandingandworkingwithmanymachine learning algorithms, 

especially deep learning algorithms. 

 Scalars,Vectors,Matrices and Tensors 
 

● Scalars: A scalar is just a single number, in contrast to most of the other objects studied in linear algebra, 

which are usually arrays of multiple numbers. We write scalars in italics. We usually give scalars lower- 

case variable names. When we introduce them, we specify what kind of number they are. For example, we 

might say ―Let s ∈R be the slope of the line,‖ while defining a real-valued scalar, or ―Let n ∈N be the 

number of units,‖ while defining a natural number scalar. 

● Vectors: A vector is an arrayof numbers. The numbers are arranged in order. We can identifyeach individual 

number by its index in that ordering. Typically we give vectors lower case names written in bold typeface, 

such as x. The elements of the vector are identified by writing its name in italic typeface, with a subscript. 

Thefirst element of x is x1, the second element is x2 and so on. We also need to saywhat kinds of numbers 

are stored in the vector. If each element is in R, and the vector has n elements, then the vector lies in the set 

formed bytakingthe Cartesian product of R n times, denoted as Rn. Whenweneed to explicitlyidentifythe 

elements of a vector, we write them as a column enclosed in square brackets: 

 



 

 

We can think of vectors as identifying points in space, with each element giving the coordinate along a 

different axis. Sometimes we need to index a set of elements of a vector. In this case, we define a set 

containing the indices and write the set as a subscript. For example, to access x1, x3 and x6 , we define the 

set S = {1, 3, 6} and write xS . We use the − sign to index the complement of a set. For example x−1 is the 

vector containing all elements of x except for x1, and x−S is the vector containing all of the elements of x 

except for x1, x3 and x6. 

● Matrices: A matrix is a 2-D arrayof numbers, so each element is identified by two indices instead of just one. 

We usually give matrices upper-case variable names with bold typeface, such as A. If a real-valued matrix 

A has a height of m and a width of n, then we say that A ∈Rm×n. We usually identify the elements of a 

matrix using its name in italic but not bold font, and the indices are listed with separating commas. For 

example, A1,1 is the upper left entry of A and Am,n is the bottom right entry. We can identify all of the 

numbers with vertical coordinate i by writing a ―:‖ for the horizontal coordinate. For example, Ai,: denotes 

the horizontal cross section of A with vertical coordinate i.This is known as the i-throwofA. Likewise, A:,i is 

the i-th column of A. When we need to explicitly identify the elements of a matrix, we write them as an 

array enclosed in square brackets: 
 

 

Sometimes we mayneed to index matrix-valued expressions that are not just a single letter. In this case, we 

use subscripts after the expression, but do not convert anything to lower case. For example, f (A)i,j gives 

element (i, j) of the matrix computed by applying the function f to A. 
 

● Tensors: In some cases we will need an array with more than two axes. In the general case, an array of 

numbers arranged on aregular grid with avariable numberofaxes is knownas a tensor. Wedenoteatensor 

named ―A‖ with this typeface: A. We identifythe element of A at coordinates (i, j, k) bywriting Ai,j,k. One 

important operation on matrices is the transpose.Thetransposeofamatrix is themirrorimageofthematrix 

across a diagonal line, called the main diagonal, running down and to the right, starting from its upper left 

corner.SeeFig. 2.1 fora graphical depiction ofthis operation. Wedenotethetransposeofamatrix Aas AT, and it 

is defined such that 
 

Vectors can be thought of as matrices that contain onlyone column. The transpose of a vector is therefore a 

matrixwithonlyonerow.Sometimeswedefineavectorbywritingoutitselementsinthetextinlineasa 

 



 

 

rowmatrix,thenusingthetransposeoperatortoturnitintoastandardcolumnvector,e.g.,x=[x1,x2,x3 

]T. 

A scalar can be thought of as a matrix with only a single entry. From this, we can see that a scalar is its own 

transpose: a = aT. We can add matrices to each other, as long as they have the same shape, just by adding 

their corresponding elements: C = A +B where Ci,j = Ai,j + Bi,j.We can also add a scalar to a matrix or 

multiply a matrix by a scalar, just by performing that operation on each element of a matrix: D = a · B + c 

where Di,j= a ·Bi,j+ c. 

In the context of deep learning, we also use some less conventional notation. We allow the addition of 

matrix and a vector, yielding another matrix: C = A + b, where Ci,j= Ai,j+ bj. In other words, the vector b is 

added to each row of the matrix. This shorthand eliminates the need to define a matrix with b copied into 

each row before doing the addition. This implicit copying of b to many locations is called broadcasting. 

 
 Probability Distributions 

Probability can be seen as the extension of logic to deal with uncertainty. Logic provides a set of formal 

rules for determining what propositions are implied to true or false given the assumption that someother set 

of propositions is true or false. Probability theory provides a set of formal rules for determining the 

likelihood of a proposition being true given the likelihood of other propositions. 

A random variable is a variable that can take on different values randomly. Random variables may be 

discrete or continuous. A discrete random variable is one that has a finite or countably infinite number of 

states. Note that these states are not necessarily the integers; they can also just be named states that are not 

considered to have any numerical value. A continuous random variable is associated with a real value. 

A probability distribution is a description of how likely a random variable or set of random variables is to 

take on each of its possible states. The way we describe probability distributions depends on whether the 

variables are discrete or continuous. 

 

 Discrete Variables and Probability Mass Functions 
 

Aprobabilitydistributionoverdiscretevariablesmaybedescribedusinga probabilitymassfunction(PMF). We 

typically denote probability mass functions with a capital P. Often we associate each random variable with a 

different probability mass function and the reader must infer which probability mass function to use based 

on the identity of the random variable, rather than the name of the function; P(x) is usually not the same as 

P(y). 

The probability mass function maps from a state of a random variable to the probability of that random 

variable taking on that state. The probability that x = x is denoted as P (x),with a probabilityof 1 indicating 

that x = x is certain and a probability of 0 indicating that x = x is impossible. Sometimes to disambiguate 

which PMF to use, we write the name of the random variable explicitly: P (x = x). Sometimes we define a 

variable first, then use ~notation to specify which distribution it follows later: x ~ P(x). 

Probability mass functions can act on many variables at the same time. Such a probability distribution over 

many variables is known as ajoint probability distribution. P (x = x, y =y) denotes the probability that x =x 

and y = y simultaneously. We may also write P(x, y) for brevity. To be a probability mass function on a 

random variable x, a function P must satisfy the following properties: 
 

 

 



 

 

• xX, 0 ≤ P(x) ≤ 1. An impossible event has probability 0 and no state can be less 

probablethan that. Likewise,an event that is guaranteed to happen has probability1, and no 

state can have a greater chance of occurring. 

• xX 
P(x) =1

.We refers to this property as being normalized. Without this property, we 

could obtain probabilities greater than one by computing the probability of one of many 

events occurring. 

Forexample, considerasingle discreterandom variable xwith k different states.We canplaceauniform distribution 

on x—that is, make each of its states equally likely—by setting its probabilitymass function to 
 

 

1 
 

 

foralli.Wecanseethatthisfitstherequirementsforaprobabilitymassfunction.Thevaluek 

becausekis apositiveinteger.Wealsoseethat 

 

ispositive 

 

sothedistributionisproperlynormalized.Let‘sdiscussfewdiscreteprobabilitydistributionsas follows: 

 
 Binomial Distribution 

 

The binomial distribution is a discrete distribution with a finite number of possibilities. When observing a 

series of what are known as Bernoulli trials, the binomial distribution emerges. A Bernoulli trial is a 

scientific experiment with only two outcomes: success or failure. 

Consider a random experiment in which you toss a biased coin six times with a 0.4 chance of getting 

head.If'gettingahead'isconsidereda‗success‘,thebinomialdistributionwillshowtheprobabilityofrsuccesses for 

each value of r. 

The binomial random variable represents the number of successes (r) in n consecutive independentBernoulli 

trials. 

 

 

 



 

 

 Bernoulli's Distribution 
 

The Bernoulli distribution is a variant of the Binomial distribution in which only one experiment is 

conducted,resultinginasingleobservation.Asaresult, theBernoullidistributiondescribeseventsthathave exactly 

two outcomes. 

Here‘saPythonCodetoshowBernoullidistribution: 

 
TheBernoullirandomvariable'sexpectedvalueisp,whichisalsoknownastheBernoullidistribution's parameter. 

Theexperiment'soutcomecanbeavalueof0or1.Bernoullirandomvariablescanhavevaluesof0 or1. The pmf 

function is used to calculate the probability of various random variable values. 

 

 
 Poisson Distribution 

 

A Poisson distribution is a probability distribution used in statistics to show how many times an event is 

likely to happen over a given period of time. To put it another way, it's a count distribution. Poisson 

distributions are frequently used to comprehend independent events at a constant rate over a given time 

interval. Siméon Denis Poisson, a French mathematician, was the inspiration for the name. 

 



 

 

ThePythoncodebelowshowsasimpleexampleofPoissondistribution.Ithastwo parameters: 

1. Lam:Knownnumberofoccurrences 

2. Size:Theshapeofthereturnedarray 

Thebelow-givenPythoncodegeneratesthe1x100distributionforoccurrence5. 

 

 Continuous Variables and Probability Density Functions 
 

When working with continuous random variables, we describe probability distributions using a probability 

density function (PDF)rather than a probability mass function. To be a probability density function, a 

function p must satisfy the following properties: 

• Thedomainofmustbe the setof pallpossible statesofx. 

• xX,P(x)≥ 0. Notethatwedonot requirep(x) ≤ 1. 

• p(x)dx=1. 

A probability density function p(x) does not give the probability of a specific state directly, instead the 

probability of landing inside an infinitesimal region with volume δx is given by p(x)δx. 

We can integrate the density function to find the actual probability mass of a set of points. Specifically, the 

probabilitythatxliesinsomesetSisgivenbytheintegralofp(x)overthatset.Intheunivariateexample, 

theprobabilitythat xliesin theinterval[a, b] isgiven by p(x)dx. 
a,b 

For an example of a probability density function corresponding to a specific probability density over a 

continuous random variable, consider a uniform distribution on an interval of the real numbers. We can do 

this with a function u(x; a, b), where a and b are the endpoints of the interval, with b > a. The ―;‖ notation 

means―parametrizedby‖;weconsiderxtobetheargumentofthefunction,whileaandbareparameters 
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 Normal Distribution 

 

 

Normal Distribution is one of the most basic continuous distribution types. Gaussian distribution is another 

name for it. Around its mean value, this probability distribution is symmetrical. It also demonstrates that 

data close to the mean occurs more frequently than data far from it. Here, the mean is 0, and the variance isa 

finite value. 

In the example, you generated100 random variables rangingfrom 1 to 50. Afterthat, you created a function 

to define the normal distribution formula to calculate the probability density function. Then, you have 

plotted the data points and probability density function against X-axis and Y-axis, respectively. 

 
 

  
  
 Continuous Uniform Distribution 

 

 

In continuous uniform distribution, all outcomes are equally possible. Each variable has the same chance of 

being hit as a result. Random variables are spaced evenly in this symmetric probabilistic distribution, with a 

1/ (b-a) probability. 

The below Python code is a simple example of continuous distribution taking 1000 samples of random 

variables. 
 

 



 

 

 

 
 

 Log-Normal  Distribution 
 

Therandomvariableswhoselogarithmvaluesfollowanormaldistributionareplottedusingthis 

distribution.TakealookattherandomvariablesXandY.ThevariablerepresentedinthisdistributionisY 

=ln(X),wherelndenotesthenaturallogarithmofXvalues. 

Thesizedistributionofraindroplets canbeplottedusinglognormal distribution. 

 Exponential Distribution 
In a Poisson process, an exponential distribution is a continuous probability distribution that describes 

thetime between events (success, failure, arrival, etc.). 

Youcan seeinthebelow examplehowto getrandomsamplesofexponentialdistributionandreturnNumpy array 

samples by using the numpy.random.exponential() method. 

 

 

 

 

 



 

 

 

 

4. Gradient based Optimization 

 

 

Optimization means minimizing or maximizing any mathematical expression. Optimizers are algorithms or 

methods used to update the parameters of the network such as weights, biases, etc. to minimize the losses. 

Therefore, Optimizers are used to solve optimization problems byminimizing the function i.e, loss function 

in the case of neural networks. 

 

Here, we‘re going to explore and deep dive into the world of optimizers for deep learning models. We will 

also discuss the foundational mathematics behind these optimizers and discuss their advantages, and 

disadvantages. 

 

 

 



 

 

 Roleofan Optimization 
 

As discussed above, optimizers update the parameters of neural networks such as weights and learning rate 

to minimize the loss function. Here, the loss function acts as a guide to the terrain telling optimizer if it is 

moving in the right direction to reach the bottom of the valley, the global minimum. 

 

 The Intuition behind Optimization 
 

Let us imagine a climber hiking down the hill with no sense of direction. He doesn‘t know the right way to 

reach the valley in the hills, but, he can understand whether he is moving closer (going downhill) or further 

away (uphill) from his final destination. If he keeps taking steps in the correct direction, he will reach to his 

aim i.,e the valley. 

 

 Batch Gradient Descent 
Gradient descent algorithm is an optimization algorithmwhich is used to minimize the function. The 

functionwhichissettobeminimizediscalledasan objectivefunction.For machinelearning, theobjective 

functionis also termed as thecost function orloss function. It is the loss function which is optimized 

(minimized) and gradient descent is used to find the most optimal value of parameters / weights which 

minimizes the loss function. Loss function, simply speaking, is the measure of the squareddifference 

between actual values and predictions. In order to minimize the objective function, the most optimal 

value of the parameters of the function from large or infinite parameter space are found. 

Gradient of a function at any point is the direction of steepest increase or ascent of the 

function atthat point. 

Based on above,the gradient descent of a function at any point, thus, represent the direction ofsteepest 

decrease or descent of function at that point. 

Inorderto findthegradientofthefunctionwithrespecttoxdimension,takethe derivativeof thefunctionwith 

respect to x , then substitute the x-coordinate of the point of interest in for the x values in the derivative. 

Once gradient of the function at any point is calculated, the gradient descent can becalculated by 

multiplying the gradient with -1. Here are the steps of finding minimum of the function using gradient 

descent: 

• Calculate the gradient by taking the derivative of the function with respect to the specific 

parameter. In case, there are multiple parameters, take the partial derivatives with respect to 

different parameters. 

• Calculate the descent value for different parameters by multiplying the value of derivatives with 

learning or descent rate (step size) and -1. 

• Update the value of parameter by adding up the existing value of parameter and the descent 

value. The diagram below represents the updation of parameter [latex]\theta[/latex] with the 

value of gradient in the opposite direction while taking small steps. 

Gradientdescentisanoptimizationalgorithmthat‘susedwhentrainingdeeplearningmodels.It‘s basedon 

aconvexfunctionandupdatesitsparametersiterativelytominimizeagiven functiontoitslocalminimum. 

 

 

 

 



 

 

 

The notation used in the above Formula is given below, 

• α isthelearningrate, 

• J isthecostfunction,and 

• ϴistheparameterto beupdated. 

Aswesee,thegradientrepresentsthepartialderivativeofJ(costfunction) withrespecttoϴj 

Note that, as we reach closer to the global minima, the slope(gradient) of the curve becomes less and less 

steep, which results in a smaller value of derivative, which in turn reduces the step size(learning rate) 

automatically. 

It is themost basicbut most usedoptimizerthat directlyusesthederivative oftheloss function and learning rate 

to reduce the loss function and tries to reach the global minimum. 

 

• Linear Regression, 

• Classification Algorithms, 

• Back-propagation in Neural Networks,etc. 

The above-described equation calculates the gradient of the cost function J(θ) with respect to the 

networkparameters θ for the entire training dataset: 

 

Our aim is to reach at the bottom of the graph (Cost vs weight), or to a point where we can no longer move 

downhill–a local minimum. 

 

➢ Role of Gradient 
In general, Gradient represents the slope of the equation while gradients are partial derivatives and they 

describe the change reflected in the loss function with respect to the small change in parameters of the 

function. Now, this slight change in loss functions can tell us about the next step to reduce the output of the 

loss function. 



 

 

 

➢ Role of Learning Rate 

Learning rate represents the size of the steps our optimization algorithm takes to reach the global minima.To 

ensure that the gradient descent algorithm reaches the local minimum we must set the learning rate to an 

appropriate value, which is neither too low nor too high. 

Takingverylargestepsi.e,alarge value ofthelearningrate mayskipthe global minima,andthemodelwill never 

reach the optimal value for the loss function. On the contrary, taking very small steps i.e, a smallvalue of 

learning rate will take forever to converge. 

 

. 

As we discussed, the gradient represents the direction of increase. But our aim is to find the minimum point 

in the valley so we have to go in the opposite direction of the gradient. Therefore, we update parameters in 

the negative gradient direction to minimize the loss. 

 

Algorithm:θ=θ−α⋅∇J(θ) 
Incode,BatchGradientDescentlookssomethinglikethis: 
forx in range(epochs): 

params_gradient=find_gradient(loss_function,data,parameters) 

parameters=parameters-learning_rate*params_gradient 

➢ Advantages of Batch GradientDescent 

• Easycomputation 

• Easyto implement 

• Easyto understand 

➢ Disadvantage of Batch Gradient Descent 

• Maytrapatlocal minima 

• Weightsarechangedaftercalculatingthegradientonthewholedataset.So,ifthedatasetistoo large 

then this may take years to converge to the minima 

  

 Stochastic Gradient Descent 
 

To overcome some of the disadvantages of the GD algorithm, the SGD algorithm comes into the picture as 

an extension of the Gradient Descent. One of the disadvantages of the Gradient Descent algorithm is that it 

requiresalotofmemorytoloadtheentiredatasetatatimetocomputethederivativeofthelossfunction. 

 



 

 

So, In the SGD algorithm, we compute the derivative by taking one data point at a time i.e, tries to update 

the model‘s parameters more frequently. Therefore, the model parameters areupdated after the computation 

of loss on each training example. 

So, let‘s have a dataset that contains 1000 rows, and when we apply SGD it will update the model 

parameters 1000 times in one complete cycle of a dataset instead of one time as in Gradient Descent. 

 

Wewantthetraining,evenmore,faster,sowetakeaGradientDescentstepforeachtrainingexample. Let‘s 

seetheimplicationsintheimage below: 

 

 

• In the left diagram of the above picture, we have SGD (where 1 per step time) we take a Gradient 
Descent step for each example and on the right diagram is GD(1 step per entire training set). 

 

• SGD seems to be quite noisy, but at the same time it is much faster than others and also it might be 

possible that it not converges to a minimum. 

 

 

It is observed that in SGD the updates take more iteration compared to GD to reach minima. On the 

contrary, the GD takes fewer steps to reach minima but the SGD algorithm is noisier and takes more 

iterations as the model parameters are frequently updated parameters having high variance and fluctuations 

in loss functions at different values of intensities. 

Its code snippet simplyadds a loop over thetraining examples and finds the gradient with respect to each of 

the training examples. 

 

 

forx in range(epochs): 

np.random.shuffle(data) 

forexampleindata: 

params_gradient=find_gradient(loss_function,example,parameters) 

parameters=parameters-learning_rate*params_gradient 



 

 

 

• To reach the same convergence as that of gradient descent, we need to slowlyreduce the value 

of the learning rate 

 

 Mini-Batch Gradient Descent 
To overcome the problem of large time complexity in the case of the SGD algorithm. MB-GD algorithm 

comes into the picture as an extension of the SGD algorithm. It‘s not all but it also overcomes the problem 

of Gradient descent. Therefore, It‘s considered the best among all the variations of gradient descent 

algorithms. MB-GD algorithm takes a batch of points or subset of points from the dataset to compute 

derivate. 
 

 

It is observed that the derivative of the loss function for MB-GD is almost the same as a derivate of the loss 

function for GD after some numberofiterations. But the numberof iterations to achieve minima is large for 

MB-GD compared to GD and the cost of computation is also large. 

Therefore, the weight updation is dependent on the derivate of loss for a batch of points. The updates in the 

case of MB-GD are much noisy because the derivative is not always towards minima. 

It updatesthe model parametersafter everybatch. So, this algorithm divides thedataset into various batches 

and after every batch, it updates the parameters. 

Algorithm:θ=θ−α⋅∇J(θ;B(i)),where{B(i)}arethebatchesoftrainingexamples 
nthecodesnippet,insteadofiteratingoverexamples,wenowiterateovermini-batchesofsize30: 

forx in range(epochs): 

np.random.shuffle(data) 

forbatchinget_batches(data,batch_size=30): 

params_gradient=find_gradient(loss_function,batch,parameters) 

parameters=parameters-learning_rate*params_gradient 

 

➢ Disadvantages of Mini Batch Gradient Descent 

• The parameter updating in MB-SGD is much noisy compared to the weight updating in the GD 

algorithm 

• ComparedtotheGDalgorithm,ittakesalongertimetoconverge 

• Maygetstuckatlocal minima 
 

 



 

 

4.3.5 Challenges with all types of Gradient-based Optimizers 
Optimum Learning Rate: If we choose the learning rate as a too-small value, then gradient descent may 

takeaverylongtimetoconverge. Formoreabout thischallenge,refertotheabovesectionof LearningRate which 

we discussed in the Gradient Descent Algorithm. 

Constant Learning Rate: For all the parameters, they have a constant learning rate but there may be some 

parameters that we may not want to change at the same rate. 

Localminimum:Maygetstuckatlocalminimai.e.,notreachuptothelocal minimum. 

 

5. Basics in Machine Learning 

 Need for machine learning: 

Machine learning is important because it allows computers to learn from data and improve theirperformance 

on specific tasks without being explicitly programmed. This ability to learn from data and 

adapttonewsituationsmakesmachinelearningparticularlyusefulfortasksthatinvolvelargeamounts of data, 

complex decision-making, and dynamic environments. 

• Predictive modeling: Machine learning can be used to build predictive models that can help 

businesses make better decisions. For example, machine learning can be used to predict which 

customersaremostlikelytobuyaparticularproduct,orwhichpatientsaremostlikelytodevelop a certain 

disease. 

• Natural language processing: Machine learning is used to build systems that can understand and 

interpret human language. This isimportant for applications such as voice recognition, chatbots,and 

language translation. 

• Computervision: Machinelearningisusedtobuildsystemsthatcanrecognizeandinterpret 

imagesandvideos.Thisisimportantforapplicationssuchasself-drivingcars,surveillance systems, and 

medical imaging. 

• Fraud detection: Machine learning can be used to detect fraudulent behavior in financialtransactions, 

online advertising, and other areas. 

• Recommendation systems:Machine learning can be used to build recommendation systems that 

suggestproducts,services,orcontenttousersbasedontheir pastbehaviorandpreferences. 

Overall, machine learning has become an essential tool for many businesses and industries, as it enables 

them to make better use of data, improve their decision-making processes, and deliver more personalized 

experiences to their customers. 

 Definition and Workflow: 
Machine Learning is a branch of artificial intelligence that develops algorithms by learning the hidden 

patterns of the datasets used it to make predictions on new similar type data, without being explicitly 

programmed for each task. 

MachineLearningworksinthefollowingmanner. 

• Forward Pass: IntheForwardPass,themachinelearningalgorithmtakesininputdataand 

producesanoutput. Depending onthe modelalgorithm itcomputes the predictions. 

• Loss Function: The loss function, also known as the error or cost function, is used to evaluate the 

accuracy of the predictions made by the model. The function compares the predicted output of the 

modeltotheactualoutputandcalculatesthedifferencebetweenthem.Thisdifferenceisknown 
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as error or loss. The goal of the model is to minimize the error or loss function by adjusting its 

internal parameters. 

• Model Optimization Process: The model optimization process is the iterative process of adjustingthe 

internal parameters of the model to minimize the error or loss function. This is done using an 

optimization algorithm, such as gradient descent. The optimization algorithm calculates thegradient 

of the error function with respect to the model‘s parameters and uses this information to adjust the 

parameters to reduce the error. The algorithm repeats this process until the error is minimized to a 

satisfactory level. 

Oncethemodelhasbeentrainedandoptimizedonthetrainingdata,itcanbeusedtomakepredictions 

onnew,unseendata.Theaccuracyofthemodel‘spredictionscanbeevaluatedusingvarious performance metrics, 

such as accuracy, precision, recall, and F1-score. 

 

 Machine Learning life cycle: 
Thelifecycleofamachinelearningprojectinvolvesaseriesofstepsthatinclude: 

1. Study the Problems: The first step is to study the problem. This step involves understanding the 

business problem and defining the objectives of the model. 

2. Data Collection: When the problem is well-defined, we can collect the relevant data required forthe 

model.Thedatacouldcomefromvarioussourcessuchasdatabases,APIs,orwebscraping. 

3. Data Preparation: When our problem-related data is collected. then it is a good idea to check the 

data properly andmakeitinthe desiredformatsothatitcanbe usedby the modeltofindthe hidden patterns. 

This can be done in the following steps: 

• Data cleaning 

• Data Transformation 

• Explanatory Data Analysis and Feature Engineering 

• Splitthedatasetfortrainingandtesting. 

4. Model Selection: The next step is to select the appropriate machine learning algorithm that is 

suitableforourproblem.Thissteprequiresknowledgeofthestrengthsandweaknessesof different 

algorithms. Sometimes we use multiple models and compare their results and select thebest model as 

per our requirements. 

5. ModelbuildingandTraining:Afterselectingthealgorithm,wehavetobuildthemodel. 

a. Inthecaseoftraditionalmachinelearningbuildingmodeiseasyitisjustafew hyperparameter tunings. 

b. Inthecaseofdeeplearning,wehavetodefinelayer-wisearchitecturealongwithinputand 

outputsize,numberofnodesineachlayer, lossfunction,gradient descent optimizer,etc. 

c. Afterthatmodelistrainedusingthepreprocesseddataset. 

6. Model Evaluation: Once the model is trained, it can be evaluated on the test dataset to determineits 

accuracy and performance using different techniques like classification report, F1 score, precision, 

recall, ROC Curve, Mean Square error, absolute error, etc. 

7. Model Tuning: Based on the evaluation results, the model may need to be tuned or optimized to 

improve its performance. Thisinvolvestweaking the hyperparameters ofthe model. 

8. Deployment: Oncethemodelistrainedandtuned,itcanbedeployedinaproduction environment to make 

predictions on new data. This step requires integrating the model into an existing software system or 

creating a new system for the model. 

 



 

 

9. Monitoring and Maintenance: Finally, it is essential to monitor the model‘s performance in the 

production environment and perform maintenance tasks as required. This involves monitoring for 

datadrift,retraining themodelasneeded,andupdatingthemodelasnewdatabecomesavailable. 

 

 Types of Machine Learning 
 

1. Supervised Machine Learning 

2. Unsupervised Machine Learning 

3. Reinforcement Machine Learning 
 

 

 Supervised Machine Learning: 

Supervisedlearningisatypeofmachinelearninginwhichthealgorithmistrainedonthelabeled 

dataset.Itlearnstomapinputfeaturestotargetsbasedonlabeledtrainingdata.Insupervisedlearning, the algorithm 

is provided with input features and corresponding output labels, and it learns to generalize from this data to 

make predictions on new, unseen data. 

 

• Regression: Regression is a type of supervised learning where the algorithm learns to predict 

continuous values based on input features. The output labels in regression are continuous values, 

such as stock prices, and housing prices. The different regression algorithms in machine learningare: 

Linear Regression, Polynomial Regression, Ridge Regression, Decision Tree Regression, Random 

Forest Regression, Support Vector Regression, etc 

• Classification: Classification is a type of supervised learning where the algorithm learns to assign 

inputdatatoaspecificcategoryorclassbasedoninputfeatures.Theoutputlabelsin 

classificationarediscretevalues.Classificationalgorithmscanbebinary,wheretheoutputisone 

oftwopossibleclasses,ormulticlass,wheretheoutputcanbeoneofseveralclasses.The different 

Classification algorithms in machine learning are: Logistic Regression, Naive Bayes, Decision Tree, 

Support Vector Machine (SVM), K-Nearest Neighbors (KNN), etc 
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 Unsupervised Machine Learning: 

Unsupervised learning is a typeof machine learning where the algorithm learns to recognize patterns indata 

without being explicitly trained using labeled examples. The goal of unsupervised learning is to discover the 

underlying structure or distribution in the data. 

• Clustering: Clustering algorithms group similar data points together based on their 

characteristics.Thegoalistoidentifygroups,orclusters,ofdatapointsthataresimilartoeachother,while 

beingdistinctfromothergroups.SomepopularclusteringalgorithmsincludeK-means, Hierarchical 

clustering, and DBSCAN. 

• Dimensionality reduction:Dimensionalityreductionalgorithmsreducethenumberofinput variables ina 

dataset while preserving as muchof the original information as possible. This 

isusefulforreducingthecomplexityofadatasetandmakingiteasiertovisualizeandanalyze. 

SomepopulardimensionalityreductionalgorithmsincludePrincipalComponentAnalysis(PCA), t-SNE, 

and Autoencoders. 

 Reinforcement Machine Learning 
Reinforcementlearningisatypeofmachinelearningwhereanagentlearnstointeractwithan environment by 

performing actions and receiving rewards or penalties based on its actions. The goal of reinforcement 

learning is to learn a policy, which is a mapping from states to actions, that maximizes the expected 

cumulative reward over time. 

 

• Model-based reinforcement learning:In model-based reinforcement learning, the agent learns a 

model of the environment, including the transition probabilities between states and the rewards 

associatedwitheachstate-actionpair.Theagentthenusesthismodeltoplanitsactionsinorder to maximize 

its expected reward. Some popular model-based reinforcement learning algorithms include Value 

Iteration and Policy Iteration. 

• Model-freereinforcementlearning:Inmodel-freereinforcementlearning,theagentlearnsa 

policydirectlyfromexperiencewithoutexplicitlybuildingamodeloftheenvironment.The 

agentinteractswiththeenvironmentandupdatesitspolicybasedontherewardsitreceives. Some popular 

model-free reinforcement learning algorithms include Q-Learning, SARSA, andDeep Reinforcement 

Learning. 

 Capacity 
The capacity of a network refers to the range of the types of functions that the model can approximate. 

Informally, a model‘s capacity is its ability to fit a wide variety of functions. A model with less capacitymay 

not be able to sufficiently learn the training dataset. 

A model with more capacity can model more different types of functions and may be able to learn afunction 

to sufficiently map inputs to outputs in the training dataset. Whereas a model with too much capacity may 

memorize the training dataset and fail to generalize or get lost or stuck in the search for a 

suitablemappingfunction.Generally,wecanthinkofmodel capacityas a controloverwhetherthe modelis likely 

to underfit or overfit a training dataset. 

Thecapacityof aneuralnetworkcanbecontrolled bytwo aspects ofthe model: 

• Number of Nodes 

• Number of Layers 

A model with more nodes or more layers has a greater capacity and, in turn, is potentially capable of 

learning a larger set of mapping functions. A model with more layers and more hidden units per layer has 

higher representational capacity; it is capable of representing more complicated functions. 

 

 



 

 

The number of nodes in a layer is referred to as the width and the number of layers in a model is referred to 

as itsdepth. Increasing the depth increases the capacityof the model. Training deep models, e.g. those with 

many hidden layers, can be computationally more efficient than training a single layer network with a vast 

number of nodes. 

 Over-fittingandunder-fitting 
Over-fitting and under-fitting are two crucial concepts in machine learning and are the prevalent causes for 

the poor performance of a machine learning model. In this topic we will explore over-fitting and under- 

fitting in machine learning. 

➢ Over-fitting 
When a model performs very well for trainingdatabut has poor performance with test data (new data), it is 

known as over-fitting. In this case, the machine learning model learns the details and noise in the training 

data such that it negativelyaffects the performance of the model on test data. Over-fittingcan happen due to 

low bias and high variance. 
 

➢ Reasons for over-fitting 
• Datausedfortrainingisnotcleanedandcontainsnoise(garbagevalues)init 

• Themodelhasahigh variance 

• Thesizeofthetrainingdataset usedisnot enough 

• Themodel is too complex 

 

➢ Methods to tackleover-fitting 
• Using K-fold cross-validation 

• Using Regularization technique such as Lasso and Ridge 

• Trainingmodelwithsufficientdata 

• Adoptingensemblingtechniques 

➢ Under-fitting 
When a model has not learned the patterns in the training data well and is unable to generalize well on the 

new data, it is known as under-fitting. An under-fit model has poor performance on the training data andwill 

result in unreliable predictions. Under-fitting occurs due to high bias and low variance. 
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Nowthatwehaveunderstoodwhatover-fittingandunder-fittingare,let‘sseewhatagoodfitmodelisin 

thistutorialonover-fittingandunder-fittinginmachinelearning. 

➢ Goodfitinmachinelearning 
To find the good fit model, we need to look at the performance of a machine learning model over time with 

the training data. As the algorithm learns over time, the error for the model on the training data reduces, as 

well as the error on the test dataset. If we train the model for too long, the model maylearn the unnecessary 

details and thenoisein thetrainingset and hencelead to over-fitting. In orderto achievea good fit, weneed to 

stop training at a point where the error starts to increase. 
 

 

 

 



 

 

 Hyper-parameter 

Hyper-parameters are defined as the parameters that are explicitly defined by the user to control the 

learning process. The value of the Hyper-parameter is selected and set by the machine learning engineer 

before the learning algorithm begins training the model. These parameters are tunable and can directlyaffect 

how well a model trains. Hence, these are external to the model, and their values cannot be changed 

during the training process. Some examples of hyper-parameters in machine learning: 

• Learning Rate 

• Number of Epochs 

• Momentum 

• Regularizationconstant 

• Numberofbranchesinadecisiontree 

• Numberofclustersinaclusteringalgorithm(likek-means) 

 Model Parameters: 

Model parameters are configuration variables that are internal to the model, and a model learns them on its 

own. For example, Weights or Coefficients of dependent variables in the linear regression model. 

Weights or Coefficients of independent variables in SVM, weight, and biases of a neural network, 

cluster centroid in clustering. Some key points for model parameters are as follows: 

• They are used by the model for making predictions 

• Theyarelearnedbythe model from thedata itself 

  

 Model Hyper-parameters: 

• Hyper-parameters are those parameters that are explicitly defined by the user tocontrol the 

learningprocess. Some key points for model parameters are as follows: 

• Theseareusuallydefined manuallybythe machine learningengineer. 

• One cannot know the exact best value for hyper-parameters for the given problem. The best value can 

be determined either by the rule of thumb or by trial and error. 

• Some examples of Hyper-parameters arethe learning rate for training a neural network, K in the 

KNN algorithm 

 Difference between ModelandHyperparameters 
Thedifferenceisastabulatedbelow. 

MODELPARAMETERS HYPER-PARAMETERS 

Theyarerequiredformakingpredictions 
Theyarerequiredforestimatingthemodel 
parameters 

Theyareestimatedbyoptimization 
algorithms(GradientDescent,Adam,Adagrad
) 

Theyareestimatedbyhyperparametertuning 

They are not setmanually They are setmanually 

The final parameters found after 

training will decide how the model will 

perform on unseen data 

The choice of hyperparameters decide 

how efficient the training is. In gradient 

descent the learning rate decide how 

efficient and accurate the optimization 

process is in estimating the 
parameters 
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 Categories of Hyper-parameters 
Broadlyhyper-parameterscanbedividedintotwocategories,whicharegiven below: 

• Hyper-parameter for Optimization 

• Hyper-parameter for Specific Models 

 Hyper-parameter for optimization 

The process of selecting the best hyper-parameters to use is known as hyper-parameter tuning, and the 

tuning process is also known as hyper-parameter optimization. Optimization parameters are used for 

optimizing the model. 

 

 

• Learning Rate:The learning rate is the hyper-parameter in optimization algorithms that controls how 

much the model needs to change in response to the estimated error for each time when the model's 

weights are updated. It is one of the crucial parameters while building a neural network, and also it 

determines the frequencyofcross-checkingwith model parameters. Selectingthe optimized learning 

rate is a challenging task because if the learning rate is very less, then it may slow down the training 

process. On the other hand, if the learning rate is too large, then it may not optimize the model 

properly. 

• Batch Size:To enhance the speed of the learning process, the training set is divided into different 

subsets, which are known as a batch. 

• Number of Epochs:An epoch can be defined as the complete cycle for training the machine learning 

model. Epoch represents an iterative learning process. The number of epochs varies from model to 

model, and various models are created with more than one epoch. To determine the right number of 

epochs, a validation error is taken into account. The number of epochs is increased until there is a 

reduction in a validation error. If there is no improvement in reduction error for the consecutive 

epochs, then it indicates to stop increasing the number of epochs. 

5.7.1.2Hyper-parameterforSpecificModels 

Hyper-parametersthat areinvolved in thestructureofthe model areknown as hyper-parametersforspecific 

models. These are given below: 

• A number of Hidden Units:Hidden units are part of neural networks, which refer to the components 
comprising the layers of processors between input and output units in a neural network. 

• Number of Layers:A neural network is made up of verticallyarranged components, which are called 

layers. There are mainlyinput layers, hidden layers, and output layers. A 3-layered neural 

networkgivesabetterperformancethana2-layerednetwork.ForaConvolutionalNeuralnetwork,a greater 

number of layers make a better model. 



 

 

 Validation Sets 

A validation set is a set of data used to train artificial intelligence (AI) with the goal of finding and 

optimizing the best model to solve a given problem. Validation sets are also known as dev sets. Asupervised 

AI is trained on a corpus of training data. 

Training,tuning,modelselectionandtestingareperformedwiththreedifferentdatasets: thetrainingset,the 

validation set and the testing set. Validation sets are used to select and tune the final AI model. 

Training sets make up the majority of the total data, averaging 60%. Most of the training data sets are 

collected from several resources and then pre-processed and organized to provide proper performance ofthe 

model. Type of training data sets determines the ability of the model to generalize .i.e. the better the quality 

and diversity of training data sets, the better will be the performance of the model. 

Validation set makes up about 20% of the bulk of data used. The validation set contrasts with training sets 

and test sets is an intermediate phase used for choosing the best model and optimizing it. Validation is 

sometimes considered a part of the training phase. In this phase that parameter tuning occurs for optimizing 

the selected model.Over-fittingis checked and avoided in the validation set to eliminate errors that can be 

caused for future predictions and observations to a specific dataset. 

Testing sets make up 20% of the bulk of the data. These sets are ideal data and results with which to verify 

correct operation of an AI. The test set is ensured to be the input data grouped together with verified correct 

outputs, generally by human verification. This ideal setis used to test results and assess the performance of 

the final model. 

 

 Cross Validation 
Cross-validation is a technique for validating the model efficiency by training it on the subset of input data 

and testing on previously unseen subset of the input data. Hence the basic steps of cross-validations are: 

o Reserveasubsetofthedatasetasavalidationset. 

o Providethetrainingtothemodelusingthetrainingdataset. 

o Now, evaluatemodel performanceusingthevalidation set. Ifthemodel performs well with the 
validation set, perform the further step, else check for the issues. 

 Methods used for Cross-Validation 
Therearesomecommonmethodsthatareusedforcross-validation.These methodsaregiven below: 

1. ValidationSetApproach 

2. Leave-P-outcross-validation 

3. Leaveoneoutcross-validation 

4. K-foldcross-validation 

5. Stratifiedk-foldcross-validation 

 Validation Set Approach 
We divide our input dataset into a training set and test or validation set in the validation set approach. Both 

the subsets are given 50% of the dataset. 

But it has one of the big disadvantages that we are just using a 50% dataset to train our model, so the model 

may miss out to capture important information of the dataset. It also tends to give the underfitted model. 

 Leave-P-outcross-validation 
In this approach, the p datasets are left out of the training data. It means, if there are total n datapoints in the 

original input dataset, then n-p data points will be used as the training dataset and the p data points as the 

validation set. This complete process is repeated for all the samples, and the average error is calculated to 

know the effectiveness of the model. 
 

 



 

 

  
 Leave one outcross-validation 
This method is similar to the leave-p-out cross-validation, but instead of p, we need to take 1 dataset out of 

training. It means, in this approach, for each learning set, only one datapoint is reserved, and the remaining 

dataset is used to train the model. This process repeats for each datapoint. Hence for n samples, we get n 

different training set and n test set. It has the following features: 

• This approach leads to high variation in testing the effectiveness of the model as we iteratively 

check against one data point. 

 

 K-Fold Cross-Validation 
 

K-fold cross-validation approach divides the input dataset into K groups of samples of equal sizes. These 

samples are calledfolds. For each learning set, the prediction function uses k-1 folds, and the rest of the 

folds are used forthe test set. This approach is a verypopular CV approach because it is easyto understand, 

and the output is less biased than other methods. 

Thestepsfork-foldcross-validationare: 

• SplittheinputdatasetintoKgroups 

• Foreach group: 

• Takeone groupasthereserveortestdataset. 

• Useremaininggroupsas thetrainingdataset 

• Fitthemodelon thetrainingsetandevaluatetheperformanceof themodelusingthe testset. 

 

Let's take an example of 5-folds cross-validation. So, the dataset is grouped into 5 folds. On 1stiteration, the 

first fold is reserved for test the model, and rest are used to train the model. On 2nditeration, the second fold 

is used to test the model, and rest are used to train the model. This process will continue until each fold isnot 

used for the test fold. 

Considerthebelow diagram: 
 

 Stratifiedk-fold cross-validation 
 

This technique is similar to k-fold cross-validation with some little changes. This approach works on 

stratification concept, it is a process of rearranging the data to ensure that each fold or group is a good 

representative of the complete dataset. To deal with the bias and variance, it is one of the best approaches. 

It can be understood with an example of housing prices, such that the price of some houses can be much 

high than other houses. To tackle such situations, a stratified k-fold cross-validation technique is useful. 

 



 

 

 Holdout Method 
This method is the simplest cross-validation technique among all. In this method, we need to remove a 

subset of the training data and use it to get prediction results by training it on the rest part of the dataset. 

The error that occurs in this process tells how well our model will perform with the unknown dataset. 

Although this approach is simple to perform, it still faces the issue of high variance, and it also produces 

misleading results sometimes. 

 Comparison of Cross-validationtotrain/testsplitinMachineLearning 

• Train/test split:The input data is divided into two parts, that are training set and test set on a 
ratio of 70:30, 80:20, etc. It provides a high variance, which is one of the biggest disadvantages. 

• Training Data:The training data is used to train the model, and the dependent variable is known. 

• Test Data:The test data is used to make the predictions from the model that is already trainedon 

the training data. This has the same features as training data but not the part of that. 

• Cross-Validation dataset:It is used to overcome the disadvantage of train/test split bysplitting 

the dataset into groups of train/test splits, and averaging the result. It can be used if we want to 

optimize our model that has been trained on the training dataset for the best performance. It is 

more efficient as compared to train/test split as every observation is used for the training and 

testing both. 

•  

 Limitations of Cross-Validation 
 

• For the ideal conditions, it provides the optimum output. But for the inconsistent data, it may 

produce a drastic result. So, it is one of the big disadvantages of cross-validation, as there is no 
certainty of the type of data in machine learning. 

• In predictive modeling, the data evolves over a period, due to which, it may face the differences 

between the training set and validation sets. Such as if we create a model for the prediction of 

stock market values, and the data is trained on the previous 5 years stock values, but the realistic 

future values for the next 5 years may drastically different, so it is difficult to expect the correct 

output for such situations. 

 Applications of Cross-Validation 

• This technique can be used to compare the performance of different predictive modeling 

methods. 

• Ithasgreatscopeinthemedicalresearch field. 

• It can also be used for the meta-analysis, as it is already being used by the data scientists in the 

field of medical statistics. 

 Estimators 

Inmachine learning, an estimator is an equation for picking the ―best,‖ or most likely accurate, data 

model based upon observations in realty. The estimator is the formula that evaluates a given quantity and 

generates an estimate. This estimate is then inserted into thedeep learningclassifiersystem to determine 

what action to take. Estimationisastatisticaltermforfindingsomeestimateofunknownparameter,given 

somedata.PointEstimation istheattemptto providethe singlebestpredictionofsomequantityofinterest. 

Quantity of interest can be: 

• A single parameter 

• A vector of parameters—e.g.,weightsinlinearregression 

• A whole function 
 

 



 

 

➢ Point estimator 

Todistinguishestimatesofparametersfromtheirtruevalue,apointestimateofaparameter θis represented by θˆ. 

Let {x(1) , x(2) ,..x(m)}be m independent and identically distributed data points. Then a point estimator is 

any function of the data: 

Thisdefinitionof apointestimator isverygeneralandallows the designerof anestimatorgreatflexibility. 
 

While almost any function thus qualifies as an estimator, a good estimator isa function whose output is 

close to the true underlying θ that generated the training data. 

Pointestimationcanalsorefertoestimationofrelationshipbetweeninputandtargetvariablesreferred to as 

function estimation. 

➢ Function Estimator 
Herewearetryingtopredictavariableygivenaninputvectorx.Weassumethatthereisafunctionf(x) 

thatdescribestheapproximaterelationshipbetweenyandx.Forexample, 

wemayassumethat y= f(x)+ε, where εstandsfor the partof ythatisnot predictablefrom x.In function 

estimation, we are interested in approximating fwith a model or estimate fˆ. Function estimation is really 

just the same as estimating a parameter θ; the function estimator fˆis simplya point estimator in function 

space. Ex: in polynomial regression we areeither estimating a parameterwor estimating a function mapping 

from x to y. 

 Uses of Estimators 
By quantifying guesses, estimators are how machine learning in theory is implemented in practice. Without 

the abilityto estimate the parameters of a dataset (such as the layers in a neural networkor the bandwidth in a 

kernel), there would be no wayfor an AI system to ―learn.‖ 

A simple example of estimators and estimation in practice is the so-called ―German Tank Problem‖ from 

WorldWarTwo.The Allieshadno waytoknowforsurehow manytankstheGermans werebuildingevery month. 

By counting the serial numbers of captured or destroyed tanks, allied statisticians created an estimator rule. 

This equation calculated the maximum possible number of tanks based upon the sequential serial numbers, 

and applies minimum varianceanalysis to generate the most likely estimate for how many new tanks 

German was building. 

 Types of Estimators 
Estimators come in two broad categories, point and interval. Point equations generate single value results, 

suchasstandarddeviation, that can beplugged into adeep learningalgorithm‘s classifier functions. Interval 

equations generate a range of likely values, such as a confidence interval, for analysis. 

Inaddition,each estimatorrulecanbetailoredto generatedifferenttypesof estimates: 

• Biased:Eitheranoverestimateoranunderestimate. 

• Efficient:Smallestvarianceanalysis.Thesmallestpossiblevarianceisreferredtoasthe―best‖ 

estimate. 

• Invariant:Lessflexibleestimatesthataren‘teasilychangedbydatatransformations. 

• Shrinkage:Anunprocessedestimatethat‘scombinedwithothervariablestocreatecomplex 

estimates. 

• Sufficient:Estimatingthetotalpopulation‘sparameterfromalimiteddataset. 

• Unbiased:Anexact-matchestimatevaluethatneitherunderestimatesnoroverestimates. 

 



 

 

  

 Bias and Variance 
 

 Errorsin Machine Learning 

  

In machine learning, an error is a measure of how accurately an algorithm can make predictions for the 

previously unknown dataset. On the basis of these errors, the machine learning model is selected that can 

perform best on the particular dataset. There are mainly two types of errors in machine learning, which are: 

 

 

Reducible errors:These errors can be reduced to improve the model accuracy. Such errors can further be 

classified into bias and Variance. 

Irreducible errors:These errors will always be present in the model regardless of which algorithm hasbeen 

used. The cause of these errors is unknown variables whose value can't be reduced. 

 

 Bias 
In general, a machine learning model analyses the data, find patterns in it and make predictions. While 

training, the model learns these patterns in the dataset and applies them to test data for prediction. While 

making predictions, a difference occurs between prediction values made by the model and actual 

values/expected values,and this difference is known as bias errors or Errors due to bias. It can be 

defined as an inability of machine learning algorithms such as Linear Regression to capture the true 

relationship between the data points. Each algorithm begins with some amount of bias because bias occurs 

from assumptions in the model, which makes the target function simple to learn. A model has either: 

• Low Bias:A low bias model will make fewer assumptions about the form of thetarget function. 

• High Bias:A model with a high bias makes more assumptions, and the model becomes unable 

to capture the important features of our dataset. A high bias model also cannot perform well 

on new data. 

Generally, a linear algorithm has a high bias, as it makes them learn fast. The simpler the algorithm, the 

higher the bias it has likely to be introduced. Whereas a nonlinear algorithm often has low bias. 

Some examples of machine learning algorithms with low bias are Decision Trees, k-Nearest Neighbours 

and Support Vector Machines. At the same time, an algorithm with high bias is Linear Regression, 

Linear Discriminant Analysis and Logistic Regression. 



 

 

 

 

 

➢ Ways to reduce High Bias: 

• Increase the input features as the model is under-fitted. 

• Decreasetheregularizationterm. 

• Usemorecomplex models,suchasincludingsomepolynomialfeatures. 

 Variance 
The variance would specify the amount of variation in the prediction if the different training data was used. 

Insimplewords,variancetellsthathowmucharandomvariableisdifferentfromitsexpected value. Ideally, a 

model should not vary too much from one training dataset to another, which means the algorithm should be 

good in understanding the hidden mapping between inputs and output variables. Variance errors are either 

of low variance or high variance. 

• Low variancemeans there is a small variation in the prediction of the target function with 

changes in the training data set. 

• High varianceshows a large variation in the prediction of the target function with changes in 

the training dataset. 

A model that shows high variance learns a lot and performs well with the training dataset, and does not 

generalize well with the unseen dataset. As a result, such a model gives good results with the trainingdataset 

but shows high error rates on the test dataset. 

Since, with high variance, the model learns too much from the dataset, it leads to over-fitting of the model. 

A model with high variance has the below problems: 

• Ahighvariancemodelleadstoover-fitting. 

• Increasemodel complexities. 

Usually,nonlinearalgorithmshavealot offlexibilitytofitthemodel,have high variance. 
 

 

 

Some examples of machine learning algorithms with low variance are, Linear Regression, Logistic 

Regression,andLineardiscriminantanalysis.Atthesametime,algorithmswithhighvariance are decision tree, 

Support Vector Machine, and K-nearest neighbours. 

. 
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 Different Combinations of Bias-Variance 
Therearefourpossiblecombinationsofbiasandvariances,whicharerepresentedbythebelow diagram: 

 

1. Low-Bias, Low-Variance:The combination of low bias and low variance shows an ideal 

machine learning model. However, it is not possible practically. 

2. Low-Bias, High-Variance:With low bias and high variance, model predictions are 

inconsistent and accurate on average. This case occurs when the model learns with a large 

number of parameters and hence leads to an over-fitting 

3. High-Bias, Low-Variance:With High bias and low variance, predictions are consistent but 

inaccurate on average. This case occurs when a model does not learn well with the training 

dataset or uses few numbers of the parameter. It leads to under-fitting problems in the model. 

4. High-Bias, High-Variance:With high bias and high variance, predictions are inconsistent and 

also inaccurate on average. 

 

 

 

  

 Bias-Variance Trade-Off 
While building the machine learning model, it is really important to take care of bias and variance in orderto 

avoid over-fitting and under-fitting in the model. If the model is very simple with fewer parameters, it 

mayhavelowvarianceandhighbias.Whereas,ifthemodelhasalargenumberofparameters,itwillhave 



 

 

high variance and low bias. So, it is required to make a balance between bias and variance errors, and 

thisbalance between the bias error and variance error is known as the Bias-Variance trade-off. 

 

 

For an accurate prediction of the model, algorithms need a low variance and low bias. But this is not 

possible because bias and variance are related to each other: 

 

Bias-Variance trade-off is a central issue in supervised learning. Ideally, we need a model that accurately 

captures the regularities in training data and simultaneously generalizes well with the unseen dataset. 

Unfortunately, doing this is not possible simultaneously. Because a high variance algorithm may perform 

well with training data, but it maylead to over-fitting to noisy data. Whereas, high bias algorithm generates a 

much simple model that may not even capture important regularities in the data. So, we need to find a sweet 

spot between bias and variance to make an optimal model. 

Hence, theBias-Variancetrade-off is aboutfinding thesweetspot to makea balancebetween bias and 

variance errors. 

 

5.10.Challenges Motivating Deep Learning 

 

1. Learning without Supervision 

Deep learning models are one of, if not the most data-hungry models of the Machine Learning world. They 

need huge amounts of data to reach their optimal performance and serve us with the excellence we expect 

from them. 

However, having this much data is not always easy. Additionally, while we can have large amounts of data 

on some topic, many times it is not labeled so we cannot use it to train any kind of supervised learning 

algorithm. 

 

 

 



 

 

One of the main challenges of Deep Learning derived from this is being able to deliver great performances 

with a lot less training data. As we will see later, recent advances like transfer learning or semi-supervised 

learning are already taking steps in this direction, but still it is not enough. 

2. Coping with data from outside the training distribution 
Data is dynamic, it changes through different drivers like time, location, and many other conditions. 

However,MachineLearningmodels,includingDeepLearningones,arebuiltusingadefinedsetofdata (the training 

set) and perform well as long as the data that is later used to make predictions once the system is built comes 

from the same distribution as the data the system was built with. 

This makes them perform poorly when data that is not entirelydifferent, but that does have some variations 

from the training data is fed to them. Another challenge of Deep Learning in the future will be to overcome 

thisproblem,andstillperformreasonablywellwhendatathatdoesnotexactlymatchthe trainingdataisfed to them. 

3. Incorporating Logic 
Incorporating some sort of rule based knowledge, so that logical procedures can be implemented and 

sequential reasoning used to formalize knowledge. 

While these cases can be covered in code, Machine Learning algorithms don‘t usually incorporate sets or 

rules into their knowledge. Kind of like a prior data distribution used in Bayesian learning, sets of pre- 

defined rules could assist Deep Learning systems in their reasoning and live side by side with the ‗learning 

from data‘ based approach. 

4. The Need for less data and higher efficiency 
Althoughwekindofcoveredthisinourfirsttwosections,thispointisreallyworth highlighting. 

The success of Deep Learning comes from the possibility to incorporate many layers into our models, 

allowing them to try an insane number of linear and non-linear parameter combinations. However, with 

more layers comes more model complexity and we need more data for this model to function correctly. 

When the amount of data that we have is effectivelysmaller than the complexityof the neural network then 

we need to resort to a different approach like the aforementioned Transfer Learning. 

Also, too big Deep Learningmodels, aside from needingcrazyamounts of data to be trained on, use a lot of 

computational resources and can take a very long while to train. Advances on the field should also be 

oriented towards making the training process more efficient and cost effective 

 

6. Deep Neural Network 

Deep neural networks (DNN) is a class of machine learning algorithms similar to the artificial neural 

network and aims to mimic the information processing of the brain. Deep neural networks, or deep learning 

networks,have several hidden layers with millions of artificial neurons linked together. A number, called 

weight, represents the connections between one node and another. The weight is a positive number if one 

node excites another, or negative if one node suppresses the other. 

 

 Feed-Forward Neural Network 

In its most basic form, a Feed-Forward Neural Network is a single layer perceptron. A sequence ofinputs 

enter the layer and aremultiplied bythe weights in this model. Theweightedinput values are then summed 

together to form a total. If the sum of the values is more than a predetermined threshold, which is normally 

set at zero, the output value is usually1, and if the sum is less than the threshold, the output value is usually -

1. The single-layer perceptron is a popular feed-forward neural network model that is frequently used for 

classification. Single-layer perceptrons can also contain machine learning features. 

 



 

 

 

 

 
The neural network can compare the outputs of its nodes with the desired values using a property known 

as the delta rule, allowing the network to alter its weights through training to create more accurateoutput 

values.This training and learning procedure results in gradient descent. The technique of updating weights 

in multi-layered perceptrons is virtually the same, however, the process is referred to as back- propagation. 

In such circumstances, the output values provided by the final layer are used to alter each hidden layer 

inside the network. 

 Work Strategy 
The function of each neuron in the network is similar to that of linear regression. The neuron also hasan 

activation function at the end, and each neuron has its weight vector. 

 

 

6.1..2 Importance of the Non-Linearity 
Whentwo or more linear objects, such as a line, plane, or hyperplane, are combined, the outcome is also a 

linear object: line, plane, or hyperplane. No matter how many of these linear things we add, we‘ll still end 

up with a linear object. 

However, this is not the case when adding non-linear objects. When two separate curves are combined, the 

result is likely to be a more complex curve. 

We’re introducing non-linearity at every layer using these activation functions, in addition to just adding 

non-linear objects or hyper-curves like hyperplanes. In other words, we‘re applying a nonlinear function on 

an already nonlinear object. 



 

 

 

Supposeifneuralnetworksdidn‘thaveanactivationfunction,they‘djustbeahugelinearunitthatasingle 

= m*x + d 

Z=k*a+t=>k*(m*x+d)+t=>k*m*x+k*d+t=>(k*m)*x+ (k*c+t) 

6.1.3ApplicationsoftheFeedForwardNeural Networks 

A Feed Forward Neural Network is an artificial neural network in which the nodes are connected 

circularly. A feed-forward neural network, in which some routes are cycled, is the polar opposite of a 

recurrent neuralnetwork. The feed-forward model is the simplest type of neural network because the input 

is only processed in one direction. The data always flows in one direction and never backwards, regardless 

of how many buried nodes it passes through. 

 

 Regularization in Machine Learning 
 

Regularization is one of the most important concepts of machine learning. It is a technique to prevent the 

model from overfitting by adding extra information to it. 

Sometimes themachine learningmodel performs well with the training data but does not perform well with 

thetestdata. Itmeansthemodelisnotabletopredicttheoutputwhen deals withunseendatabyintroducing noise in 

the output, and hence the model is called overfitted. This problem can be deal with the help of a 

regularization technique. 

This technique can be used in such a waythat it will allow to maintain all variables or features in the model 

by reducing the magnitude of the variables. Hence, it maintains accuracy as well as a generalization of the 

model. 

It mainly regularizes or reduces the coefficient of features toward zero. In simple words, "In regularization 

technique, we reduce the magnitude of the features by keeping the same number of features." 

HowdoesRegularizationWork? 

Regularization works by adding a penalty or complexity term to the complex model. Let's consider the 

simple linear regression equation: 

y=β0+β1x1+β2x2+β3x3+⋯+βnxn+b  

Inthe aboveequation,Y representsthevaluetobepredicted 

X1,X2,…XnarethefeaturesforY. 

β0,β1,…..βnaretheweightsormagnitudeattachedtothefeatures,respectively.Hererepresentsthebiasof 

themodel,and brepresentstheintercept. 

Linearregressionmodelstrytooptimizetheβ0andbtominimizethecostfunction.Theequationforthe 

costfunctionforthelinearmodelisgivenbelow: 
 

Now,we willaddalossfunctionandoptimizeparameter tomake themodelthatcanpredicttheaccurate value of Y. 

The loss function for the linear regression is called as RSS or Residual sum of squares. 

TechniquesofRegularization 

Therearemainlytwotypesofregularizationtechniques,whicharegivenbelow: 

o Ridge Regression 

o Lasso Regression 

 

 

 

 



 

 

 

         Ridge Regression 

 

Ridge regression is one of the types of linear regression in which a small amount of bias is introduced sothat 

we can get better long-term predictions. 

Ridge regression is a regularization technique, which is used to reduce the complexity of the model. It isalso 

called as L2 regularization. 

In this technique, the cost function is altered by adding the penalty term to it. The amount of bias added to 

the model is calledRidge Regression penalty. We can calculate it by multiplying with the lambda to the 

squared weight of each individual feature. 

In the above equation, the penaltyterm regularizes the coefficients of the model, and hence ridge regression 

reduces the amplitudes of the coefficients that decreases the complexity of the model. 

As we can see from the above equation, if the values of λ tend to zero, the equation becomes the cost 

function of the linear regression model. Hence, for the minimum value of λ, the model will resemble the 

linear regression model. 

A general linear or polynomial regression will fail if there is high collinearity between the independent 

variables, so to solve such problems, Ridge regression can be used. 

  

 Lasso Regression 
Lassoregressionisanotherregularizationtechniquetoreducethecomplexityofthemodel.Itstandsfor Least 

Absolute and Selection Operator. 

It is similar to the Ridge Regression except that the penalty term contains only the absolute weights instead 

of a square of weights. 

Since it takes absolute values, hence, it can shrink the slope to 0, whereas Ridge Regression can only shrink 

it near to 0. 

Itisalsocalledas L1regularization.TheequationforthecostfunctionofLasso regressionwillbe: 
 

Someofthefeaturesinthistechniquearecompletelyneglectedformodelevaluation. 

Hence,theLassoregressioncanhelpustoreducetheoverfittinginthemodelaswellasthefeature selection. 

KeyDifferencebetween RidgeRegressionandLassoRegression 

Ridgeregression ismostlyusedtoreducetheoverfittinginthemodel,anditincludesallthefeatures present in the model. 

It reduces the complexity of the model by shrinking the coefficients. 

Lassoregression helpstoreducetheoverfittinginthemodelaswellasfeatureselection. 



 

 

 Optimizationin Machine Learning 

In machine learning, optimization is the procedure of identifying the ideal set of model parameters that 

minimize a loss function. For a particular set of inputs, the loss function calculates the discrepancy between 

the predicted and actual outputs. For the model to successfully forecast the output for fresh inputs, 

optimization seeks to minimize the loss function. 

A method for finding a function's minimum or maximum is called an optimization algorithm, which is used 

in optimization. Up until the minimum or maximum of the loss function is reached, the optimization 

algorithm iteratively modifies the model parameters. Gradient descent, stochastic gradient descent, Adam, 

Adagrad, and RMSProp are a few optimization methods that can be utilised in machine learning. 

• Gradient Descent 
In machine learning, gradient descent is a popular optimization approach. It is a first-order 

optimization algorithm that works by repeatedly changing the model's parameters in the opposite 

direction of the loss function's negative gradient. The loss function lowers most quickly in that 

direction because the negative gradient leads in the direction of the greatest descent. 

The gradient descent algorithm operates by computing the gradient of the loss function with respect 

to each parameter starting with an initial set of parameters. The partial derivatives of the loss 

function with respect to each parameter are contained in a vector known as the gradient. After that, 

the algorithm modifies the parameters by deducting a small multiple of the gradient from their 

existing values. 

• Stochastic  Gradient Descent 
A part of the training data is randomly chosen for each iteration of the stochastic gradient descent 

process, which is a varianton the gradient descent technique. This makes the algorithm's 

computations simpler and speeds up its convergence. For big datasets when it is not practical to 

compute the gradient of the loss function for all of the training data, stochastic gradient descent is 

especially helpful. 

The primary distinction between stochastic gradient descent and gradient descent is that stochastic 

gradient descent changes the parameters based on the gradient obtained for a single example rather 

than the full dataset. Due to the stochasticity introduced by this, each iteration of the algorithm may 

result in a different local minimum. 

• Adam 
Adam is an optimization algorithm that combines the advantages of momentum-based techniques 

and stochastic gradient descent. The learning rate during training is adaptively adjusted using the 

firstandsecond momentsofthegradient.Adamisfrequentlyusedindeep learningsinceitisknown to 

converge more quickly than other optimization techniques. 

• Adagrad 
An optimization algorithm called Adagrad adjusts the learning rate for each parameter based on 

previous gradient data. It is especially beneficial for sparse datasets with sporadic occurrences of 

specific attributes. Adagrad can converge more quickly than other optimization methods because it 

uses separate learning rates for each parameter. 

• RMSProp 
An optimization method called RMSProp deals with the issue of deep neural network gradients that 

vanishandexplode. Itemploysthemovingaverage ofthesquaredgradienttonormalizethelearning 

 



 

 

rate for each parameter. Popular deep learning optimization algorithm RMSProp is well known 

for converging more quickly than some other optimization algorithms. 

 

 Importance of Optimization in Machine Learning 
 

Machine learning depends heavily on optimization since it gives the model the ability to learn from 

dataand generate precise predictions. Model parameters are estimated using machine learning 

techniques using the observed data. Finding the parameters' ideal values to minimize the discrepancy 

between the predicted and actual results for a given set of inputs is the process of optimization. Without 

optimization, the model's parameters would be chosen at random, making it impossible to correctly 

forecast the outcome for brand- new inputs. 

Optimization is highlyvalued in deep learning models, which have multiple levels of layers and millions 

of parameters. Deep neural networks need a lot of data to be trained, and optimizing the parameters of 

the model in which they are used requires a lot of processing power. The optimization algorithm chosen 

can have a big impact on the training process's accuracy and speed. 

New machine learning algorithms are also implemented solely through optimization. Researchers are 

constantly looking for novel optimization techniques to boost the accuracy and speed of machine 

learning systems. These techniques include normalization, optimization strategies that account for 

knowledge of the underlying structure of the data, and adaptive learning rates. 

 

 Challenges in Optimization 
 

There are difficulties with machine learning optimization. One of the most difficult issues is overfitting, 

which happens when the model learns the training data too well and is unable to generalize to new data. 

When the model is overly intricate or the training set is insufficient, overfitting might happen. 

When the optimization process converges to a local minimum rather than the global optimum, it poses 

the problem of local minima, which is another obstacle in optimization. Deep neural networks, which 

contain many parameters and may have multiple local minima, are highly prone to local minima. 
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1. Introduction to Convolutional Neural Networks: 

A Convolutional Neural Network (CNN) is a type of Deep Learning neural network architecture commonly 

used in Computer Vision. Computer vision is a field of Artificial Intelligence that enables a computer to 

understand and interpret the image or visual data.In a regular Neural Network the reare three types of layers: 

• Hidden Layer: The input from the Input layer is then feed into the hidden layer. There can be many 

hidden layersdepending uponour modeland datasize. Each hidden layer can havedifferent numbers of 

neurons which are generally greater than the number of features. The output from each layer is 

computed by matrix multiplicationofoutput oftheprevious layer with learnable weightsofthat layer 

and then bytheadditionoflearnable biases followed byactivation functionwhich makesthe network 

nonlinear. 

• Output Layer: The output from the hidden layer is then fed into a logistic function like sigmoid or 

softmax which converts the output of each class into the probability score of each class. 

The data is fed into the model and output from each layer is obtained from the above step is called feed 

forward, wethencalculatetheerror using anerrorfunction, somecommonerrorfunctionsarecross-entropy, 

square loss error, etc. The error function measures how well the network is performing. After that, we back 

propagateinto the modelbycalculating thederivatives. Thisstep iscalled Back propagationwhich basically is 

used to minimize the loss. 

 Convolution Neural Network 
 

Convolutional Neural Network(CNN)is the extended version of artificial neural networks(ANN) which is 

predominantly used to extract the feature from the grid-like matrix dataset. For example visual datasets like 

images or videos where data patterns play an extensive role. 

Around the 1980s, CNNs were developed and deployed for the first time. A CNN could only detect 

handwritten digits at the time. CNN was primarily used in various areas to read zip and pin codes etc. The 

most common aspect of any AImodel is thatitrequires amassiveamountof data totrain. Thiswas one of 
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The biggest problemsthatCNNfacedatthetime,andduetothis,theywereonlyusedinthepostal industry. Yann 

LeCun was the first to introduce convolutional neural networks. 

Convolutional Neural Networks, commonly referred to as CNNs, are a specialized kind of neural network 

architecture that is designed to process data with a grid-like topology. This makes them particularly well- 

suited for dealing with spatial and temporal data, like images and videos that maintain a high degree of 

correlation between adjacent elements. 

CNNs are similar to other neural networks, but they have an added layer of complexity due to the fact that 

they use a series of convolutional layers. Convolutional layers perform a mathematical operation called 

convolution,a sortof specialized matrix multiplication, on theinputdata. The convolution operation helps to 

preserve the spatial relationship between pixels by learning image features using small squares of input data. 

. The picture below represents a typical CNN architecture. 

 

 

 

Fig.1 Typical CNN architecture 

The following are definitions of different layers shown in the above architecture: 

• Convolutional layers 

Convolutional layers operate by sliding a set of ‘filters’ or ‘kernels’ across the input data. Each filter is 

designed todetecta specificfeature or pattern, such as edges,corners, ormore complexshapes in the case of 

deeper layers. As these filters move across the image, they generate a map that signifies the areas where 

thosefeatureswerefound.Theoutputoftheconvolutionallayerisafeaturemap,whichisa representation of 

theinputimagewith thefilters applied.Convolutionallayerscanbestackedtocreate 

morecomplexmodels,whichcanlearnmoreintricatefeaturesfromimages.Simplyspeaking, convolutional layers 

are responsible for extracting features from the input images. These features might include edges, corners, 

textures, or more complex patterns. 

• Pooling layers 

Pooling layers follow the convolutional layers and are used to reduce the spatial dimension of the input, 

makingiteasier toprocess and requiringless memory. In the contextof images,“spatial dimensions” refer 

tothewidth andheightof theimage.Animageismadeupof pixels,andyoucan thinkof itlikeagrid, with rows and 

columns of tiny squares (pixels). By reducing the spatial dimensions, pooling layers help 

reducethenumberofparametersorweightsinthenetwork.Thishelpstocombatover-fittingandhelp train the model 

in a fast manner. Max pooling helps in reducing computational complexity, owing to 

reductioninsizeoffeaturemap,andmakingthemodelinvarianttosmalltransitions.Withoutmax 

pooling,thenetworkwouldnotgaintheabilitytorecognizefeaturesirrespectiveofsmallshiftsor 
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rotations. This would make the model less robust to variations in object positioning within the image, 

possibly affecting accuracy. 

There are two main types of pooling: max pooling and average pooling. Max pooling takes the maximum 

valuefromeachfeaturemap.Forexample,ifthepoolingwindowsizeis2×2,itwillpickthepixelwith the highest value 

in that 2×2 region. Max pooling effectively captures the most prominent feature or characteristic within the 

pooling window. Average pooling calculates the average of all values within the pooling window. It provides 

a smooth, average feature representation. 

• Fully connected layers 
Fully-connectedlayers are one of themostbasictypes of layers in a convolutional neural network (CNN). As 

the name suggests, each neuron in a fully-connected layerisFully connected- to every otherneuron in the 

previous layer. Fully connected layers are typically used towards the end of a CNN- when the goal is to take 

thefeatureslearnedby the convolutional andmax poolinglayers and use them tomake predictions 

suchasclassifyingtheinputtoalabel.Forexample,ifwewereusingaCNNtoclassifyimagesof 

animals,thefinalFullyconnectedlayermighttakethefeatureslearnedbythepreviouslayersanduse them to classify 

an image as containing a dog, cat, bird, etc. 

Fullyconnectedlayerstakethehigh-dimensionaloutputfromthepreviousconvolutionalandpooling layers and 

flatten it into a one-dimensional vector. This allows the network to combine and integrate all the extracted 

features across the entire image, rather than considering localized features. It helps inunderstanding the 

global context of the image. The fully connected layers are responsible for mapping the integrated features to 

the desired output, such as class labels in classification tasks. They act as the final decision-making part of 

the network, determining what the extracted features mean in the context of the specific problem (e.g., 

recognizing a cat or a dog). 

The combination of Convolution layer followed by max-pooling layer and then similar sets creates a 

hierarchy of features. The first layer detects simple patterns, and subsequent layers build on those to detect 

more complex patterns. 

CNNs are often used for image recognition and classification tasks. For example, CNNs can be used to 

identifyobjects in an image or to classifyan image as being a cat or a dog. CNNs can also be used for more 

complex tasks, such as generating descriptions of an image or identifying the points of interest in an image. 

Beyond image data, CNNs can also handle time-series data, such as audio data or even text data, although 

other types of networks like Recurrent Neural Networks (RNNs) or transformers are often preferred forthese 

scenarios. CNNs are a powerful tool for deep learning, and they have been used to achieve state-of- the-art 

results in many different applications. 

 CNN architecture 
ConvolutionalNeuralNetworkconsistsofmultiplelayersliketheinputlayer,Convolutionallayer, Pooling layer, 

and fully connected layers. 
 

Fig.2 Simple CNN architecture 
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The Convolutional layer appliesfilters to the inputimage to extractfeatures, the Poolinglayerdown samples 

the image to reduce computation, and the fully connected layer makes the final prediction. The network 

learns the optimal filters through back propagation and gradientdescentas detailed in Fig.3. 

 

 

 

 

 

 

 

 

 

 

 

 

. 

Fig.3 Functions of CNN Layers 

  

 Different types of CNN Architectures 
 

LeNet: LeNet is the first CNN architecture. It was developed in 1998 byYann LeCun, Corinna Cortes, and 

Christopher Burges for handwritten digit recognition problems. LeNet was one ofthe first successful CNNs 

and is often considered the “Hello World” of deep learning. It is one of the earliest and most widely-used 

CNN architectures and has been successfully applied to tasks such as handwritten digit recognition. The 

LeNet architecture consists of multiple convolutional and pooling layers, followed by a fully-connected 

layer. The model has five convolution layers followed by two fully connected layers. LeNet was the 

beginningofCNNs indeep learning for computervisionproblems. However, LeNet couldnottrainwelldue tothe 

vanishing gradientsproblem. To solve this issue, a shortcut connection layer knownasmax-pooling is used 

between convolutional layers to reduce the spatial size of images which helps prevent overfitting and allows 

CNNs to train more effectively. The diagram below represents LeNet-5 architecture. 

 

Fig.4 LeNet Architecture 

 

The LeNet CNN is a simple yet powerful model that has been used for various tasks such as handwritten 

digit recognition, traffic sign recognition, and face detection. Although LeNet was developed more than 20 

years ago, its architecture is still relevant today and continues to be used. 
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AlexNet: AlexNet is the deep learning architecture that popularized CNN. It was developed by Alex 

Krizhevsky, Ilya Sutskever, and Geoff Hinton. AlexNet network had a very similar architecture to LeNet,but 

was deeper, bigger, and featured Convolutional Layers stacked on top of each other. AlexNet was the first 

large-scale CNN and was used to win the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 

in2012. The AlexNet architecture wasdesigned to be used with large-scale image datasetsand it achieved 

state-of-the-art results atthetime ofits publication. AlexNet is composed of5convolutionallayers with a 

combination of max-pooling layers, 3 fully connected layers, and 2 dropout layers. The activation function 

used in all layers is Relu. The activation function used in the output layer is Softmax. The total number of 

parameters in this architecture is around 60 million. 

 
Fig.5 AlexNet Architecture 

ZF Net: ZFnet is the CNN architecturethat uses acombinationoffully-connected layers and CNNs. ZFNet 

was developed by Matthew Zeiler and Rob Fergus. It was the ILSVRC 2013 winner. The network has 

relatively fewer parameters than AlexNet, but still outperforms it on ILSVRC 2012 classification task by 

achieving top accuracywithonly1000 imagesper class. It wasan improvement onAlexNet bytweaking the 

architecture hyperparameters, in particular by expanding the size of the middle convolutional layers and 

making the stride and filter size on the first layer smaller. It is based onthe Zeiler and Fergus model, which 

was trained on the ImageNet dataset. ZF Net CNN architecture consists of a total of seven layers: 

Convolutional layer, max-pooling layer (downscaling), concatenation layer, convolutional layer with linear 

activation function, and stride one, dropout for regularization purposes applied before the fully connected 

output. This CNN model is computationally more efficient than AlexNet by introducing an approximate 

inference stage through deconvolutional layers in the middle of CNNs. 

GoogLeNet: GoogLeNet is the CNN architecture used by Google to win ILSVRC 2014 classification task.It 

was developed by Jeff Dean, Christian Szegedy, Alexandro Szegedy et al.. It has been shown to have a 

notably reduced error rate in comparison with previous winners AlexNet (Ilsvrc 2012 winner) and ZF-Net 

(Ilsvrc 2013 winner). In terms of error rate, the error is significantly lesser than VGG (2014 runner up). It 

achieves deeperarchitecture by employinga numberof distincttechniques,including1×1convolution and 
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global average pooling. GoogleNet CNN architecture is computationally expensive. To reduce the 

parameters that must be learned, it uses heavy unpooling layers on top of CNNs to remove spatial 

redundancyduring training and also featuresshortcut connections betweenthe first two convolutionallayers 

before adding new filters in later CNN layers. Real-world applications/examples of GoogLeNet CNN 

architecture include Street View House Number (SVHN) digit recognition task, which is often used as a 

proxy for roadside object detection. Below is the simplified block diagram representing GoogLeNet CNN 

architecture: 

 
Fig.6 GoogLeNet Architecture 

 

VGGNet: VGGNet is the CNN architecture that was developed by Karen Simonyan, Andrew Zisserman et 

al. at Oxford University. VGGNet is a 16-layer CNN with up to 95 million parameters and trained on over 

one billion images (1000 classes). It can take large inputimages of 224 x 224-pixel size for which it has 4096 

convolutional features. CNNs with such large filters are expensive to train and require a lot of data, which is 

the main reason why CNN architectures like GoogLeNet (AlexNet architecture) work better than VGGNet 

for most image classification tasks where input images have a size between 100 x 100-pixel and 350 x 350 

pixels. Real-world applications/examples of VGGNet CNN architecture include the ILSVRC2014 

classification task, which was also won by GoogleNet CNN architecture. The VGG CNN model is 

computationallyefficient and serves as a strong baseline for manyapplications in computer visiondue to its 

applicability for numerous tasks including object detection. Its deep feature representations are used across 

multiple neural network architectures like YOLO, SSD, etc. The diagram below represents the standard 

VGG16 network architecture diagram: 

 

Fig.7 GGNet Architectre 
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ResNet: ResNet is the CNN architecture hat was developed by Kaiming He et al. to win the ILSVRC 2015 

classification task with a top-five error of only 15.43%. The network has 152 layers and over one million 

parameters, which is considered deep even for CNNs because it would have taken more than 40 days on 32 

GPUs to train the network on the ILSVRC 2015 dataset. CNNs are mostly used for image classificationtasks 

with 1000 classes, but ResNet proves that CNNs can also be used successfully to solve natural language 

processing problems like sentence completion or machine comprehension, where it was used bythe 

Microsoft Research Asia teamin2016 and 2017 respectively. Real-life applications/examples of ResNet 

CNN architecture include Microsoft’s machine comprehension system, which has used CNNs to generatethe 

answers for more than 100k questions in over 20 categories. The CNN architecture ResNet is 

computationally efficient and can be scaled up or downto match the computational power of GPUs. 

MobileNets: MobileNets are CNNs that can be fit on a mobile device to classify images or detect objects 

with low latency. MobileNets have been developed by Andrew G Trillion et al.. Theyare usually verysmall 

CNN architectures, which makes them easy to run in real-time using embedded devices like smartphonesand 

drones. The architecture is also flexible so it has been tested on CNNs with 100-300 layers and it still works 

better than other architectures like VGGNet. Real-life examples of MobileNets CNN architecture 

includeCNNsthat isbuilt into AndroidphonestorunGoogle’sMobileVisionAPI, whichcanautomatically 

identify labels of popular objects in images. 

GoogLeNet_DeepDream: GoogLeNet_DeepDream is a deep dream CNN architecture that was 

developedbyAlexanderMordvintsev,ChristopherOlah,etal..ItusestheInceptionnetworktogenerateimages based 

on CNN features. The architecture is often used with the ImageNet dataset to generate psychedelic 

imagesorcreateabstractartworksusinghumanimagination attheICLR2017workshopby DavidHa,et al. 

To summarize the different types of CNN architectures described above in an easy to remember form, you 

can use the following: 

Table1.Different Types of CNN Architectures 

Architecture Year Key Features Use Case 

LeNet 1998 
First successful applications of CNNs, 5 layers 

(alternating between convolutional and pooling), 

Used tanh/sigmoid activation functions 

Recognizing handwritten 

and machine-printed 

characters 

AlexNet 2012 
DeeperandwiderthanLeNet,UsedReLU 

activationfunction,Implementeddropoutlayers, 
UsedGPUsfortraining 

Large-scale image 

recognition tasks 

 

ZFNet 

 

2013 

Similar architecture to AlexNet, but with 

different filter sizes and numbers of filters, 

Visualizationtechniquesforunderstandingthe 

network 

 

ImageNetclassification 

VGGNet 2014 
Deepernetworkswithsmallerfilters(3×3),All 
convolutional layers have the same depth, 
Multipleconfigurations(VGG16,VGG19) 

Large-scale image 

recognition 

 

ResNet 

 

2015 

Introduced “skip connections” or “shortcuts” to 

enable training of deeper networks, Multiple 

configurations(ResNet-50,ResNet-101,ResNet- 

152) 

Large-scale image 

recognition, won 1st place 

in the ILSVRC 2015 

GoogleLeNet 2014 
Introduced Inception module, which allows for 

moreefficient computationanddeeper networks, 

multiple versions (Inception v1, v2, v3, v4) 

Large-scale image 

recognition, won 1st place 

in the ILSVRC 2014 
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Architecture Year Key Features UseCase 

 

MobileNets 

 

2017 

Designed for mobile and embedded vision 

applications, Uses depthwise separable  

 

Mobile and embedded 

vision applications, real- 

time object detection 

LeNet 1998 
First successful applications of CNNs, 5 layers 

(alternating between convolutional and pooling), 

Used tanh/sigmoid activation functions 

Recognizing handwritten 

and machine-printed 

characters 

 
 Working of Convolutional Layers 
Convolution Neural Networks or convnets areneural networks thatshare their parameters.Imagineyou have 

an image. It can be represented as a cuboid having its length, width (dimension of the image), and height (i.e 

the channel as images generally have red, green, and blue channels). 
 

Nowimaginetakingasmallpatchof thisimageandrunningasmallneuralnetwork,calledafilteror kernel on it, with 

say, K outputs and representing them vertically. Now slide that neural network across the wholeimage, as a 

result,we will getanotherimage with differentwidths,heights, and depths. Instead of 

justR,G,andBchannelsnowwehavemorechannelsbutlesserwidthandheight.Thisoperationis called 

Convolution. If the patch size is the same as that of the image it will be a regular neural network. Because of 

this small patch, we have fewer weights. 

 

Nowlet’stalkaboutabitofmathematicsthatisinvolvedinthewholeconvolutionprocess. 

Convolution layers consist of a set of learnable filters (or kernels) having small widths and heights and the 

same depth as that of input volume (3 if theinput layer is image input). 

For example, if we have to run convolution on an image with dimensions 34x34x3. The possible size of 

filters can be axax3, where ‘a’ can be anything like 3, 5, or 7 but smaller as compared to the image 

dimension. 

During the forward pass, we slide each filter across the whole input volume step by step where each step is 

called stride (which can have a value of 2, 3, or even 4 for high-dimensional images) and compute the dot 

product between the kernel weights and patch from input volume. 

Asweslideourfilterswe’llgeta2-Doutputforeachfilterandwe’llstackthemtogetherasaresult,we’ll 

getoutputvolumehavingadepthequaltothenumberoffilters.Thenetworkwilllearn allthefilters. 
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 Layers used to build ConvNets 
AcompleteConvolutionNeuralNetworksarchitectureisalsoknownasconvNets.AconvNetsisa 

sequenceoflayers,andeverylayertransformsonevolumetoanotherthroughadifferentiablefunction. Let’s take an 

exampleby running a convNets on of image of dimension 32 x 32 x 3. 

• Input Layers: It’s the layer in which we give input to our model. In CNN, Generally, the input will 

be an image or a sequence of images. This layer holds the raw input of the image with width 32, 

height 32, and depth 3. 

• Convolutional Layers: Thisis the layer, which is used to extract the feature fromthe input dataset.It 

applies a set of learnable filters known as the kernels to the input images. The filters/kernels are 

smallermatricesusually 2×2, 3×3, or 5×5 shape.itslides over theinputimage data and computes the dot 

product between kernel weight and the corresponding input image patch. The output of this layeris 

referred adfeaturemaps. Suppose we usea total of 12filters for thislayer we’ll getan output volume of 

dimension 32 x 32 x 12. 

• Activation Layer: By adding an activation function to the output of the preceding layer, activation 

layersaddnonlinearity tothenetwork.itwillapplyanelement-wiseactivationfunction tothe output of 

theconvolution layer. Some common activation functionsare RELU,Tanh, Leaky RELU, etc. 

Thevolume remainsunchangedhence outputvolumewill havedimensions 32x 32x 12. 

• Pooling layer:This layer is periodically inserted in the convnets and its main function is to reducethe 

size of volume which makes the computation fast reduces memory and alsoprevents over-

fitting.Twocommontypesofpoolinglayersare maxpooling and averagepooling.Ifweusea max pool 

with 2 x 2 filters and stride 2, the resultantvolume will be of dimension 16x16x12. 
 

• Flattening: The resulting feature maps are flattened into a one-dimensional vector after the 

convolution and pooling layers so they can be passed into a completely linked layer forcategorization 

or regression. 

• Fully Connected Layers: It takes the input from the previous layer and computes the final 

classification or regression task. 
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• Output Layer: The output from the fully connected layers is then fed into a logistic function for 

classification tasks like sigmoid or softmax which converts the output of each class into the 

probability score of each class. 

 

 Applications of CNN 
 

• Semantic segmentation: CNNs can classify every pixel in an imageinto differentclasses,for e.g.- 

different types of vegetation in satellite images. 

• Object detection: CNNs can detect objects within an image, for e.g.- identifying the location & the 

type of vehicle on the road. 

• Image classification: CNNs can classify images into different categories, for e.g. identifying objects 

in a photograph. 

• Image captioning: CNNs can generate natural language descriptions of images, for e.g.- describing 

the objects in a photograph. 

• Face recognition - CNNs can recognize & verify the identityof different individuals in images, such 

as finding people's faces in security footages. 

• Medical image analysis -CNNs can identifytumors in medical scans, or indetecting abnormalities in 

X rays. 

• Autonomousvehicles-CNNscanidentify&trackobjects-suchaspedestrians&other vehicles. 

2. Convolution Operation: 

 

A convolutional neural network, or ConvNet, is just a neural network that uses convolution. To understand 

the principle, we are going to work with a 2-dimensional convolution first. 

Convolution is a mathematical operation that allows the merging of two sets of information. Convolution 

betweentwo functions in mathematics produces athird function expressing howthe shape ofone function is 

modified by other.In the case of CNN, convolution is applied to the input data to filter the information and 

produce a feature map. 

This filter isalso calledakernel, orfeaturedetector, and itsdimensionscanbe, forexample, 3x3.Akernelis 

asmall2D matrixwhosecontentsarebased upontheoperationsto beperformed. Akernelmapsonthe input image 

bysimple matrix multiplicationandaddition, theoutputobtained is oflowerdimensionsandtherefore easier to 

work with. 
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Above is an example of a kernel for applying Gaussian blur (to smoothen the image before processing), 

Sharpen image (enhance the depth of edges) and edge detection.To perform convolution, the kernel goesover 

the input image, doing matrix multiplication element after element. The result for each receptive field (the 

area where convolution takes place) is written down in the feature map. 

 

The shape of a kernel is heavily dependent on the input shape of the image and architecture of the entire 

network, mostly the size of kernels is (MxM) i.e., a square matrix. The movement of a kernel is always 

from left to right and top to bottom. 
 

Stridedefinesbywhatstepdoestokernelmove,forexamplestrideof1makeskernelslidebyone 
 

Page11 



 

 

row/columnat atimeandstrideof2 moveskernelby2rows/columns. Wecontinueslidingthe filteruntilthe feature 

map is complete. 
 

For input images with 3 or more channels such as RGB a filter is applied. Filters are one dimension higher 

than kernels and can be seen as multiple kernels stacked on each other where everykernel is for a particular 

channel. Therefore for an RGB image of (32x32) we have a filter of the shape say(5x5x3). 

 
Herethe input matrixhas shape 4x4x1 andthe kernelis ofsize 3x3 since the shape ofinput is largerthanthe 

kernel, weareabletoimplement aslidingwindowprotocolandapplythekerneloverentire input. First entry in the 

convoluted result is calculated as: 

45*0+12*(-1)+5*0+22*(-1)+10*5+35*(-1)+88*0+26*(-1)+51*0 =-45 

Wecontinueslidingthefilteruntilthefeaturemapiscomplete. 
 

 Page12 



 

 

 Slidingwindowprotocol: 

1. Thenit startsmoving left toright,calculatingthedotproduct andsaving it toanew matrixuntilit has 

reached the last column. 

2. Next,kernelresetsitspositionatfirstcolumnbutnowitslidesonerowtothebottom.Thus following the 

fashion left-right and top-bottom. 

3. Steps2and 3arerepeatedtilltheentireinputhasbeenprocessed. 

For a3Dinputmatrixthemovementofthekernelwillbefromfronttoback,lefttorightandtopto bottom. 

 

 Sparse Interactions(Connectivity) 
Convolutional neural networks are more efficient than simple neural networks — in applications where they 

apply, because theysignificantlyreduce the number ofparameters whichreduces the required memoryofthe 

network and improves its statistical efficiency. Theyexploit feature locality. Theytryto find patterns in the 

input data. They stack them to make abstract concepts by their convolution layers. A Convolution layer 

defines a window or filter or kernel by which they examine a subset of the data, and subsequently scans the 

data looking through this window. We can parameterize the window to look for specific features (e.g. edges 

within an image). The output they produce focuses solely on the regions of the data which exhibited the 

feature it was searching for. This is what we call sparse connectivityorsparse interactions or sparse 

weights. Actually it limits the activated connections at each layer. Inthe example below an5x5 input with a 

2x2 filter producesareduced 4x4 output.The first element offeaturemap iscalculated bytheconvolutionof the 

input area with the filter i.e. 

 

In practice, we don’t explicitly define the filters that our convolutional layer will use; we instead 

parameterize the filters and let the network learn the best filters to use during training. We do, however, 

define howmanyfilters, we’lluseat eachlayer— ahyperparameter whichiscalledthe depthoftheoutput 

volume. 

Another hyperparameter is the stride that defines how much we slide the filter over the data. For example 

if stride is 1 then we move the window by 1 pixel at a time over the image, when our input is an image. 

When we use larger values of stride 2 or 3 we allow jumping 2 or pixels at a time. This reduces 

significantly the output size. 

The last hyperparameter is the size of zero-padding, when sometimes is convenient to pad the input 

volume with zeros around the border. 

So now we can compute the spatial size of the output volume as a function of the input volume size (W), 

thereceptivefieldsizeof theConv Layerneurons(F), thestridewith which they areapplied(S),andthe 
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amountofzeropaddingused(P)ontheborder.Theformulaforcalculatinghowmanyneurons“fit”is 

givenby 

 

 

In our previous example for the 5x5 input (W=5) and the 2x2 filter (F=2) with stride 1(S=1) and pad 0 

(P=0) we would get a 4x4x (number of filters) output for each network node. 

Trivial neural network layers use matrix multiplication by a matrix of parameters describing the 

interactionbetweenthe input andoutput unit. This means that everyoutput unit interactswithevery input 

unit. However, convolution neural networks have sparse interaction. This is achieved by making kernel 

smaller than the input e.g., an image can have millions or thousands of pixels, but while processing it 

using kernel we can detect meaningful information that is of tens or hundreds of pixels. This means that 

we need to store fewer parameters that not only reduces the memory requirement of the model but also 

improves the statistical efficiency of the model. 
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 Parameter(Weight)Sharing 
 

Ifcomputing one feature at a spatialpoint (x1, y1) is usefulthen it should also be usefulat some other spatial 

point say (x2, y2). It means that for a single two-dimensional slice i.e., for creating one activation map,neurons 

are constrained to use the same set of weights. In a traditional neural network, each element of the weight 

matrixisusedonceandthenneverrevisited,whileconvolutionnetworkhas sharedparameters i.e., for getting 

output,weightsapplied toone input arethe same asthe weight applied elsewhere. Parametersharing is used in the 

convolutional layers to reduce the number of parameters in the network. For example in the first convolutional 

layer let’ssaywe haveanoutputof15x15x4 where15 isthesizeoftheoutput and 4the number of filters used in this 

layer. For each output node in that layer we have the same filter, thus reducing dramatically the storage 

requirements of the model to the size of the filter. 
 

Page15 



 

 

 

 

 
Thesamefilter(weights)(1,0,-1)areusedforthat layer. 
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 Equivariant Representations 
Equivariant means varying in the similar or equivalent proportion. Due to parameter sharing, the layers of 

convolution neural network will have a property of equivariance to translation. It says that if we changed the 

input in a way, the output will also get changed in the same way. 

Equivariant to translation means that a translation of input features results in an equivalent translation of 

outputs. It makes the CNN understand the rotation or proportion change. The equivariance allows the networkto 

generalize edge, texture, shape, detection in different locations. 
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 Pooling 
 

Thepoolingoperationinvolvesslidingatwo-dimensionalfilterovereachchanneloffeaturemapand summarizing the 

features lying within the region covered by the filter. 

Forafeaturemaphavingdimensionsnhxnwxnc,thedimensionsofoutputobtainedafterapoolinglayeris 

(nh–f+1)/sx(nw-f+1)/sx nc 

where, 

• nh-heightoffeaturemap 

• nw–widthoffeaturemap 

• nc–number ofchannelsinthefeaturemap 

• f-sizeoffilter 

• s-stridelength 

 

The pooling layer summarizes the features present in a region of the feature map generated by a convolution 

layer. So, further operations are performed on summarized features instead of precisely positioned features 

generated by the convolution layer. This makes the model more robust to variations in the position of the 

features in the input image. 

 Types of Pooling Layers: 

• Max Pooling 

Max pooling is a pooling operation that selects the maximum element from the region of the feature map 

covered by the filter. Thus, the output after max-pooling layer would be a feature map containing the most 

prominent features of the previous feature map. 
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• Average Pooling 

Average pooling computes the average of the elements present in the region of feature map covered by thefilter. 

Thus, while max pooling gives the most prominent feature in a particular patch of the feature map, average 

pooling gives the average of features present in a patch. 
 

• Global Pooling 
Global pooling reduces each channel in the feature map to a single value. Thus, an nhx nwx ncfeature map is 

reduced to1 x 1 x ncfeature map. This is equivalent to using a filter ofdimensionsnhx nwi.e. the dimensions of 

the feature map. Further, it can be either global max pooling or global average pooling. 

• Global Average Pooling 
Considering a tensor of shape h*w*n, the output of the Global Average Pooling layer is a single value across 

h*w that summarizes the presence of the feature. Instead of downsizing the patches of the input feature map,the 

Global Average Pooling layer downsizes the whole h*w into 1 value by taking the average. 

• Global MaxPooling 
With the tensor of shape h*w*n, the output of the Global Max Pooling layer is a single value across h*w that 

summarizes the presence of a feature. Instead of downsizing the patches of the input feature map, the Global 

Max Pooling layer downsizes the whole h*w into 1 value by taking the maximum. 

In convolutional neural networks (CNNs), the pooling layer is a common type of layer that is typically added 

after convolutionallayers. The pooling layer isusedto reducethe spatialdimensions(i.e.,the widthand height) of 

the feature maps, while preserving the depth (i.e., the number of channels). 

• The pooling layer works bydividing the input feature map into a set of non-overlapping regions, called 

poolingregions.Eachpoolingregionisthentransformed into asingleoutput value,whichrepresentsthe 

presence of a particular feature in that region. The most common types of pooling operations are max 

pooling and average pooling. 

• In max pooling, the output value for each pooling region is simply the maximum value of the input 

values within that region. This has the effect of preserving the most salient features in each pooling 

region, while discarding less relevant information. Max pooling is often used in CNNs for object 

recognition tasks, as it helps to identify the most distinctive features of an object, such as its edges and 

corners. 

• In average pooling, the output value for each pooling region is the average of the input values 

withinthatregion. This hastheeffect ofpreserving moreinformationthanmaxpooling, but mayalso dilutethe 

most salient features. Average pooling is often used in CNNs for tasks such as image segmentation and 

object detection, where a more fine-grained representation of the input is required. 

Pooling layers are typically used in conjunction with convolutional layers in a CNN, with each pooling layer 

reducing the spatial dimensions of the feature maps, while the convolutional layers extract increasinglycomplex 

features from the input. The resulting feature maps are then passed to a fully connected layer, which performs 

the final classification or regression task. 
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 Advantages of Pooling Layer 
Dimensionality reduction: The main advantage of pooling layers is that they help in reducing the spatial 

dimensions of the feature maps. This reduces the computational cost and also helps in avoiding over-fitting by 

reducing the number of parameters in the model. 

Translation invariance: Pooling layers are also useful in achieving translation invariance in the feature maps. 

This means that the position of an object in the image does not affect the classification result, as the same 

features are detected regardless of the position of the object. 

Feature selection: Pooling layers can also help in selecting the most important features from the input, as max 

pooling selects the most salient features and average pooling preserves more information. 

 Disadvantages of Pooling Layer 

• Information loss: One ofthe main disadvantages ofpooling layers is that theydiscard some information 

fromthe input feature maps, which can be important for the final classification or regression task. 

• Over-smoothing: Pooling layers can also cause over-smoothing of the feature maps, 

whichcanresultinthelossofsomefine-graineddetailsthatareimportantforthefinalclassificationorregression 

task. 

• Hyperparameter tuning: Pooling layers also introduce hyperparameters such as the size of the pooling 

regions and the stride, which need to be tuned in order to achieve optimalperformance. 

 

•  ConvolutionVariants 

3.  
The goal of a CNN is to transform the input image into concise abstract representations of the original input. 

The individual convolutional layers try to find more complex patterns from the previous layer’s observations. 

The logic is that 10 curved lines would formtwo elipses, which would make an eye. 

  

 StridedConvolution 

  

A strided convolution is another basic building block of convolution that is used in Convolutional Neural 

Networks. Let’s saywe want to convolve this (7 *7) image withthis (3 *3) filter, except, that instead ofdoing it 

the usual way, we’re going to do it with a stride of (2). 

 

 

Convolutions with astride of two 
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This means that we take the element-wise product as usual in this upper left (3 times 3) region, and then 

multiply and sum elements. That gives us (91). But then instead of stepping the blue box over by one step,we’re 

going to step it over by two steps. It’s illustrated how the upper left corner has gone from one dot to 

anotherjumpingoveroneposition. 

 

In this example we convolve (7 times 7) matrix with a (3 times 3) matrix and we get a (3 times 3) output. The 

input and output dimensions turns out to be governed bythe following formula: 

 

n−f+2p 

s+1 

 

Ifwe have (n times n) image convolved with an (ftimes f) filter and ifwe use a padding (p) and a stride (s), in 

this example (s=2), then we end up with an output that is (n-f+2p). Because we’re stepping (s) steps at the time 

instead ofjustonestep atatime,wenowdivideby(s) andadd (1).Inourexample,wehave((7-3+0)/2+1=4/2 

+1=3),thatiswhyweendupwiththis(3times 3) output.Noticethat inthis formulaabove, weroundthevalue of this 

fraction, which generally might not be an integer value, downto the nearest integer. 

 Tiled Convolution 

Tiled Convolutional Neural Networks are an extension to Convolutional Neural Networks that learn k separate 

convolutionkernels withinthe same layer. These convolutionoperations are applied over every k'th unit (hence 

the "tiling"). Even k=2 has been shown to give good results. The advantage of this is that through the pooling 

operation(where layers are "downsampled" bytaking the max, average, or evenstochastic combinationofeach 

pxp window in the output of a convolutional layer, across many tiles-- where k=p has been shown to give good 

performance), the tiled layers can provide rotational and scale invariance as well as the translational invariance 

that comes from having convolutional layers in the first place. 

 

Moreover, each convolution operation is effectively learning an additional feature (or map), which is a learned 

representation of the training data, and the tiled layers, like convolutional layers, also still have a relatively 

small numberoflearned parameters.Inessence, it isthe pooling operationoverthese multiple "tiled" mapsthat 

allows the network to learn invariances over scaling and rotation. 
 

 

 

 

Fig.8  :CNN vs Tiled CNN 
 

  



 

 

 

 

 

The transposed convolutional layer, unlike the convolutional layer, is up sampling in nature. Transposed 

convolutions are usually used in auto-encoders and GANs, or generally any network that must reconstruct an 

image. 

The word transpose means to cause two or more things to switch places with each other, and in the context of 

convolutional neural networks, this causes the input and the output dimensions to switch. 

In a transposed convolution, instead ofthe input being larger than the output, the output is larger. An easyway to 

think of it is to picture the input being padded until the corner kernel can just barely reach the corner ofthe 

input. 
 

 

When down sampling and up sampling techniques are applied to transposed convolutional layers, their effects 

are reversed. The reason for this is for a network to be able to use convolutional layers to compress the image, 

then transposed convolutional layers with the exact same down sampling and up sampling techniques to 

reconstruct the image. 

When padding is ‘added’ to the transposed convolutional layer, itseems as if padding is removed from the 

input, and the resulting output becomes smaller. 
 

  



 

 

 

 

Without padding, the output is 7x7, but with padding on both sides, it is 5x5. When strides are used, theyinstead 

affect the input, instead of the output. 
 

Strides(2,2)increasestheoutputdimensionfrom3x3to5x5. 

• Transposed Convolution vs Deconvolution 
Deconvolution is a term floating around next to transposed convolutions, and the two are often confused for 

each other. Many sources use the two interchangeably, and while deconvolutions do exist, they are not very 

popular in the field of machine learning. 

A deconvolution is a mathematical operation that reverses the effect ofconvolution. Imagine throwing an input 

through a convolutional layer, and collecting the output. Now throw the output through the deconvolutional 

layer, and you get back the exact same input. It is the inverse ofthe multivariate convolutional function. 

On the other hand, a transposed convolutional layer only reconstructs the spatial dimensions of the input. In 

theory, this is finein deep learning, as it can learn its own parameters through gradient descent, however, it does 

not give the same output as the input. 

 Dilated Convolution 

Dilated convolution, also knownas atrousconvolution, is atype ofconvolutionoperationused inconvolutional 

neuralnetworks(CNNs)that enables the networkto have a larger receptive field without increasing the number of 

parameters. It is a technique that expands the kernel (input) by inserting holes between its consecutive elements. 

In simpler terms, it is the same as convolution but it involves pixel skipping, so as to cover a larger area of the 

input. 

Inaregular convolutionoperation, a filter ofa fixedsizeslidesover the input featuremap, andthe values inthe filter 

are multiplied with the corresponding values in the inputfeature map to produce a single output value. The 

receptive field ofa neuron inthe output feature map is defined as the area in the input feature map that the filter 

can “see”. The size of the receptive field is determined by the size of the filter and the stride of the convolution. 

In contrast, in a dilated convolution operation, the filter is “dilated” by inserting gaps between the filter values. 

The dilation rate determines the size of the gaps, and it is a hyperparameter that can be adjusted. When the 

dilation rate is 1, the dilated convolution reduces to a regular convolution. 
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The dilation rate effectively increases the receptive field of the filter without increasing the number of 

parameters, because the filter is still the same size, but with gaps between the values. This can be useful in 

situations where a larger receptive field is needed, but increasing the size ofthe filter would lead to an increase 

in the number of parameters and computational complexity. 

Dilatedconvolutionshavebeenusedsuccessfullyinvariousapplications,suchassemanticsegmentation,where a 

larger context is needed to classify each pixel, and audio processing, where the network needs to learnpatterns 

with longer time dependencies. 

An additional parameter l (dilation factor) tells how much the input is expanded. In other words, based on the 

value of this parameter, (l-1) pixels are skippedin the kernel.Figure 9 depicts the differencebetween normal vs 

dilated convolution. In essence, normal convolution is just a 1-dilated convolution. 

 

 

Fig9:NormalCon

volutionvsDilated

Convolution 



 

 

Dilatedconvolutionhelpsexpandtheareaofthe inputimagecoveredwithout pooling.Theobjective istocover more 

information fromthe output obtained with everyconvolution operation. This method offers a wider field of view 

at the same computational cost. We determine the value of the dilation factor (l) byseeing how much 

information is obtained with each convolution on varying values of l. 

Byusing this method, we are able to obtain more information without increasing the number ofkernel 

parameters. InFig9,the imageontheleft depictsdilatedconvolution. Onkeepingthevalueof l=2,weskip1 pixel(l – 1 

pixel) while mapping the filter onto the input, thus covering more information in each step. 

• Formula Involved: 

(F*lk)(p)=(s+lt=p)
F(s)k(t) 

 
where, 

F(s)=Input 

k(t)=AppliedFilter 

*l=l-dilatedconvolution 

(F*lk)(p)=Output 

 

4. CNN Learning 

A neural network without an activation function is essentially just a linear regression model. The activation 

function does the non-linear transformation to the input making it capable to learn and perform more complex 

tasks. 

 NonLinearity Functions 

Nonlinear functions play a crucial role in Convolutional Neural Networks (CNNs) by introducing complex 

transformationsthat allowthe networktocaptureintricatepatternsandrelationships inthedata. InCNNs, these 

nonlinear functions are typically applied after convolutional and pooling layers to introduce nonlinearity intothe 

network architecture. The most commonly used nonlinear function in CNNs is the Rectified Linear Unit 

(ReLU), but there are other options as well. Here are some common nonlinear activation functions used in 

CNNs: 

• Rectified Linear Unit (ReLU):The ReLU activation function is defined as f(x) = max(0, x). It 

replaces all negative values with zero and keeps positive values unchanged. ReLU is 

computationally efficient and helps mitigate the vanishing gradient problem, allowing deeper 

networks to be trained effectively. 

• Leaky ReLU: The Leaky ReLU is an extension of the ReLU function that allows a small gradient 

for negative values to prevent neurons frombecoming inactive. It's defined as f(x) = x if x> 0, and 

f(x) = αx if x < 0, where α is a small positive constant. 

• Parametric ReLU (PReLU): PReLU is similar to Leaky ReLU, but the slope for negative valuesis 

learned during training rather than being a fixed constant. This can lead to improvedperformance, 

especially on large datasets. 

• Exponential LinearUnit (ELU): The ELU activation function is defined as f(x) = xfor x> 0, and 

f(x) = α * (exp(x) - 1) for x < 0, where α is a positive constant. ELU can help alleviate thevanishing 

gradient problem and produce smoother gradients. 

• Scaled Exponential Linear Unit (SELU): SELU is a variant of ELU that aims to maintain mean 

and variance stability in neural networks. It's designed to automatically adjust its parameters to 

achieve this stability, making it particularly useful in deeper architectures. 

• Hyperbolic Tangent (tanh): Thetanhactivation functionsquashes valuestotherangeof -1 to 1.It is 

symmetric around the origin, so it can produce both positive and negative values. 

Here we will look into the ReLU activation function, more specificallyabout it’s non - linear behaviour. ReLU 

is anacronym for Rectified Linear Unit. It is the most commonlyused activation function. The functionreturns 0 

if it receives any negative input, but for anypositive value x it returns that value back. So, Mathematically it can 



 

 

be expressed as:- f(x) = max(0,x) Basically, it setsanything lessthanorequalto 0(negative numbers) to be 

0. Andkeepsallthesamevaluesfor anyvalues>0.GraphicalrepresentationofReLUfunctionis: 

 

 

 
Fig.10RELUActivationFunction 

From the graphical representation, we observe that it is a very simple function. This means, it is composed of 

two pieces of straight lines only which are separated by y-axis of the graph. Also it includes very simple 

mathematical operations that are why it is less computationally expensive than other activation functions. 

Derivative of ReLU function By just looking into the equation of ReLU function it’s not clear that what the 

derivative will be, However let’s look into the graph so that it mayget clear to me about it’s derivatives. Let’s 

draw a graph of ReLU function where x is ranging from -4 to +4, and increment by 1 unit. Similarly y axis is 

labelled as f(x), value of function at x. 

 
Fig.11  RELU   function 

 

 

  



 

 

 

 
Fig.12DerivativefunctionofRELU 

 

As we know the derivative of function is defined as the slope of the function at certain point.So you can see that 

the function is mostly differentiable. If x is greater than 0 the derivative is 1 and if x is less than zero the 

derivative is 0. But when x = 0, the derivative does not exist. There are two ways to deal with this.First, you can 

just arbitrarily assign a value for the derivative of y = f(x) when x = 0. A second alternative is, instead of using 

the actual y = f(x) function, use an approximation to ReLU which is differentiable for all values of x. Anyway, 

Tillnow wewere getting confused that actuallywhat the ReLU function is non-differentiable around 0, but the 

slope is always either 0 (for negative values) or 1 (for positive values). That’s why the ReLU function is Non-

Linear. Intuitively, we can understand that as The ReLU is an activation function and the purpose of activation 

function is to introduce non-linearity in the neural network. 

 Loss Functions 

The loss function is very important in machine learning or deep learning. In mathematical optimization and or 

values of one or more variables onto a real number intuitively representing some “cost” associated with the 

event. In simple terms, the Loss function is a method of evaluating how well your algorithm is modeling your 

dataset. It is a mathematical function of the parameters of the machine learning algorithm. 

In simple linear regression, prediction iscalculated using slope(m) and intercept(b).The loss function forthis is 

the (Yi – Yihat)^2 i.e loss function is the function of slope and intercept. 
 

 

  



 

 

 

 

 

 

 

Loss Function in Deep Learning 

➢ Regression 

• MSE(Mean Squared Error) 

• MAE(Mean Absolute Error) 

• Hubber loss 

➢ Classification 

• Binary cross-entropy 

• Categorical cross-entropy 

 

A. Regression Loss 
 

 

1. Mean Squared Error/Squared loss/L2loss 

 

 

The Mean Squared Error (MSE) is the simplest and most common loss function. To calculate them 

MSE, you take the difference between the actual value and model prediction, square it, and average it 

across the whole dataset. 
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RECURRENT NEURAL NETWORKS 

 

Introduction to RNN 
 

Traditional neural networks mainly have independent input and output layers, which make them 

inefficient when dealing with sequential data. Hence, a new neural network called Recurrent 

Neural Network, introduced to store results of previous outputs in the internal memory. These 

results are then fed into the network inputs in order to predict the output of the layer. This allows 

it to be used in applications like pattern detection, speech and voice recognition, natural language 

processing, and time series prediction. 

Below is how we can convert a Feed-Forward Neural Network into a Recurrent Neural Network: 
 

 

Fig: Simple Recurrent Neural Network 

RNN has hidden layers that act as memory locations to store the outputs of a layer in a loop. 

Here, “x” is the input layer, “h” is the hidden layer (act as memory locations to store the outputs 

of a layer in a loop), and “y” is the output layer. A, B, and C are the network parameters used to 

improve the output of the model. At any given time t, the current input is a combination of input 

at x(t) and x(t-1). The output at any given time is fetched back to the network to improve on the 

output. 



 

 

 

 

 
 

 
 

Why Recurrent Neural Networks? 

RNN were created because there were a few issues in the feed-forward neural network: 

 

• Cannot handle sequential data 

• Considers only the current input 

• Cannot memorize previous inputs 

The solution to these issues is the RNN. An RNN can handle sequential data, accepting the 

current input data, and previously received inputs. RNNs can memorize previous inputs due to 

their internal memory. 

 

How Does Recurrent Neural Networks Work? 

In Recurrent Neural networks, the information cycles through a loop to the middle hidden layer. 

 

 

Fig: Working of Recurrent Neural Network 

 

The input layer ‘x’ takes in the input to the neural network and processes it and passes it onto the 

middle layer. 

 

The middle layer ‘h’ can consist of multiple hidden layers, each with its own activation functions 

and weights and biases. If we have a neural network where the various parameters of different 

hidden layers are not affected by the previous layer, ie: the neural network does not have 

memory, then we can use a recurrent neural network. 



 

 

 

 

 

The Recurrent Neural Network will standardize the different activation functions and weights 

and biases so that each hidden layer has the same parameters. Then, instead of creating multiple 

hidden layers, it will create one and loop over it as many times as required. 

 
Feed-Forward Neural Networks vs Recurrent Neural Networks 

A feed-forward neural network allows information to flow only in the forward direction, from 

the input nodes, through the hidden layers, and to the output nodes. There are no cycles or loops 

in the network. Below is how a simplified presentation of a feed-forward neural network looks 

like: 
 

 

 

 

 

 

 

 

 

 

Fig: 

Feed-forward Neural Network 
 

In a feed-forward neural network, the decisions are based on the current input. It doesn’t 

memorize the past data, and there’s no future scope. Feed-forward neural networks are used in 

general regression and classification problems. 

 

Applications of Recurrent Neural Networks 

 

Image Captioning: RNNs are used to caption an image by analysing the activities present. 

 
 

Time Series Prediction: Any time series problem, like predicting the prices of stocks in a 

particular month, can be solved using an RNN. 

 

Natural Language Processing: Text mining and Sentiment analysis can be carried out using an 
RNN for Natural Language Processing (NLP). 

https://www.simplilearn.com/tutorials/statistics-tutorial/what-is-time-series-analysis
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/what-is-natural-language-processing-nlp


 

 

 

 

 
 

 
Machine Translation: Given an input in one language, RNNs can be used to translate the input 

into different languages as output. 

 
 

Advantages of Recurrent Neural Network 

Recurrent Neural Networks (RNNs) have several advantages over other types of neural 

networks, including: 

 

Ability to Handle Variable-Length Sequences: RNNs are designed to handle input sequences 

of variable length, which makes them well-suited for tasks such as speech recognition, natural 

language processing, and time series analysis. 

 

Memory of Past Inputs:RNNs have a memory of past inputs, which allows them to capture 

information about the context of the input sequence. This makes them useful for tasks such as 

language modelling, where the meaning of a word depends on the context in which it appears. 

 

Parameter Sharing: RNNs share the same set of parameters across all time steps, which reduce 

the number of parameters that need to be learned and can lead to better generalization. 

 

Non-Linear Mapping: RNNs use non-linear activation functions, which allow them to learn 

complex, non-linear mappings between inputs and outputs. 

 

Sequential Processing: RNNs process input sequences sequentially, which makes them 

computationally efficient and easy to parallelize. 

 

Flexibility: RNNs can be adapted to a wide range of tasks and input types, including text, 

speech, and image sequences. 



 

 

 

 

 

Improved Accuracy:RNNs have been shown to achieve state-of-the-art performance on a 

variety of sequence modeling tasks, including language modeling, speech recognition, and 

machine translation. 

 

These advantages make RNNs a powerful tool for sequence modelling and analysis, and have led 

to their widespread use in a variety of applications, including natural language processing, 

speech recognition, and time series analysis. 

 
Disadvantages of Recurrent Neural Network 

Although Recurrent Neural Networks (RNNs) have several advantages, they also have some 

disadvantages. Here are some of the main disadvantages of RNNs: 

 

Vanishing and Exploding Gradients:RNNs can suffer from the problem of vanishing or 

exploding gradients, which can make it difficult to train the network effectively. This occurs 

when the gradients of the loss function with respect to the parameters become very small or very 

large as they propagate through time. 

 

Computational Complexity:RNNs can be computationally expensive to train, especially when 

dealing with long sequences. This is because the network has to process each input in sequence, 

which can be slow. 

 

Difficulty in Capturing Long-Term Dependencies:Although RNNs are designed to capture 

information about past inputs; they can struggle to capture long-term dependencies in the input 

sequence. This is because the gradients can become very small as they propagate through time, 

which can cause the network to forget important information. 

 

Lack of Parallelism:RNNs are inherently sequential, which makes it difficult to parallelize the 

computation. This can limit the speed and scalability of the network. 

 

Difficulty in Choosing the Right Architecture:There are many different variants of RNNs, 

each with its own advantages and disadvantages. Choosing the right architecture for a given task 

can be challenging, and may require extensive experimentation and tuning. 

 

Difficulty in Interpreting the Output:The output of an RNN can be difficult to interpret, 

especially when dealing with complex inputs such as natural language or audio. This can make it 

difficult to understand how the network is making its predictions. 

 

These disadvantages are important when deciding whether to use an RNN for a given task. 

However, many of these issues can be addressed through careful design and training of the 

network and through techniques such as regularization and attention mechanisms. 

 

 

The four commonly used types of Recurrent Neural Networks are: 



 

 

 

 

 

1. One-to-One 

The simplest type of RNN is One-to-One, which allows a single input and a single output. It has 

fixed input and output sizes and acts as a traditional neural network. The One-to-One application 

can be found in Image Classification. 

 

One-to One 

2. One-to-Many 

One-to-Many is a type of RNN that gives multiple outputs when given a single input. It takes a 

fixed input size and gives a sequence of data outputs. Its applications can be found in Music 

Generation and Image Captioning. 

 
 

One-to-Many 

 

3. Many-to-One 

Many-to-One is used when a single output is required from multiple input units or a sequence of 

them. It takes a sequence of inputs to display a fixed output. Sentiment Analysis is a common 

example of this type of Recurrent Neural Network. 

 
4. Many-to-Many 

 

Many-to-Many are used to generate a sequence of output data from a sequence of input units. 

This type of RNN is further divided into the following two subcategories: 

1. Equal Unit Size: In this case, the number of both the input and output units is the same. A 

common application can be found in Name-Entity Recognition. 



 

 

 

 

 
 

 

2. Unequal Unit Size: In this case, inputs and outputs have different numbers of units. Its 

application can be found in Machine Translation. 

 

 
Two Issues of Standard RNNs 

 

1. Vanishing Gradient Problem 

Recurrent Neural Networks enable us to model time-dependent and sequential data problems, 

such as stock market prediction, machine translation, and text generation. We will find, however, 

RNN is hard to train because of the gradient problem. 

 

RNNs suffer from the problem of vanishing gradients. The gradients carry information used in 

the RNN, and when the gradient becomes too small, the parameter updates become insignificant. 

This makes the learning of long data sequences difficult. 
 

 

1. Exploding Gradient Problem 

 

While training a neural network, if the slope tends to grow exponentially instead of decaying, 

this is called an Exploding Gradient. This problem arises when large error gradients accumulate, 

resulting in very large updates to the neural network model weights during the training 

process.Long training time, poor performance, and bad accuracy are the major issues in gradient 

problems. 



 

 

 

Feed-Forward Neural Networks vs Recurrent Neural Networks 

A feed-forward neural network allows information to flow only in the forward direction, from 

the input nodes, through the hidden layers, and to the output nodes. There are no cycles or loops 

in the network. Below is how a simplified presentation of a feed-forward neural network looks 

like: 

 
Fig: Feed-forward Neural Network 

 

In a feed-forward neural network, the decisions are based on the current input. It doesn’t 

memorize the past data, and there’s no future scope. Feed-forward neural networks are used in 

general regression and classification problems. 

 
Variant RNN Architectures 

There are several variant RNN architectures that have been developed over the years to address 

the limitations of the standard RNN architecture. Here are a few examples: 

 

Long Short-Term Memory (LSTM) Networks 

LSTM is a type of RNN that is designed to handle the vanishing gradient problem that can occur 

in standard RNNs. It does this by introducing three gating mechanisms that control the flow of 

information through the network: the input gate, the forget gate, and the output gate. These gates 

allow the LSTM network to selectively remember or forget information from the input sequence, 

which makes it more effective for long-term dependencies. 

 
Gated Recurrent Unit (GRU) Networks 

 

GRU is another type of RNN that is designed to address the vanishing gradient problem. It has 

two gates: the reset gate and the update gate. The reset gate determines how much of the 

previous state should be forgotten, while the update gate determines how much of the new state 

should be remembered. This allows the GRU network to selectively update its internal state 

based on the input sequence. 

 

Bidirectional RNNs: 

 

Bidirectional RNNs are designed to process input sequences in both forward and backward 

directions. This allows the network to capture both past and future context, which can be useful 

for speech recognition and natural language processing tasks. 

 

 

 

 

 

 

 



 

 

 

 

 

 
Encoder-Decoder RNNs: 

 

Encoder-decoder RNNs consist of two RNNs: an encoder network that processes the input 

sequence and produces a fixed-length vector representation of the input and a decoder network 

that generates the output sequence based on the encoder's representation. This architecture is 

commonly used for sequence-to-sequence tasks such as machine translation. 

 
Attention Mechanisms 

 

Attention mechanisms are a technique that can be used to improve the performance of RNNs on 

tasks that involve long input sequences. They work by allowing the network to attend to different 

parts of the input sequence selectively rather than treating all parts of the input sequence equally. 

This can help the network focus on the input sequence's most relevant parts and ignore irrelevant 

information. 

 

These are just a few examples of the many variant RNN architectures that have been developed 

over the years. The choice of architecture depends on the specific task and the characteristics of 

the input and output sequences. 

 

 

 
Encoder-Decoder Model 

 
There are three main blocks in the encoder-decoder model, 

 

 
• Encoder 

 
• Hidden Vector 

 
• Decoder 
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The Encoder will convert the input sequence into a single-dimensional vector (hidden vector). 

The decoder will convert the hidden vector into the output sequence. 

 

Encoder-Decoder models are jointly trained to maximize the conditional probabilities of the 

target sequence given the input sequence. 

 

SEQUENCE TO SEQUENCE RNN 

 

 
How the Sequence to Sequence Model works? 

 
In order to fully understand the model’s underlying logic, we will go over the below illustration: 

 
Encoder-decoder sequence to sequence model 

 

 
Encoder 

 
• Multiple RNN cells can be stacked together to form the encoder. RNN reads each inputs 

sequentially 

 

• For every timestep (each input) t, the hidden state (hidden vector) h is updated according to 

the input at that timestep X[i]. 

 

• After all the inputs are read by encoder model, the final hidden state of the model represents 

the context/summary of the whole input sequence. 
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• Example: Consider the input sequence “I am a Student” to be encoded. There will be totally 4 

timesteps ( 4 tokens) for the Encoder model. At each time step, the hidden state h will be 

updated using the previous hidden state and the current input. 

 

Example: Encoder 

 

 
• At the first timestep t1, the previous hidden state h0 will be considered as zero or randomly 

chosen. So the first RNN cell will update the current hidden state with the first input and h0. 

Each layer outputs two things — updated hidden state and the output for each stage. The 

outputs at each stage are rejected and only the hidden states will be propagated to the next 

layer. 

 

• The hidden states h_i are computed using the formula: 

 

 
• At second timestep t2, the hidden state h1 and the second input X[2] will be given as input , 

and the hidden state h2 will be updated according to both inputs. Then the hidden state h1 will 

be updated with the new input and will produce the hidden state h2. This happens for all the 

four stages wrt example taken. 

 

• A stack of several recurrent units (LSTM or GRU cells for better performance) where each 

accepts a single element of the input sequence, collects information for that element, and 

propagates it forward. 

 

• In the question-answering problem, the input sequence is a collection of all words from the 

question. Each word is represented as x_i where i is the order of that word. 
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This simple formula represents the result of an ordinary recurrent neural network. As you can 

see, we just apply the appropriate weights to the previously hidden state h_(t-1) and the input 

vector x_t. 

 

Encoder Vector 

 
•   This is the final hidden state produced from the encoder part of the model. It is calculated 

using the formula above. 

 

• This vector aims to encapsulate the information for all input elements in order to help the 

decoder make accurate predictions. 

 

• It acts as the initial hidden state of the decoder part of the model. 

 
 

Decoder 

 
• The Decoder generates the output sequence by predicting the next output Yt given the hidden 

state ht. 

 

• The input for the decoder is the final hidden vector obtained at the end of encoder model. 

 
•   Each layer will have three inputs, hidden vector from previous layer ht-1 and the previous 

layer output yt-1, original hidden vector h. 

 

• At the first layer, the output vector of encoder and the random symbol START, empty hidden 

state ht-1 will be given as input, the outputs obtained will be y1 and updated hidden state h1 

(the information of the output will be subtracted from the hidden vector). 

 

•     The second layer will have the updated hidden state h1 and the previous output y1 and 

original hidden vector h as current inputs, produces the hidden vector h2 and output y2. 

 

• The outputs occurred at each timestep of decoder is the actual output. The model will predict 

the output until the END symbol occurs. 

 

• A stack of several recurrent units where each predicts an output y_t at a time step t. 
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• Each recurrent unit accepts a hidden state from the previous unit and produces an output as 

well as its own hidden state. 

 

• In the question-answering problem, the output sequence is a collection of all words from the 

answer. Each word is represented as y_i where i is the order of that word. 

 

Example: Decoder. 

 

 
• Any hidden state h_i is computed using the formula: 

 

 
As you can see, we are just using the previous hidden state to compute the next one. 

 

 
Output Layer 

 
• We use Softmax activation function at the output layer. 

 
• It is used to produce the probability distribution from a vector of values with the target class 

of high probability. 

 

• The output y_t at time step t is computed using the formula: 
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In a Bi-RNN, the input data is passed through two separate RNNs: one processes the data in the 
forward direction, while the other processes it in the reverse direction. The outputs of these two 

RNNs are then combined in some way to produce the final output. 

 

One common way to combine the outputs of the forward and reverse RNNs is to concatenate 

them, but other methods, such as element-wise addition or multiplication can also be used. The 

choice of combination method can depend on the specific task and the desired properties of the 

final output. 

 

Need for Bi-directional RNNs 

 

 

 

 

We calculate the outputs using the hidden state at the current time step together with the 

respective weight W(S). Softmax is used to create a probability vector that will help us determine 

the final output (e.g. word in the question-answering problem). 

 

The power of this model lies in the fact that it can map sequences of different lengths to each 

other. As you can see the inputs and outputs are not correlated and their lengths can differ. This 

opens a whole new range of problems that can now be solved using such architecture. 

 

Applications 

 
It possesses many applications such as 

 

 
• Google’s Machine Translation 

 
• Question answering chatbots 

 
• Speech recognition 

 
• Time Series Application etc., 

 
BIDIRECTIONAL RNN 

 
A bi-directional recurrent neural network (Bi-RNN) is a type of recurrent neural network 

(RNN) that processes input data in both forward and backward directions. The goal of a Bi- 

RNN is to capture the contextual dependencies in the input data by processing it in both 

directions, which can be useful in a variety of natural language processing (NLP) tasks. 
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Consider an example where we could use the recurrent network to predict the masked word in a 

sentence. 
 

1. Apple is my favorite . 

2. Apple is my favourite , and I work there. 

3. Apple is my favorite , and I am going to buy one. 
 

In the first sentence, the answer could be fruit, company, or phone. But in the second and third 
sentences, it cannot be a fruit. 

 

A Recurrent Neural Network that can only process the inputs from left to right might not be able 
to accurately predict the right answer for sentences discussed above. 

 

To perform well on natural language tasks, the model must be able to process the sequence in 

both directions. 
 

Bi-directional RNNs 

• A bidirectional recurrent neural network (RNN) is a type of recurrent neural network (RNN) 
that processes input sequences in both forward and backward directions. 

 

• This allows the RNN to capture information from the input sequence that may be relevant to 

the output prediction, but the same could be lost in a traditional RNN that only processes the 

input sequence in one direction. 
 

• This allows the network to consider information from the past and future when making 

predictions rather than just relying on the input data at the current time step. 
 

• This can be useful for tasks such as language processing, where understanding the context of 

a word or phrase can be important for making accurate predictions. 
 

• In general, bidirectional RNNs can help improve the performance of a model on a variety of 

sequence-based tasks. 

• A uni-directional recurrent neural network (RNN) processes input sequences in a single 

direction, either from left to right or right to left. 

 

• This means that the network can only use information from earlier time steps when making 
predictions at later time steps. 

 

• This can be limiting, as the network may not capture important contextual information 

relevant to the output prediction. 

 

• For example, in natural language processing tasks, a uni-directional RNN may not accurately 

predict the next word in a sentence if the previous words provide important context for the 

current word. 
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This means that the network has two separate RNNs: 
 

1. One that processes the input sequence from left to right 

2. Another one that processes the input sequence from right to left. 
 

These two RNNs are typically referred to as the forward and backward RNNs, respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During the forward pass of the RNN, the forward RNN processes the input sequence in the usual 

way by taking the input at each time step and using it to update the hidden state. The updated 

hidden state is then used to predict the output at that time step. 
 

Back-propagation through time (BPTT) is a widely used algorithm for training recurrent 

neural networks (RNNs). It is a variant of the back-propagation algorithm specifically designed 

to handle the temporal nature of RNNs, where the output at each time step depends on the inputs 

and outputs at previous time steps. 
 

In the case of a bidirectional RNN, BPTT involves two separate Back-propagation passes: one 

for the forward RNN and one for the backward RNN. During the forward pass, the forward RNN 

processes the input sequence in the usual way and makes predictions for the output sequence. 

These predictions are then compared to the target output sequence, and the error is back- 

propagated through the network to update the weights of the forward RNN. 
 

During the backward pass, the backward RNN processes the input sequence in reverse order and 

makes predictions for the output sequence. These predictions are then compared to the target 

output sequence in reverse order, and the error is back-propagated through the network to update 

the weights of the backward RNN. 
 

Once both passes are complete, the weights of the forward and backward RNNs are updated 

based on the errors computed during the forward and backward passes, respectively. This 

process is repeated for multiple iterations until the model converges and the predictions of the 

bidirectional RNN are accurate. 



 

lOMoAR cPSD|45374298 

Page: 17 / 29  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In general, bidirectional RNNs can be useful for any task where the input data has a temporal 

structure and where understanding the context of the data is important for making accurate 

predictions. 

 

 

 
 

 
 

Advantages and Disadvantages of Bi-directional RNNs 

 

Advantages: 

 

Bidirectional Recurrent Neural Networks (RNNs) have several advantages over traditional 

RNNs. Some of the key advantages of bidirectional RNNs include the following: 

• Improved performance on tasks that involve processing sequential data. Because bidirectional 

RNNs can consider information from both past and future time steps when making 

This allows the bidirectional RNN to consider information from past and future time steps when 
making predictions, which can significantly improve the model's accuracy. 

Applications of Bi-directional RNNs 

 

Bidirectional recurrent neural networks (RNNs) can outperform traditional RNNs on various 

tasks, particularly those involving sequential data processing. Some examples of tasks where 

bidirectional RNNs have been shown to outperform traditional RNNs include: 

 

• Natural languages processing tasks, such as language translation and sentiment analysis, 

where understanding the context of a word or phrase can be important for making accurate 

predictions. 

 

• Time series forecasting tasks, such as predicting stock prices or weather patterns, where the 

sequence of past data can provide important clues about future trends. 

 

• Audio processing tasks, such as speech recognition or music generation, where the 

information in the audio signal can be complex and non-linear. 
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predictions, they can outperform traditional RNNs on tasks such as natural language 

processing, time series forecasting, and audio processing. 

Disadvantages: 

 

However, Bidirectional RNNs also have some disadvantages. Some of the key disadvantages of 
bidirectional RNNs include the following: 

 

• Increased computational complexity. Because bidirectional RNNs have two separate RNNs 

(one for the forward pass and one for the backward pass), they can require more 

computational resources to train and evaluate than traditional RNNs. This can make them 

more difficult to implement and less efficient in terms of runtime performance. 

 

• More difficult to optimize. Because bidirectional RNNs have more parameters (due to the two 

separate RNNs), they can be more difficult to optimize. This can make finding the right set of 

weights for the model challenging and lead to slower convergence during training. 

 

• The need for longer input sequences. For a bidirectional RNN to capture long-term 

dependencies in the data, it typically requires longer input sequences than a traditional RNN. 

This can be a disadvantage in situations where the input data is limited or noisy, as it may not 

be possible to generate enough input data to train the model effectively. 

 

RECURSIVE NEURAL NETWORKS 

 
Recursive Neural Networks (RvNNs) are a class of deep neural networks that can learn detailed 

and structured information. With RvNN, you can get a structured prediction by recursively 

applying the same set of weights on structured inputs. The word recursive indicates that the 

neural network is applied to its output. 

 
Due to their deep tree-like structure, Recursive Neural Networks can handle hierarchical data. 

The tree structure means combining child nodes and producing parent nodes. Each child-parent 

bond has a weight matrix, and similar children have the same weights. The number of children 

for every node in the tree is fixed to enable it to perform recursive operations and use the same 

weights. RvNNs are used when there's a need to parse an entire sentence. 

 
To calculate the parent node's representation, we add the products of the weight matrices (W_i) 

and the children's representations (C_i) and apply the transformation f: 

 
\[h = f \left( \sum_{i=1}^{i=c} W_i C_i \right) \], where c is the number of children. 

Recurrent Neural Network vs. Recursive Neural Networks 

• Recurrent Neural Networks (RNNs) are another well-known class of neural networks used for 

processing sequential data. They are closely related to the Recursive Neural Network. 

• Recurrent Neural Networks represent temporal sequences, which they find application 

in Natural language Processing (NLP) since language-related data like sentences and 

https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/what-is-natural-language-processing-nlp
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paragraphs are sequential in nature. Recurrent networks are usually chain structures. The 

weights are shared across the chain length, keeping the dimensionality constant. 

• On the other hand, Recursive Neural Networks operate on hierarchical data models due to 

their tree structure. There are a fixed number of children for each node in the tree so that it can 

execute recursive operations and use the same weights for each step. Child representations are 

combined into parent representations. 

• The efficiency of a recursive network is higher than a feed-forward network. 

• Recurrent Networks are recurrent over time, meaning recursive networks are just a 

generalization of the recurrent network. 

 

Recursive Neural Network Implementation 

 

A Recursive Neural Network is used for sentiment analysis in natural language sentences. It is 

one of the most important tasks of Natural language Processing (NLP), which identifies the 

writing tone and sentiments of the writer in a particular sentence. If a writer expresses any 

sentiment, basic labels about the writing tone are recognized. We want to identify the smaller 

components like nouns or verb phrases and order them in a syntactic hierarchy. For example, it 

identifies whether the sentence showcases a constructive form of writing or negative word 

choices. 

 
A variable called 'score' is calculated at each traversal of nodes, telling us which pair of phrases 

and words we must combine to form the perfect syntactic tree for a given sentence. 

 
Let us consider the representation of the phrase -- "a lot of fun" in the following sentence. 

Programming is a lot of fun. 

An RNN representation of this phrase would not be suitable because it considers only sequential 

relations. Each state varies with the preceding words' representation. So, a subsequence that 

doesn't occur at the beginning of the sentence can't be represented. With RNN, when processing 

the word 'fun,' the hidden state will represent the whole sentence. 

 
However, with a Recursive Neural Network (RvNN), the hierarchical architecture can store the 

representation of the exact phrase. It lies in the hidden state of the node R_{a\ lot\ of\ fun}. Thus, 

Syntactic parsing is completely implemented with the help of Recursive Neural Networks. 

 
Benefits of RvNNs for Natural Language Processing 

 

• The two significant advantages of Recursive Neural Networks for Natural Language 

Processing are their structure and reduction in network depth. 

• As already explained, the tree structure of Recursive Neural Networks can manage 

hierarchical data like in parsing problems. 
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• Another benefit of RvNN is that the trees can have a logarithmic height. When there are O(n) 

input words, a Recursive Neural Network can represent a binary tree with height O(log\ n). 

This lessens the distance between the first and last input elements. Hence, the long-term 

dependency turns shorter and easier to grab. 

 

Disadvantages of RvNNs for Natural Language Processing 

 

• The main disadvantage of recursive neural networks can be the tree structure. Using the tree 

structure indicates introducing a unique inductive bias to our model. The bias corresponds to 

the assumption that the data follow a tree hierarchy structure. But that is not the truth. Thus, 

the network may not be able to learn the existing patterns. 

• Another disadvantage of the Recursive Neural Network is that sentence parsing can be slow 

and ambiguous. Interestingly, there can be many parse trees for a single sentence. 

• Also, it is more time-consuming and labor-intensive to label the training data for recursive 

neural networks than to construct recurrent neural networks. Manually parsing a sentence into 

short components is more time-consuming and tedious than assigning a label to a sentence. 

 

Gated Architecture 

 

LONG SHORT TERM MEMORY NETWORK (LSTM). 

 

LSTM used in the field of Deep Learning. It is a variety of recurrent neural networks (RNNs) 

that are capable of learning long-term dependencies, especially in sequence prediction problems. 

 

LSTMs are predominantly used to learn, process, and classify sequential data because these 

networks can learn long-term dependencies between time steps of data. Common LSTM 

applications include sentiment analysis, language modelling, speech recognition, and video 

analysis. 

 

LSTM has feedback connections, i.e., it is capable of processing the entire sequence of data, 

apart from single data points such as images. This finds application in speech recognition, 

machine translation, etc. LSTM is a special kind of RNN, which shows outstanding performance 

on a large variety of problems. 

 

The Logic behind LSTM 

 

The central role of an LSTM model is held by a memory cell known as a ‘cell state’ that 

maintains its state over time. The cell state is the horizontal line that runs through the top of the 

below diagram. It can be visualized as a conveyor belt through which information just flows, 

unchanged. 
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Information can be added to or removed from the cell state in LSTM and is regulated by gates. 

These gates optionally let the information flow in and out of the cell. It contains a point wise 

multiplication operation and a sigmoid neural net layer that assist the mechanism. 

 

 
The sigmoid layer gives out numbers between zero and one, where zero means ‘nothing should 
be let through,’ and one means ‘everything should be let through.’ 

1. Forget Gate(f): At forget gate the input is combined with the previous output to generate 

a fraction between 0 and 1, that determines how much of the previous state need to be 

preserved (or in other words, how much of the state should be forgotten). This output is 

then multiplied with the previous state. Note: An activation output of 1.0 means 

“remember everything” and activation output of 0.0 means “forget everything.” From a 

different perspective, a better name for the forget gate might be the “remember gate” 

2. Input Gate(i): Input gate operates on the same signals as the forget gate, but here the 

objective is to decide which new information is going to enter the state of LSTM. The 

output of the input gate (again a fraction between 0 and 1) is multiplied with the output of 

tan h block that produces the new values that must be added to previous state. This gated 

vector is then added to previous state to generate current state 

3. Input Modulation Gate(g): It is often considered as a sub-part of the input gate and much 

literature on LSTM’s does not even mention it and assume it is inside the Input gate. It is 

used to modulate the information that the Input gate will write onto the Internal State Cell 

by adding non-linearity to the information and making the information Zero-mean. This 

is done to reduce the learning time as Zero-mean input has faster convergence. Although 

this gate’s actions are less important than the others and are often treated as a finesse- 
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providing concept, it is good practice to include this gate in the structure of the LSTM 

unit. 

4. Output Gate(o): At output gate, the input and previous state are gated as before to 

generate another scaling fraction that is combined with the output of tanh block that 

brings the current state. This output is then given out. The output and state are fed back 

into the LSTM block. 

The basic workflow of a Long Short Term Memory Network is similar to the workflow of a 

Recurrent Neural Network with the only difference being that the Internal Cell State is also 

passed forward along with the Hidden State. 

Working of an LSTM recurrent unit: 

1. Take input the current input, the previous hidden state, and the previous internal cell 

state. 

2. Calculate the values of the four different gates by following the below steps:- 

• For each gate, calculate the parameterized vectors for the current input and the 

previous hidden state by element-wise multiplication with the concerned vector with 

the respective weights for each gate. 

• Apply the respective activation function for each gate element-wise on the 

parameterized vectors. Below given is the list of the gates with the activation 

function to be applied for the gate. 

3. Calculate the current internal cell state by first calculating the element-wise 

multiplication vector of the input gate and the input modulation gate, then calculate the 

element-wise multiplication vector of the forget gate and the previous internal cell state 

and then add the two vectors. 

 
4. Calculate the current hidden state by first taking the element-wise hyperbolic tangent of 

the current internal cell state vector and then performing element-wise multiplication 

with the output gate. 

The above-stated working is illustrated as below:- 

 

Note that the blue circles denote element-wise multiplication. The weight matrix W contains 

different weights for the current input vector and the previous hidden state for each gate. 

LSTMs work in a 3-step process. 
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Step 1: Decide How Much Past Data It Should Remember 

 

The first step in the LSTM is to decide which information should be omitted from the cell in that 

particular time step. The sigmoid function determines this. It looks at the previous state (ht-1) 

along with the current input xt and computes the function. 
 

 

ft – forget gate. Decides which information to delete that is not important from previous time 

step. 

 

Consider the following two sentences: 

 

1. Let the output of h(t-1) be “Alice is good in Physics. John, on the other hand, is good at 

Chemistry.” 

 

2. Let the current input at x(t) be “John plays football well. He told me yesterday over the phone 

that he had served as the captain of his college football team.” 

 

The forget gate realizes there might be a change in context after encountering the first full stop. It 

compares with the current input sentence at x(t). The next sentence talks about John, so the 

information on Alice is deleted. The position of the subject is vacated and assigned to John. 

 
Step 2: Decide How Much This Unit Adds to the Current State 

In the second layer, there are two parts. One is the sigmoid function, and the other is the tanh 

function. In the sigmoid function, it decides which values to let through (0 or1). tanh function 

gives weightage to the values which are passed, deciding their level of importance (-1 to 1). 

 

it - input gate.Determines which information to let through based on its significance in the 

current time step. 

 

With the current input at x(t), the input gate analyses the important information John plays 
football, and the fact that he was the captain of his college team is important. 

 

“He told me yesterday over the phone” is less important; hence it's forgotten. This process of 

adding some new information can be done via the input gate. 

 
Step 3: Decide What Part of the Current Cell State Makes It to the Output 

The third step is to decide what the output will be. First, we run a sigmoid layer, which decides 

what parts of the cell state make it to the output. Then, we put the cell state through tanh to push 

the values to be between -1 and 1 and multiply it by the output of the sigmoid gate. 
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Ot-output gate.Allows the passed in information to impact the output in the current time step 
 

Let’s consider this example to predict the next word in the sentence: “John played tremendously 

well against the opponent and won for his team. For his contributions, brave    was awarded 

player of the match.”There could be many choices for the empty space. The current input brave 

is an adjective, and adjectives describe a noun. So, “John” could be the best output after brave. 

 

LSTM Applications 

 

LSTM networks find useful applications in the following areas: 

• Language modelling 

• Machine translation 

• Handwriting recognition 

• Image captioning 

• Image generation using attention models 

• Question answering 

• Video-to-text conversion 

• Polymorphic music modelling 

• Speech synthesis 

• Protein secondary structure prediction 

connections 

Skip connections are a type of shortcut that connects the output of one layer to the input of 

another layer that is not adjacent to it. For example, in a CNN with four layers, A, B, C, and D, a 

skip connection could connect layer A to layer C, or layer B to layer D, or both. 

 

Skip connection is a standard module in much convolutional architecture. By using a skip 

connection, we provide an alternative path for the gradient (with back-propagation). It is 

experimentally    validated    that    this    additional    paths     are     often beneficial for the 

model convergence. Skip connections in deep architectures, as the name suggests, skip some 

layer in the neural network and feeds the output of one layer as the input to the next 

layers (instead of only the next one). 

 

As previously explained, using the chain rule, we must keep multiplying terms with the error 

gradient as we go backwards. However, in the long chain of multiplication, if we multiply many 

things together that are less than one, then the resulting gradient will be very small. Thus, the 

gradient becomes very small as we approach the earlier layers in a deep architecture. In 

some cases, the gradient becomes zero, meaning that we do not update the early layers at all. 

 

In general, there are two fundamental ways that one could use skip connections through different 

non-sequential layers: 

 

a) Addition as in residual architectures, 

b) Concatenation as in densely connected architectures. 

We will first describe addition which is commonly referred as residual skip connections. 
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Skip connections via addition 

 

The core idea is to back-propagate through the identity function, by just using a vector 

addition. Then the gradient would simply be multiplied by one and its value will be maintained 

in the earlier layers. This is the main idea behind Residual Networks (ResNets): they stack 

these skip residual blocks together. We use an identity function to preserve the gradient. 
 
 

 
Mathematically, we can represent the residual block, and calculate its partial derivative 

(gradient), given the loss function like this: 

 
Apart from the vanishing gradients, there is another reason that we commonly use them. For a 

plethora of tasks (such as semantic segmentation, optical flow estimation, etc.) there is some 

information that was captured in the initial layers and we would like to allow the later layers to 

also learn from them. It has been observed that in earlier layers the learned features 

correspond to lower semantic information that is extracted from the input. If we had not 

used the skip connection that information would have turned too abstract. 

 

Skip connections via concatenation 

 

As stated, for many dense prediction problems, there is low-level information shared between 

the input and output, and it would be desirable to pass this information directly across the 

net. The alternative way that we can achieve skip connections is by concatenation of previous 

feature maps. The most famous deep learning architecture is DenseNet. Below we can see an 

example of feature reusability by concatenation with 5 convolutional layers: 

https://arxiv.org/abs/1608.06993
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This architecture heavily uses feature concatenation so as to ensure maximum information flow 

between layers in the network. This is achieved by connecting via concatenation all layers 

directly with each other, as opposed to ResNets. Practically, what we basically do is to 

concatenate the feature channel dimension. This leads to 

a) An enormous amount of feature channels on the last layers of the network, 

b) To more compact models, and 

c) Extreme feature reusability. 
 
 

Short and long skip connections in Deep Learning 

In more practical terms, we have to be careful when introducing additive skip connections in our 

deep learning model. The dimensionality has to be the same in addition and also in 

concatenation apart from the chosen channel dimension. That is the reason why we see that 

additive skip connections are used in two kinds of setups: 

 

a) Short skip connections 

b) Long skip connections. 

 

Short skip connections are used along with consecutive convolutional layers that do not change 

the input dimension (see Res-Net), while long skip connections usually exist in encoder-decoder 

architectures. It is known that the global information (shape of the image and other 

statistics) resolves what, while local information resolves where (small details in an image 

patch). 

https://arxiv.org/abs/1512.03385
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Long skip connections often exist in architectures that are symmetrical, where the spatial 

dimensionality is reduced in the encoder part and is gradually increased in the decoder part as 

illustrated below. In the decoder part, one can increase the dimensionality of a feature map 

via transpose convolutional layers. The transposed convolution operation forms the same 

connectivity as the normal convolution but in the backward direction. 

Benefits of skip connections 

 

Skip connections can provide several benefits for CNNs, such as improving accuracy and 

generalization, solving the vanishing gradient problem, and enabling deeper networks. Skip 

connections can help the network to learn more complex and diverse patterns from the data and 

reduce the number of parameters and operations needed by the network. Additionally, skip 

connections can help to alleviate the problem of vanishing gradients by providing alternative 

paths for the gradients to flow. Furthermore, they can make it easier and faster to train deeper 

networks, which have more expressive power and can capture more features from the data. 

 

Drawbacks of skip connections 

 

Skip connections are a popular and powerful technique for improving the performance and 

efficiency of CNNs, but they are not a panacea. They can help preserve information and 

gradients, combine features, solve the vanishing gradient problem, and enable deeper networks. 

However, they can also increase complexity and memory requirements, introduce redundancy 

and noise, and require careful design and tuning to match the network architecture and data 

domain. Different types and locations of skip connections can have different impacts on the 

network performance, with some being more beneficial or harmful than others. Thus, it is 

essential to understand how skip connections work and how to use them wisely and effectively 

for CNNs. 

 

Dropouts 

 

Dropout refers to data, or noise, that's intentionally dropped from a neural network to improve 

processing and time to results. A neural network is software attempting to emulate the actions of 

the human brain. 

 

Neural networks are the building blocks of any machine-learning architecture. They consist of 

one input layer, one or more hidden layers, and an output layer. 

 

When we training our neural network (or model) by updating each of its weights, it might 

become too dependent on the dataset we are using. Therefore, when this model has to make a 

prediction or classification, it will not give satisfactory results. This is known as over-fitting. We 

might understand this problem through a real-world example: If a student of mathematics 

learns only one chapter of a book and then takes a test on the whole syllabus, he will probably 

fail. 

 

To overcome this problem, we use a technique that was introduced by Geoffrey Hinton in 2012. 

This technique is known as dropout. 

https://www.machinecurve.com/index.php/2019/09/29/understanding-transposed-convolutions/


 

 

 

 

 

The basic idea of this method is to, based on probability, temporarily “drop out” neurons from 

our original network. Doing this for every training example gives us different models for each 

one. Afterwards, when we want to test our model, we take the average of each model to get our 

answer/prediction. 

 

Dropout during training 
 

We assign ‘p’ to represent the probability of a neuron, in the hidden layer, being excluded from 

the network; this probability value is usually equal to 0.5. We do the same process for the input 

layer whose probability value is usually lower than 0.5 (e.g. 0.2). Remember, we delete the 

connections going into, and out of, the neuron when we drop it. 

 

 
Dropout during testing 

 

An output, given from a model trained using the dropout technique, is a bit different: We can 

take a sample of many dropped-out models and compute the geometric mean of their output 

neurons by multiplying all the numbers together and taking the product’s square root. However, 

since this is computationally expensive, we use the original model instead by simply cutting all 

of the hidden units’ weights in half. This will give us a good approximation of the average for 

each of the different dropped-out models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Shree SATHYAM COLLEGE OF ENGG & TECH 

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE 

AD3501 / DEEPLEARNING - NOTES 
 

UNIT - IV MODEL   EVALUATION 

 

 

Performance metrics—Base line Models--Hyperparameters: Manual Hyperparameter -- 

Automatic Hyperparameter -- Grid search -- Random search -- Debugging strategies. 

 

PERFORMANCE METRICS 

To evaluate the performance or quality of the model, different metrics are used, and these metrics 

are known as performance metrics or evaluation metrics. These performance metrics help us 

understand how well our model has performed for the given data. In this way, we can improve 

the model's performance by tuning the hyper-parameters. Each ML model aims to generalize 

well on unseen/new data, and performance metrics help determine how well the model 

generalizes on the new dataset. 

In machine learning, each task or problem is divided into classification and Regression. Not all 

metrics can be used for all types of problems; 

 

Performance Metrics for Classification 
 

In a classification problem, the category or classes of data is identified based on training data. 

The model learns from the given dataset and then classifies the new data into classes or groups 

based on the training. It predicts class labels as the output, such as Yes or No, 0 or 1, Spam or 

Not Spam, etc. To evaluate the performance of a classification model, different metrics are used, 

and some of them are as follows: 

 
o Accuracy 

o Confusion Matrix 

o Precision 

o Recall 

o F-Score 

o AUC(Area Under the Curve)-ROC 

 

I. Accuracy 
 

The accuracy metric is one of the simplest Classification metrics to implement, and it can be 

determined as the number of correct predictions to the total number of predictions 

 

 



 

 

When to  Use Accuracy? 
 

It is good to use the Accuracy metric when the target variable classes in data are approximately 

balanced. For example, if 60% of classes in a fruit image dataset are of Apple, 40% are Mango. 
In this case, if the model is asked to predict whether the image is of Apple or Mango, it will give 

a prediction with 97% of accuracy. 
 

 

When not to use Accuracy? 

 

It is recommended not to use the Accuracy measure when the target variable majorly belongs to 

one class. For example, Suppose there is a model for a disease prediction in which, out of 100 

people, only five people havea disease, and95 people don't have one. Inthis case, if our model 

predicts everyperson with no disease (which means a bad prediction), the Accuracy measure will 

be 95%, which is not correct. 

 

II. Confusion Matrix 
 

A confusion matrix is a tabular representation of prediction outcomes of any binary classifier, 

which is used to describe the performance of the classification model on a set of test data when 

true values are known. 

 

 
o In the matrix, columns are for the prediction values, and rows specify the Actual values. Here 

Actual and prediction give two possible classes, Yes or No. So, if we are predicting the presence 
of a disease in a patient, the Prediction column with Yes means, Patient has the disease, and for 
NO, the Patient doesn't have the disease. 

o In this example, the total number of predictions are 165, out of which 110 time predicted yes, 
whereas 55 times predicted No.However, in reality, 60 cases in which patients don't have the 
disease, whereas 105 cases in which patients have the disease. 

 

 

 

III. Precision 
 

The precision metric is used to overcome the limitation of Accuracy. The precision determines 

the proportion of positive prediction that was actually correct. It can be calculated as the True 

Positive or predictions that are actually true to the total positive predictions (True Positive and 

False Positive). 

 

 

 
 

 

 



 

 

 
IV. Recall or Sensitivity 

 

It is alsosimilar tothePrecision metric; however, it aims tocalculatetheproportion 

ofactualpositivethat was identified incorrectly. It can be calculated as TruePositive or predictions 

that are actually true to the total number of positives, either correctly predicted as positive or 

incorrectly predicted as negative (true Positive and false negative). 

 

 

 

  

When to use Precision and Recall? 
 

From the above definitions of Precision and Recall, we can say that recall determines the 

performance ofa classifier with respect to a false negative, whereas precision gives information 

about the performance of a classifier with respect to a false positive. 

 

So, if we want to minimize the false negative, then, Recall should be as near to 100%, and if we 

want to minimize the false positive, then precision should be close to 100% as possible. 

 

V. F-Scores 
 

F-score or F1 Score is a metric to evaluate a binary classification model on the basis of predictions that 

are made for the positive class. It is calculated with the help of Precision and Recall. It is a type of single 

score that represents both Precision and Recall. So, the F1 Score can be calculated as the harmonic 

mean of both precision and Recall, assigning equal weight to each of them. 

 

VI. AUC-ROC 
 

Sometimes we need to visualize the performance of the classification model on charts; then, we 

can use the AUC-ROC curve. It is one of the popular and important metrics for evaluating the 

performance of the classification model. 

 
Firstly, let's understand ROC (Receiver Operating Characteristic curve) curve. ROC represents a graphto 

show the performance of a classification model at different threshold levels. The curve is plotted 

between two parameters, which are: 

 

o True Positive Rate 
o False Positive Rate 

 

 

AUC calculates the performance across all the thresholds and provides an aggregate measure. 

The value of AUC ranges from 0 to 1. It means a model with 100% wrong prediction will have 

an AUC of 0.0, whereas models with 100% correct predictions will have an AUC of 1.0. 

 



 

 

Performance Metrics for Regression 
 

Regression is a supervised learning technique that aims to find the relationships between the 

dependent and independent variables. A predictive regression model predicts a numeric or 

discrete value. The metrics used for regression are different from the classification metrics. 

 
o Mean Absolute Error 

o Mean Squared Error 

o R2Score 

 

o AdjustedR2 

 

I. Mean Absolute Error(MAE) 
 

MeanAbsoluteErrororMAEisoneofthesimplestmetrics,whichmeasurestheabsolutedifference 

between actual and predicted values, where absolute means taking a number as Positive. 

 

The below formula is used to calculate MAE: 

 

 

Here, 

 

Y is the Actual outcome, Y'isthepredictedoutcome,andNisthetotalnumberofdatapoints. 

 

II. Mean Squared Error 
 

MeanSquarederror or MSEisoneofthemost suitable metricsfor Regressionevaluation. It 

measuresthe average of the Squared difference between predicted values and the actual value 

given by the model. 

 

Moreover, due to squared differences, it penalizes small errors also, and hence it leads to over-

estimation of how bad the model is. 

 

 

 

III. RSquared Score 
 

R squared error is also known as Coefficient of Determination, The R-squared metric enables us 

to compare our model with a constant baseline to determine the performance of the model. To 

select the constant baseline, we need to take the mean of the data and draw the line at the mean. 

 

The R squared score will always be less than or equal to 1 without concerning if the values are 

too largeor small. 

 



 

 

 

IV. Adjusted RSquared 
 

Adjusted R squared, as the name suggests, is the improved version of R squared error. R square 

has a limitation of improvement of a score on increasing the terms, even though the model is not 

improving,and it may mislead the data scientists. 
 

To overcome the issue of R square, adjusted R squared is used, which will always show a lower 

value thanR². Itis becauseit adjusts thevalues of increasing predictors andonlyshows 

improvement if thereis a real improvement. 

 
 

 

Ra
2denotes the adjusted R2

 

BASELINEMODELS 

 

``What is a Baseline Model? 
 

Baseline modelsserve as a benchmark in an ML application. Their main goal is to put the results of 

trained models into context. 

 

Assume you begin working on a problem statement and complete all of the steps, including 

EDA, data cleansing, and feature engineering. You now begin working on your model. During 

model training, you 

discoverthatyourmodel'saccuracyis54%.So,withoutmakingmucheffort,younowhavea54%accurac

y level, which is now your base value.You can now tag this as a baseline model, indicating that 

you will enhance this number after this. If your model's accuracy level goes below 54% in the 

future, it means the model requires improvements. 

 

Types of baseline models 
 

Base line models are divided into three main categories: 

 
• Random Baseline Models:Data in the actual world isn't always reliable. A dummy classifier or 

regressoristheoptimalbaselinemodelfortheseissues.Thisbaselinemodelwillinformyouifyour 

machine learning model is learning or not. 

• ML Baseline Modes:Now, ifthedataispredictable, youcancreateabaselinemodelwhichhelps us 

analyze which features are critical for prediction and which are not. The baseline models are 

commonly used with feature engineering. 

• Automated ML Baseline Models:It is the ultimate baseline model. It's an excellent model for 

comparing your ML model. If your ML model outperforms the automated baseline model, it's a 

strong indication that themodel has thepotentialtobecomea product. 



 

 

 

 

 

 

 

 

Faster iteration 
 

Baselinemodelsalsohelpimprovetheefficiencywithwhichyoucanbuildthemodels. 

 
• Increase speed and performance:With a baseline model in place, you will have detailed 

informationonwhattoimproveanddevelop.Thismakesiteasytoseeifthechangesyou'remaking 

toyourmodelareimprovingmetricsornot.Thisenablesyoutoquicklydiscoverinitiativesthatcan 

enhance your KPIs. 

• Efficiency: If you builda baseline model, theamount of work you haveto do on current projects 

mayreduce, allowingyou tofocusonother projects.Thebaseline modelfacilitates efficiencyand 

productivity. 

 

Performance benchmark 
 

Baselinemodelsprovideasuitablestandardagainstwhichyoucanevaluateyourrealmodels. 

 
• Someperformancemeasures,suchaslogarithmicloss,arehelpfultoevaluateamongstmodelsthan 

toassessindividually.Thisisduetothefactthatmanyperformancemeasurementslackaspecified 

scaleandinsteadtakeonvaryingvaluesbasedontheresultvariable'srange.Thiscanassistyou in 

determiningwhenasophisticatedmodelisrequiredvswhensimplebusiness logicisadequate. 

• Calculate the impact on key business parameters. Creating a simple baseline model can also help 

you see what type of influence you might have on company indicators. This is particularly true if 

your baseline model is stochastic as well. 



 

 

 

What is Hyperparameter Tuning? 

 

A hyperparameter is a parameter of the model whose value influences the learning process and 

whose value cannot be estimated from the training data. Hyperparameters are configured 

externally before startingthemodellearning/trainingprocess. 

. 

 

 

 

 

HYPERPARAMETERS 
 

In neural networks, parameters are used to train the model and make predictions. There are two 
types of parameters: 

 

Model parameters are internal to the neural network – for example, neuron weights. They are 

estimated or learned automatically from training samples. These parameters are also used to 

make predictions in a production model. 

Hyperparameters are external parameters set by the operator of the neural network – for 

example, selecting whichactivation functionto useor thebatchsizeused in training. 

Hyperparameters havea huge impact on the accuracy of a neural network, there may be different 

optimal values for different values,and it is non-trivial to discover those values. 

The simplest way to select hyperparameters for a neural network model is “manual search” – in 

other words, trial and error. New methods are evolving which use algorithms and optimization 

methods to discover the best hyperparameters. 

 

 

List of Common Hyperparameters 

1. Number of  hidden layers – adding more hidden layers of neurons generally improves accuracy, to a 

certain limit which can differ depending on the problem. 

2. Dropout–whatpercentageofneuronsshouldberandomly“killed”duringeachepochtoprevent 
overfitting. 
3. Activation function– which function should be used to process the inputs flowing into each neuron. 

The activation function can impact the network’s ability to converge and learn for different ranges ofinput 

values, and also its training speed. 

4. Weights initialization– it is necessary to set initial weights for the first forward pass. Two basic 

options are to set weights to zero or to randomize them. However, this can result in a vanishing or 

exploding gradient, which will make it difficult to train the model. To mitigate this problem, you can usea 

heuristic (a formula tied to the number of neuron layers) to determine the weights. A common heuristic 

used for the Tanh activation is called Xavier initialization. 

Hyperparameters related to training algorithm 

1. Learning rate– how fast the back propagation algorithm performs gradient descent. A lower learning 

rate makes the network train faster but might result in missing the minimum of the loss function. 

2. Epoch, iterations and batch size – theseparameters determinetherateat whichsamples arefedtothe 

modelfor training. An epochis a group of samples whicharepassedthroughthe modeltogether (forward 

pass)andthenrunthroughbackpropagation(backwardpass)todeterminetheiroptimalweights.Ifthe 



 

 

 

 

 

 

epoch cannot be run all together due the size of the sample or complexity of the network, it is 

split into batches, and the epoch is run in two or more iterations. The number of epochs and 

batches per epoch can significantly affect model fit, as shown below. 
3. Optimizer algorithm– when a neural network trains, it uses an algorithm to determine the optimal 

weights for the model, called an optimizer. Thebasic option is Stochastic Gradient Descent, but thereare 

other options. 

4. Momentum— Another common algorithm is Momentum, which works by waiting after a weight is 

updated, and updating it a second time using a delta amount. This speeds up training gradually, with a 

reduced risk of oscillation. Other algorithms are Nesterov Accelerated Gradient, AdaDelta and Adam. 

 

Manual Hyperparameter  Tuning 
Traditionally, hyperparameters were tuned manually by trial and error. This is still commonly 

done, and experienced operators can “guess” parameter values that will achieve very high 

accuracy for deeplearning models. However, there is a constant search for better, faster and more 

automatic methods to optimize hyperparameters. Pros:Very simple and effective with skilled 

operators Cons:Not scientific, unknown if you have fully optimized hyperparameters 
 

 

 
1. Grid Search 

Grid search is slightly more sophisticated than manual tuning. It involves 

systematicallytesting multiple values of each hyperparameter, by automatically retraining the 

model for each value of the parameter. For example, you can perform a grid search for the 

optimal batch size by automatically trainingthemodel for batchsizes between10-100 samples, 

insteps of20. Themodel willrun5 times and the batch size selected will be the one which yields 

highest accuracy. Pros:Maps out the problem space and provides more opportunity for 

optimization Cons:Can be slow to run for large numbers of hyperparameter values 
Grid-search is used to find the optimalhyperparametersof a model which results in the most 

‘accurate’ predictions.Grid search is the simplest algorithm for hyperparameter tuning. Basically, we 

divide the domain of the hyperparameters into a discrete grid. Then, we try every combinationof values of 

this grid, calculating some performance metrics using cross-validation. The point of the grid that 

maximizes the average value in cross-validation, is the optimal combination of values for the 

hyperparameters. 



 

 

 

 

 

 

 

 

Exampleofagridsearch 

Grid search is an exhaustive algorithm that spans all the combinations, so it can actually find the 

bestpoint in the domain. The great drawback is that it’s very slow. Checking every combination 

of the space requires a lot of time that, sometimes, is not available. Don’t forget that every point 

in the grid needs k- fold cross-validation, which requires ktraining steps. So, tuning the 

hyperparameters of a model in this way can be quite complex and expensive. However, if we 

look for the best combination of values of the hyperparameters, grid search is a very good idea. 

 
2. Random Search 

According to a 2012 research study by James Bergstra and Yoshua Bengio, testing 

randomized values of hyperparameters is actually more effective than manual search or grid 

search. In other words, instead of testing systematically to cover “promising areas” of the 

problem space, it is preferable to test random values drawn from the entire problem space. 

Pros:According to the study, provides higher accuracy with less training cycles, for problems 

with high dimensionalityCons:Results are unintuitive, difficult to understand “why” 

hyperparameter values were chosen 

Randomsearch is similar togridsearch, but instead of usingall thepoints inthe grid, ittests 

only a randomly selected subset of these points. The smaller this subset, the faster but less 

accurate the optimization. The larger this dataset, the more accuratethe optimization but the 

closer to a grid search. 

 

 

 

Example of random search 



 

 

P(result|hyperparameters ) 

 

 

 

 

Randomsearch is a veryusefuloption when you haveseveralhyperparameters witha fine-grained 

gridof values. Using a subset made by 5-100 randomly selected points, we are able to get a 

reasonably good set of values of thehyperparameters. Itwillnot likelybe thebest point, butit 

canstillbea goodset of values that gives us a good model. 

 
3. Bayesian Optimization 

 

Bayesian optimization is a technique which tries to approximate the trained model with 

different possible hyperparameter values. To simplify, bayesian optimization trains the model 

with different hyperparameter values, and observes the function generated for the model by each 

set of parameter values. It does this over and over again, each time selecting hyperparameter 

values that are slightly different and can help plot the next relevant segment of the problem 

space. Similar to sampling methods in statistics, the algorithm ends up with a list of possible 

hyperparameter value sets and model functions, from which it predicts the optimal function 

across the entire problem set. Pros:The original study and practical experience from the industry 

shows that bayesian optimization results in significantly higher accuracy compared to random 

search. Cons:Like random search, results are not intuitive and difficult to improve on, even by 

trained operators 

The Bayesian optimization method takes a different approach. This method treats the 

search for the optimal hyperparameters as an optimization problem. When choosing the next 

hyperparameter combination, this methodconsiders theprevious evaluationresults. Itthenapplies a 

probabilistic function to select the combination that will probably yield the best results. This 

method discovers a fairly good hyperparameter combination in relatively few iterations. Data 

scientists choose a probabilistic modelwhen the objective function is unknown. That is, there is 

no analytical expression to maximize or minimize. The data scientists apply the learning 

algorithm to a data set, use the algorithm’s results to define the objective function, and take the 

various hyperparameter combinations as the input domain.The probabilistic model is based on 

past evaluation results. It estimates the probability of a hyperparameter combination’s objective 

function result: 
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1. Introduction to Autoencoders 

• Autoencoders are a specific type of feed forward neural networks where the input is 

the same as the output. 

• They compress the input into a lower-dimensional code and then reconstruct the output 

from this representation. 

• The code is a compact “summary” or “compression” of the input, also called the latent- 

space representation. 

Components 

• An autoencoder consists of 3 components: encoder, code and decoder. 

• The encoder compresses the input and produces the code, 

• the decoder then reconstructs the input only using this code. 

 

To build an autoencoder we need 3 things: 

• an encoding method, decoding method, and a loss function to compare the output with 

the target. 

Properties of Autoencoders 

Autoencoders are mainly a dimensionality reduction (or compression) algorithm with a couple of 

important properties: 

• Data-specific: Autoencoders are only able to meaningfully compress data similar to what 

they have been trained on. Since they learn features specific for the given training data,  

• Lossy: The output of the autoencoder will not be exactly the same as the input, it will 

be a close but degraded representation. If you  want lossless compression they are not the 

way to go 

• Unsupervised: To train an autoencoder we don’t need to do anything fancy, just throw 

the raw input data at it. Autoencoders are considered an unsupervised learning technique 1 



 

 

 
 

 

since they don’t need explicit labels to train on. But to be more precise they are self- 

supervised because they generate their own labels from the training data. 

 

 
Autoencoder Architecture: 

The network architecture for autoencoders can vary between a simple FeedForward network, 

LSTM network or Convolutional Neural Network depending on the use case. 

 

• This is a more detailed visualization of an autoencoder. 

• First the input passes through the encoder, which is a fully-connected ANN, to produce 

the code. 

• The decoder, which has the similar ANN structure, then produces the output only using 

the code. 

• The goal is to get an output identical with the input. 

• Note that the decoder architecture is the mirror image of the encoder. 

• This is not a requirement but it’s typically the case. 

• The only requirement is the dimensionality of the input and output needs to be the same. 

Anything in the middle can be played with. 

 

 
• The layer between the encoder and decoder, ie. the code is also known as Bottleneck / 

latent-space representation. 

• This is a well-designed approach to decide which aspects of observed data are relevant 

information and what aspects can be discarded. 
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It does this by balancing two criteria : 

o Compactness of representation, measured as the compressibility. 

o It retains some behaviourally relevant variables from the input. 

 

There are 4 hyperparameters that we need to set before training an autoencoder: 

• Code size: number of nodes in the middle layer. Smaller size results in more 

compression. 

• Number of layers: the autoencoder can be as deep as we like. In the figure above we have 

2 layers in both the encoder and decoder, without considering the input and output. 

• Number of nodes per layer: the autoencoder architecture we’re working on is called a 

stacked autoencoder  since the layers are stacked one after  another. Usually stacked 

autoencoders look like a “sandwitch”. The number of nodes per layer decreases with each 

subsequent layer of the encoder, and increases back in the decoder. Also the decoder is 

symmetric to the encoder in terms of layer structure. As noted above this is not necessary 

and we have total control over these parameters. 

• Loss function: we either use mean squared error (mse) or binary crossentropy. If the 

input values are in the range [0, 1] then we typically use crossentropy, otherwise we use 

the mean squared error. 

 

Autoencoders are trained the same way as ANNs via backpropagation. 

 

 
 

 

 

 

 

 

 

 

 



 

 

 

Applications of Autoencoders 
 

Image Coloring 

Autoencoders are used for converting any black and white picture into a colored image. 

Depending on what is in the picture, it is possible to tell what the color should be. 

Feature variation 

It extracts only the required features of an image and generates the output by removing any noise 

or unnecessary interruption. 

 

Dimensionality Reduction 

The reconstructed image is the same as our input but with reduced dimensions. It helps in 

providing the similar image with a reduced pixel value. 

 
 

 

 
Denoising Image 

The input seen by the autoencoder is not the raw input but a stochastically corrupted version. A 

denoising autoencoder is thus trained to reconstruct the original input from the noisy version. 



 

 

 

 
Watermark Removal 

It is also used for removing watermarks from images or to remove any object while filming a 

video or a movie. 

 

 
Implementation 

Now let’s implement an autoencoder for the following architecture, 1 hidden layer in the encoder 

and decoder. 

We will use the extremely popular MNIST dataset as input. It contains black-and-white images 

of handwritten digits. 

 

 

They’re of size 28x28 and we use them as a vector of 784 numbers between [0, 1] 

We will now implement the autoencoder with Keras. The hyperparameters are: 128 nodes in 

the hidden layer, code size is 32, and binary crossentropy is the loss function. 

Code: 

Let’s import the required libraries 

import numpy as np 

from keras.layers import Input, Dense 

from keras.models import Model 

from keras.datasets import mnist 

import matplotlib.pyplot as plt 

Declaration of Hidden Layers and Variables 

# this is the size of our encoded representations 

encoding_dim = 32 # 32 floats -> compression of factor 24.5, assuming the input is 784 floats 

 
# this is our input placeholder 

input_img = Input(shape=(784,)) 

 

https://www.tensorflow.org/get_started/mnist/beginners


 

 

# "encoded" is the encoded representation of the input 

encoded = Dense(encoding_dim, activation='relu')(input_img) 

 
# "decoded" is the lossy reconstruction of the input 

decoded = Dense(784, activation='sigmoid')(encoded) 

 
# this model maps an input to its reconstruction 

autoencoder = Model(input_img, decoded) 

 
# this model maps an input to its encoded representation 

encoder = Model(input_img, encoded) 

 
# create a placeholder for an encoded (32-dimensional) input 

encoded_input = Input(shape=(encoding_dim,)) 

 
# retrieve the last layer of the autoencoder model 

decoder_layer = autoencoder.layers[-1] 

 

# create the decoder model 

decoder = Model(encoded_input, decoder_layer(encoded_input)) 

 
# configure our model to use a per-pixel binary crossentropy loss, and the Adadelta optimizer: 

autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') 

 
Preparing the input data (MNIST Dataset) 

(x_train, _), (x_test, _) = mnist.load_data() 

# normalize all values between 0 and 1 and we will flatten the 28x28 images 

into vectors of size 784. 

 
x_train = x_train.astype('float32') / 255. 

x_test = x_test.astype('float32') / 255. 

 
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:]))) 

x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:]))) 

 
print x_train.shape 

print x_test.shape 

Training Autoencoders for 50 epochs 

autoencoder.fit(x_train, x_train, 

epochs=50, 

batch_size=256, 

shuffle=True, 

validation_data=(x_test, x_test)) 

# encode and decode some digits 

# note that we take them from the *test* set 

encoded_imgs = encoder.predict(x_test) 

decoded_imgs = decoder.predict(encoded_imgs) 



 

 

Visualizing the reconstructed inputs and the encoded representations using Matplot lib 
 

n = 20 # how many digits we will display 

plt.figure(figsize=(20, 4)) 

for i in range(n): 

# display original 

ax = plt.subplot(2, n, i + 1) 

plt.imshow(x_test[i].reshape(28, 28)) 

plt.gray() 

ax.get_xaxis().set_visible(False) 

ax.get_yaxis().set_visible(False) 

 
# display reconstruction 

ax = plt.subplot(2, n, i + 1 + n) 

plt.imshow(decoded_imgs[i].reshape(28, 28)) 

plt.gray() 

ax.get_xaxis().set_visible(False) 

ax.get_yaxis().set_visible(False) 

plt.show() 

 
 

 
 

  ==== 

2. Under complete autoencoders 

 
• Under complete autoencoders is an unsupervised neural network that you can use to generate 

a compressed version of the input data. 

• It is done by taking in an image and trying to predict the same image as output, thus 

reconstructing the image from its compressed bottleneck region. 

• The primary use for autoencoders like these is generating a latent space or bottleneck, which 

forms a compressed substitute of the input data and can be easily decompressed back with 

the help of the network when needed. 

Under complete autoencoders learn features by minimizing the same loss function: 
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Where L is the loss function penalizing g(f(x)) from diverging from the original input x. L can 

be a mean squared error or even a mean absolute error. 

 
• Goal of the Autoencoder is to capture the most important features present in the data. 

• Undercomplete autoencoders have a smaller dimension for hidden layer compared to the input 

layer. This helps to obtain important features from the data. 

• Objective is to minimize the loss function by penalizing the g(f(x)) for being different from 

the input x. 

• When decoder is linear and we use a mean squared error loss function then undercomplete 

autoencoder generates a reduced feature space similar to PCA 

• We get a powerful nonlinear generalization of PCA when encoder function f and decoder 

function g are non linear. 

• Undercomplete autoencoders do not need any regularization as they maximize the probability 

of data rather than copying the input to the output. 

 
Advantages 

• Undercomplete autoencoders, with code dimension less than the input dimension, can learn 

the most salient features of the data distribution. 

Disadvantages 

• We have seen that these autoencoders fail to learn anything useful if the encoder and decoder 

are given too much capacity. 

• A similar problem occurs if the hidden code is allowed to have dimension equal to the input, 

and in the overcomplete case in which the hidden code has dimension greater than the input. 

In these cases, even a linear encoder and a linear decoder can learn to copy the input to the 

output without learning anything useful about the data distribution. 

• Ideally, one could train any architecture of autoencoder successfully, choosing the code 

dimension and the capacity of the encoder and decoder based on the complexity of 

distribution to be modelled. 

  === 

 
3. Regularized autoencoders 

 
Regularized autoencoders provide the ability to do so. Rather than limiting the model capacity by 

keeping the encoder and decoder shallow and the code size small, regularized autoencoders use a 

loss function that encourages the model to have other properties besides the ability to copy its 

input to its output. These other properties include sparsity of the representation, smallness of the 

derivative of the representation, and robustness to noise or to missing inputs. A regularized 

autoencoder can be nonlinear and overcomplete but still learn something useful about the data 

distribution, even if the model capacity is great enough to learn a trivial identity function. 
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https://medium.com/datadriveninvestor/principal-component-analysis-pca-a0c5715bc9a2


 

 

 
 

 
In addition to the methods described here, which are most naturally interpreted as regularized 

autoencoders, nearly any generative model with latent variables and equipped with an inference 

procedure (for computing latent representations given input) may be viewed as a particular form 

of autoencoder. 

In practice, we usually find two types of regularized autoencoder: the sparse autoencoder and 

the denoising autoencoder. 

 
(i) Sparse autoencoder : Sparse autoencoders are typically used to learn features for another task 

such as classification. An autoencoder that has been regularized to be sparse must respond to 

unique statistical features of the dataset it has been trained on, rather than simply acting as an 

identity function. In this way, training to perform the copying task with a sparsity penalty can 

yield a model that has learned useful features as a byproduct. 

Another way we can constraint the reconstruction of autoencoder is to impose a constraint in its 

loss. We could, for example, add a regularization term in the loss function. Doing this will make 

our autoencoder learn sparse representation of data. 

There are actually two different   ways   to   construct   our   sparsity   penalty: L1 

regularization and KL-divergence. 

 

 

 

 
10 



 

 

 
 

 

Why L1 Regularization Sparse 

L1 regularization and L2 regularization are widely used in machine learning and deep learning. 

L1 regularization adds “absolute value of magnitude” of coefficients as penalty term while L2 

regularization adds “squared magnitude” of coefficient as a penalty term. 

Although L1 and L2 can both be used as regularization term, the key difference between them is 

that L1 regularization tends to shrink the penalty coefficient to zero while L2 regularization 

would move coefficients towards zero but they will never reach. Thus L1 regularization is often 

used as a method of feature extraction. But why L1 regularization leads to sparsity? 

Consider that we have two loss functions L1 and L2 which represent L1 regularization and L2 

regularization respectively. 

 

Gradient descent is always used in optimizing neural networks. If we plot these two loss 

functions and their derivatives, it looks like this: 

L1 regularization and its derivative 

 
Loss Function 

Finally, after the above analysis, we get the idea of using L1 regularization in sparse autoencoder 

and the loss function is as below: 

 

Except for the first two terms, we add the third term which penalizes the absolute value of the 

vector of activations a in layer h for sample i. Then we use a hyperparameter to control its effect 

on the whole loss function. And in this way, we do build a sparse autoencoder. 
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L2 regularization and its derivative 

We can notice that for L1 regularization, the gradient is either 1 or -1 except when w=0, which 

means that L1 regularization will always move w towards zero with same step size (1 or -1) 

regardless of the value of w. And when w=0, the gradient becomes zero and no update will be 

made anymore. However, for L2 regularization things are different. L2 regularization will also 

move w towards zero but the step size becomes smaller and smaller which means  that w 

will never reach zero. 

Visualization 

We tried to build a deep autoencoder and train it on MNIST dataset without L1 regularization 

and with regularization. The structure of this deep autoencoder is plotted as below: 
 

 

 

Code: 

input_size = 784 

hidden_size = 64 

output_size = 784 

 
x = Input(shape=(input_size,)) 

# Encoder 
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h = Dense(hidden_size, activation='relu', activity_regularizer=regularizers.l1(10e-5))(x) 

 
# Decoder 

r = Dense(output_size, activation='sigmoid')(h) 

 
autoencoder = Model(input=x, output=r) 

autoencoder.compile(optimizer='adam', loss='mse') 

 
Notice in our hidden layer, we added an l1 activity regularizer, that will apply a penalty to the 

loss function during the optimization phase. As a result, the representation is now sparser 

compared to the vanilla autoencoder. 

And after 100 epochs of training using 128 batch size and Adam as the optimizer, we got below 

results: 

 
 

 

 
(ii) Denoising autoencoder : 

Denoising autoencoders are a specific type of neural network that enables unsupervised learning 

of data representations or encodings. Their primary objective is to reconstruct the original 

version of the input signal corrupted by noise. This capability proves valuable in problems such 

as image recognition or fraud detection, where the goal is to recover the original signal from its 

noisy form. 

An autoencoder consists of two main components: 

• Encoder: This component maps the input data into a low-dimensional representation or 

encoding. 
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• Decoder: This component returns the encoding to the original data space. 

During the training phase, present the autoencoder with a set of clean input examples along with 

their corresponding noisy versions. The objective is to learn a task using an encoder-decoder 

architecture that efficiently transforms noisy input into clean output. 

Architecture of DAE 

The denoising autoencoder (DAE) architecture is similar to a standard autoencoder. It consists of 

two main components: 

Encoder 

• The encoder creates a neural network equipped with one or more hidden layers. 

• Its purpose is to receive noisy input data and generate an encoding, which represents a 

low-dimensional representation of the data. 

• Understand an encoder as a compression function because the encoding has fewer 

parameters than the input data. 

Decoder 
• Decoder acts as an expansion function, which is responsible for reconstructing the 

original data from the compressed encoding. 

• It takes as input the encoding generated by the encoder and reconstructs the original data. 

• Like encoders, decoders are implemented as neural networks featuring one or more 

hidden layers. 

 

 

 

 

 
 

During the training phase, present the denoising autoencoder (DAE) with a collection of clean 

input examples along with their respective noisy counterparts. The objective is to acquire a 

function that maps a noisy input to a relatively clean output using an encoder-decoder 

architecture. To achieve this, a reconstruction loss function is typically employed to evaluate the 

disparity between the clean input and the reconstructed output. A DAE is trained by minimizing 

this loss through the use of backpropagation, which involves updating the weights of both 

encoder and decoder components. 

 
Code: 

x = Input(shape=(28, 28, 1)) 
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# Encoder 

conv1_1 = Conv2D(32, (3, 3), activation='relu', padding='same')(x) 

pool1 = MaxPooling2D((2, 2), padding='same')(conv1_1) 

conv1_2 = Conv2D(32, (3, 3), activation='relu', padding='same')(pool1) 

h = MaxPooling2D((2, 2), padding='same')(conv1_2) 

 

 
# Decoder 

conv2_1 = Conv2D(32, (3, 3), activation='relu', padding='same')(h) 

up1 = UpSampling2D((2, 2))(conv2_1) 

conv2_2 = Conv2D(32, (3, 3), activation='relu', padding='same')(up1) 

up2 = UpSampling2D((2, 2))(conv2_2) 

r = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(up2) 

 
autoencoder = Model(input=x, output=r) 

autoencoder.compile(optimizer='adam', loss='mse') 

 
OUTPUT: 

Applications of Denoising Autoencoders (DAEs) span a variety of domains, including computer 

vision, speech processing, and natural language processing. 

Examples 

• Image Denoising: DAEs are effective in removing noise from images, such as Gaussian 

noise or salt-and-pepper noise. 

• Fraud Detection: DAEs can contribute to identifying fraudulent transactions by learning 

to reconstruct common transactions from their noisy counterparts. 
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• Data Imputation: To reconstruct missing values from available data by learning, DAEs 

can facilitate data imputation in datasets with incomplete information. 

• Data Compression: DAEs can compress data by obtaining a concise representation of 

the data in the encoding space. 

• Anomaly Detection: Using DAEs, anomalies in a dataset can be detected by training a 

model to reconstruct normal data and then flag challenging inputs as potentially 

abnormal. 

 

  == 

 
4. Stochastic Encoders and Decoders 

 
 

Generative Models 
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Loss function for Stochastic Decoder 
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------------------------------------------------------------------------------------------------== 

 
5. Learning with autoencoders; Deep Generative Models: Variational autoencoders 

Variational Autoencoders (VAEs) are generative models explicitly designed to capture the 

underlying probability distribution of a given dataset and generate novel samples. They utilize an 

architecture that comprises an encoder-decoder structure. The encoder transforms input data into 

a latent form, and the decoder aims to reconstruct the original data based on this latent 

representation. The VAE is programmed to minimize the dissimilarity between the original and 

reconstructed data, enabling it to comprehend the underlying data distribution and generate new 

samples that conform to the same distribution. 
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One notable advantage of VAEs is their ability to generate new data samples resembling the 

training data. Because the VAE’s latent space is continuous, the decoder can generate new data 

points that seamlessly interpolate among the training data points. VAEs find applications in 

various domains like density estimation and text generation. 

 

 
The Architecture of Variational Autoencoder 

A VAE typically has two major components: An encoder connection and a decoder connection. 

An encoder network transforms The input data into a low-dimensional secret space, often called 

a “secret code”. 

Various neural network topologies, such as fully connected or convolutional neural networks, 

can be investigated for implementing encoder networks. The architecture chosen is based on the 

characteristics of the data. The encoder network produces essential parameters, such as the mean 

and variance of a Gaussian distribution, necessary for sampling and generating the latent code. 

 

 

 

 
 

 

A VAE comprises an encoder network that maps input data to a latent code and a decoder 

network that conducts the inverse operation by translating the latent code back to the 

reconstruction data. By undergoing this training process, the VAE learns an optimized latent 

representation that captures the fundamental characteristics of the data, enabling precise 

reconstruction. 

It achieves this by doing something that seems rather surprising at first: making its encoder not 

output an encoding vector of size n, rather, outputting two vectors of size n: a vector of means, μ, 

and another vector of standard deviations, σ. 
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Variational Autoencoder 

They form the parameters of a vector of random variables of length n, with the i th element 

of μ and σ being the mean and standard deviation of the i th random variable, X i, from which we 

sample, to obtain the sampled encoding which we pass onward to the decoder: 
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Stochastically generating encoding vectors 

This stochastic generation means, that even for the same input, while the mean and standard 

deviations remain the same, the actual encoding will somewhat vary on every single pass simply 

due to sampling. 

 
 

Code: 

# build your encoder upto here. It can simply be a series of dense layers, a convolutional network 

# or even an LSTM decoder. Once made, flatten out the final layer of the encoder, call it hidden. 

 
# we use Keras to build the graph 

latent_size = 5 

21 



 

 

 
 

 
mean = Dense(latent_size)(hidden) 

 
# we usually don't directly compute the stddev σ 

# but the log of the stddev instead, which is log(σ) 

# the reasoning is similar to why we use softmax, instead of directly outputting 

# numbers in fixed range [0, 1], the network can output a wider range of numbers which we can 

later compress down 

log_stddev = Dense(latent_size)(hidden) 

 
def sampler(mean, log_stddev): 

# we sample from the standard normal a matrix of batch_size * latent_size (taking into 

account minibatches) 

std_norm = K.random_normal(shape=(K.shape(mean)[0], latent_size), mean=0, stddev=1) 

# sampling from Z~N(μ, σ^2) is the same as sampling from μ + σX, X~N(0,1) 

return mean + K.exp(log_stddev) * std_norm 

latent_vector = Lambda(sampler)([mean, log_stddev]) 

Output 

 

 
 

  ======= 
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6. Learning with autoencoders; Deep Generative Models: Generative Adversarial 

Networks 

Generative Adversarial Networks (GANs) were introduced in 2014 by Ian J. Goodfellow and co- 

authors. GANs perform unsupervised learning tasks in machine learning. It consists of 2 models 

that automatically discover and learn the patterns in input data. 

The two models are known as Generator and Discriminator. 

They compete with each other to scrutinize, capture, and replicate the variations within a dataset. 

GANs can be used to generate new examples that plausibly could have been drawn from the 

original dataset. 

Shown below is an example of a GAN. There is a database that has real 100 rupee notes. The 

generator neural network generates fake 100 rupee notes. The discriminator network will help 

identify the real and fake notes. 
 

What is a Generator? 

A Generator in GANs is a neural network that creates fake data to be trained on the 

discriminator. It learns to generate plausible data. The generated examples/instances become 

negative training examples for the discriminator. It takes a fixed-length random vector carrying 

noise as input and generates a sample. 
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The main aim of the Generator is to make the discriminator classify its output as real. The part of 

the GAN that trains the Generator includes: 

• noisy input vector 

• generator network, which transforms the random input into a data instance 

• discriminator network, which classifies the generated data 

• generator loss, which penalizes the Generator for failing to dolt the discriminator 

The backpropagation method is used to adjust each weight in the right direction by calculating 

the weight's impact on the output. It is also used to obtain gradients and these gradients can help 

change the generator weights. 

 

Let’s see the next topic in this article on what GANs are, i.e., a Discriminator. 

What is a Discriminator? 

The Discriminator is a neural network that identifies real data from the fake data created by the 

Generator. The discriminator's training data comes from different two sources: 

• The real data instances, such as real pictures of birds, humans, currency notes, etc., are 

used by the Discriminator as positive samples during training. 

• The fake data instances created by the Generator are used as negative examples during 

the training process. 
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While training the discriminator, it connects to two loss functions. During discriminator training, 

the discriminator ignores the generator loss and just uses the discriminator loss. 

In the process of training the discriminator, the discriminator classifies both real data and fake 

data from the generator. The discriminator loss penalizes the discriminator for misclassifying a 

real data instance as fake or a fake data instance as real. 

The discriminator updates its weights through backpropagation from the discriminator loss 

through the discriminator network. 

 

How Do GANs Work? 

GANs consists of two neural networks. There is a Generator G(x) and a Discriminator D(x). 

Both of them play an adversarial game. The generator's aim is to fool the discriminator by 

producing data that are similar to those in the training set. The discriminator will try not to be 

fooled by identifying fake data from real data. Both of them work simultaneously to learn and 

train complex data like audio, video, or image files. 

The Generator network takes a sample and generates a fake sample of data. The Generator is 

trained to increase the Discriminator network's probability of making mistakes. 

 

 

 

 

25 



 

 

55 

 
 
 
 

 

Below is an example of a GAN trying to identify if the 100 rupee notes are real or fake. So, first, 

a noise vector or the input vector is fed to the Generator network. The generator creates fake 100 

rupee notes. The real images of 100 rupee notes stored in a database are passed to the 

discriminator along with the fake notes. The Discriminator then identifies the notes as classifying 

them as real or fake. 

We train the model, calculate the loss function at the end of the discriminator network, and 

backpropagate the loss into both discriminator and generator models. 

 

Mathematical Equation 

The mathematical equation for training a GAN can be represented as: 

Here, 

G = Generator 

D = Discriminator 

Pdata(x) = distribution of real data 

p(z) = distribution of generator 

x = sample from Pdata(x) 
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# Define the generator and discriminator 

# Initialize generator and discriminator 

generator = Generator(latent_dim).to(device) 

discriminator = Discriminator().to(device) 

 
# Loss function 

adversarial_loss = nn.BCELoss() 

 
# Optimizers 

optimizer_G = optim.Adam(generator.parameters()\ 

, lr=lr, betas=(beta1, beta2)) 

optimizer_D = optim.Adam(discriminator.parameters()\ 

, lr=lr, betas=(beta1, beta2)) 
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z = sample from P(z) 

D(x) = Discriminator network 

G(z) = Generator network 

 

 

 
Code: 

Building the Generative Adversarial Network 

Python3 
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Check the results 

Let’s plot the generated images at different epochs to see that after how many epochs the 

generator was capable to extract some information. 

Plot the generated Image at zero epoch 

from skimage.io import imread 

a = imread('gan_images/0.png') 

plt.imshow(a) 

No information is extracted from the generator and the discriminator is intelligent enough to 

identify it as fake. 

Plot Image Generated after training on 1000 epoch 

from skimage.io import imread 

a = imread('gan_images/10000.png') 

plt.imshow(a) 

 
 

Now Generator is slowly being capable to extract some information that can be observed. 

Plot Image Generated after training on 10000 Epochs 

 

 

. 
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