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UNIT – I

What is Big Data?

According to Gartner, the definition of Big Data –

“Big data” is high-volume, velocity, and variety information assets that demand cost-effective, 

innovative forms of information processing for enhanced insight and decision making.”

This definition clearly answers the “What is Big Data?” question – Big Data refers to complex 

and large data sets that have to be processed and analyzed to uncover valuable information that  

can benefit businesses and organizations.

However, there are certain basic tenets of Big Data that will make it even simpler to answer what 

is Big Data:

 It refers to a massive amount of data that keeps on growing exponentially with time.

 It is so voluminous that it cannot be processed or analyzed using conventional data 

processing techniques.

 It includes data mining, data storage, data analysis, data sharing, and data visualization.

 The term is an all-comprehensive one including data, data frameworks, along with the 

tools and techniques used to process and analyze the data.

The History of Big Data

Although the concept of big data itself is relatively new, the origins of large data sets go back to  

the 1960s and '70s when the world of data was just getting started with the first data centers and 

the development of the relational database.

Around 2005, people began to realize just how much data users generated through Facebook, 

YouTube, and other online services. Hadoop (an open-source framework created specifically to 

store  and analyze big  data  sets)  was  developed that  same year.  NoSQL also began to  gain  

popularity during this time.

The development of open-source frameworks, such as Hadoop (and more recently, Spark) was 

essential for the growth of big data because they make big data easier to work with and cheaper 

to store.  In  the  years  since  then,  the  volume  of  big  data  has  skyrocketed.  Users  are  still  

generating huge amounts of data—but it’s not just humans who are doing it.

With the advent of the Internet of Things (IoT), more objects and devices are connected to the 

internet, gathering data on customer usage patterns and product performance. The emergence of 

machine learning has produced still more data.

While big data has come  far, its usefulness is only just  beginning. Cloud computing has 

expanded big data possibilities even further.  The cloud offers truly elastic scalability,  where 

developers can simply spin up ad hoc clusters to test a subset of data.

https://www.forbes.com/sites/gartnergroup/2013/03/27/gartners-big-data-definition-consists-of-three-parts-not-to-be-confused-with-three-vs/
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Benefits of Big Data and Data Analytics

 Big data makes it possible for you to gain more complete answers because you have 

more information.

 More complete answers mean more confidence in the data—which means a completely 

different approach to tackling problems.

Types of Big Data

Now that we are on track with what is big data, let’s have a look at the types of big data:

a) Structured

Structured is one of the types of big data and By structured data, we mean data that can be 

processed, stored, and retrieved in a fixed format. It refers to highly organized information that 

can be readily and seamlessly stored and accessed from a database by simple search engine 

algorithms. For instance, the employee table in a company database will be structured as 

the employee details, their job positions, their salaries, etc., will be present in an organized 

manner.

b) Unstructured

Unstructured data refers to the data that lacks any specific form or structure whatsoever. This 

makes it very difficult and time-consuming to process and analyze unstructured data. Email is an 

example of unstructured data. Structured and unstructured are two important types of big data.

c) Semi-structured

Semi structured is the third type of big data. Semi-structured data pertains to the data containing 

both the formats mentioned above, that is, structured and unstructured data. To be precise, it 

refers to the data that although has not been classified under a particular repository (database), 

yet contains vital information or tags that segregate individual elements within the data. Thus we 

come to the end of types of data.

Characteristics of Big Data

Back in 2001, Gartner analyst Doug Laney listed the 3 ‘V’s of Big Data – Variety, Velocity, 

and Volume. Let’s discuss the characteristics of big data. 

These characteristics, isolated, are enough to know what big data is. Let’s look at them in depth:

a) Variety

Variety of Big Data refers to structured, unstructured, and semi-structured data that is gathered 

from multiple sources. While in the past, data could only be collected from spreadsheets and 

databases, today data comes in an array of forms such as emails, PDFs, photos, videos, audios, 

SM posts, and so much more. Variety is one of the important characteristics of big data.
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b) Velocity

Velocity essentially refers to the speed at which data is being created in real-time. In a broader 

prospect, it comprises the rate of change, linking of incoming data sets at varying speeds, and 

activity bursts.

c) Volume

Volume is one of the characteristics of big data. We already know that Big Data indicates huge  

‘volumes’ of data that is being generated on a daily basis from various sources like social media 

platforms, business processes, machines, networks, human interactions, etc. Such a large amount 

of data is stored in data warehouses. Thus comes to the end of characteristics of big data.

Why is Big Data Important?

The importance of big data does not revolve around how much data a company has but how a 

company utilizes the collected data. Every company uses data in its own way; the more 

efficiently a company uses its data, the more potential it has to grow. The company can take data 

from any source and analyze it to find answers which will enable:

1. Cost Savings: Some tools of Big Data like  Hadoop  and Cloud-Based Analytics can 

bring cost advantages to business when large amounts of data are to be stored and 

these tools also help in identifying more efficient ways of doing business.

2. Time Reductions: The high speed of tools like Hadoop and in-memory analytics can 

easily identify new sources of data which helps businesses analyzing data immediately 

and make quick decisions based on the learning.

3. Understand the  market conditions: By  analyzing big data  you can get a  better 

understanding of  current  market  conditions.  For  example,  by analyzing customers’ 

purchasing behaviors, a company can find out the products that are sold the most and 

produce products according to this trend. By this, it can get ahead of its competitors.

4. Control online reputation: Big data tools can do sentiment analysis. Therefore, you 

can get feedback about who is saying what about your company. If you want to 

monitor and improve the online presence of your business, then, big data tools can help 

in all this.

5. Using Big Data Analytics to Boost Customer Acquisition and Retention

The customer is the most important asset any business depends on. There is no single 

business that can claim success without first having to establish a solid customer base. 

However, even with a customer base, a business cannot afford to disregard the high 

competition it faces. If a business is slow to learn what customers are looking for, then 

it is very easy to begin offering poor quality products. In the end, loss of clientele will 

result, and this creates an adverse overall effect on business success. The use of big 

data allows  businesses  to  observe  various  customer  related  patterns  and  trends. 

Observing customer behavior is important to trigger loyalty.

6. Using  Big  Data  Analytics  to  Solve  Advertisers  Problem and Offer  Marketing 

Insights

https://hadoop.apache.org/
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Big data analytics can help change all business operations. This includes the ability to 

match customer expectation, changing company’s product line and of course ensuring 

that the marketing campaigns are powerful.

7. Big Data Analytics As a Driver of Innovations and Product Development

Another huge advantage of  big data is  the ability to help companies innovate and 

redevelop their products.

Business Intelligence vs Big Data

Although Big Data and Business Intelligence are two technologies used to analyze data to help 

companies in the decision-making process, there are differences between both of them. They 

differ in the way they work as much as in the type of data they analyze.

Traditional BI methodology is based on the principle of grouping all business data into a central 

server.  Typically,  this  data  is  analyzed  in  offline  mode,  after  storing  the  information  in  an 

environment called Data Warehouse. The data is structured in a conventional relational database 

with an additional set of indexes and forms of access to the tables (multidimensional cubes).

A Big Data solution differs in many aspects to BI to use. These are the main differences between  

Big Data and Business Intelligence:

1. In a Big Data environment, information is stored on a distributed file system, rather than 

on a central server. It is a much safer and more flexible space.

2. Big Data solutions carry the processing functions to the data, rather than the data to the 

functions.  As the analysis  is  centered on the information,  it´s  easier  to handle larger 

amounts of information in a more agile way.

3. Big Data can analyze data in different formats, both structured and unstructured. The 

volume of unstructured data (those not stored in a traditional database) is growing at 

levels much higher than the structured data. Nevertheless, its analysis carries different 

challenges. Big Data solutions solve them by allowing a global analysis of various 

sources of information.

4. Data processed by Big Data solutions can be historical or come from real-time sources.  

Thus, companies can make decisions that affect their business in an agile and efficient 

way.

5. Big Data technology uses parallel mass processing (MPP) concepts, which improves the 

speed of analysis. With MPP many instructions are executed simultaneously, and since 

the various jobs are divided into several parallel execution parts, at the end the overall  

results are  reunited  and  presented.  This  allows  you  to  analyze  large  volumes  of 

information quickly.
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Big Data vs Data Warehouse

Big Data has become the reality of doing business for organizations today. There is a boom in 

the amount of structured as well as raw data that floods every organization daily. If this data is  

managed well, it can lead to powerful insights and quality decision making.

Big data analytics is the process of examining large data sets containing a variety of data types to  

discover some knowledge in databases, to identify interesting patterns and establish relationships 

to solve problems, market trends, customer preferences, and other useful information. 

Companies and businesses that implement Big Data Analytics often reap several business 

benefits. Companies implement Big Data Analytics because they want to make more informed 

business decisions.

A data warehouse (DW)  is a collection of corporate information and data derived from 

operational systems and external data sources. A data warehouse is designed to support business 

decisions by allowing data consolidation, analysis and reporting at different aggregate levels. 

Data is populated into the Data Warehouse through the processes of extraction, transformation 

and loading (ETL tools). Data analysis tools, such as business intelligence software, access the 

data within the warehouse.

Hadoop Environment Big Data Analytics

Hadoop is changing the perception of handling Big Data especially the unstructured data. Let’s 

know how Apache Hadoop software library, which is a framework, plays a vital role in handling 

Big Data. Apache Hadoop enables surplus data to be streamlined for any distributed processing 

system across clusters of computers using simple programming models. It truly is made to scale 

up from single servers to a large number of machines, each and every offering local computation, 

and storage space. Instead of depending on hardware to provide high-availability, the library 

itself is built to detect and handle breakdowns at the application layer, so providing an extremely 

available service along with a cluster of computers,  as both versions might be vulnerable to 

failures.

Hadoop Community Package Consists of

 File system and OS level abstractions

 A MapReduce engine (either MapReduce or YARN)

 The Hadoop Distributed File System (HDFS)

 Java ARchive (JAR) files

 Scripts needed to start Hadoop

 Source code, documentation and a contribution section

Activities performed on Big Data

http://hadoop.apache.org/
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 Store – Big data need to be collected in a seamless repository, and it is not necessary to 

store in a single physical database.

 Process – The process becomes more tedious than traditional one in terms of cleansing, 

enriching, calculating, transforming, and running algorithms.

 Access – There is no business sense of it at all when the data cannot be searched, 

retrieved easily, and can be virtually showcased along the business lines.

Classification of analytics 

Descriptive analytics

Descriptive analytics is a statistical method that is used to search and summarize historical data in

order to identify patterns or meaning.

Data aggregation and data mining are two techniques used in descriptive analytics to discover 

historical data. Data is first gathered and sorted by data aggregation in order to make the datasets  

more manageable by analysts.

Data mining describes the next step of the analysis and involves a search of the data to identify 

patterns and meaning. Identified patterns are analyzed to discover the specific ways that learners 

interacted with the learning content and within the learning environment.

Advantages:

 Quickly and easily report on the Return on Investment (ROI) by showing how 

performance achieved business or target goals.

 Identify gaps and performance issues early - before they become problems.

 Identify specific learners who require additional support, regardless of how many students 

or employees there are.

 Identify successful learners in order to offer positive feedback or additional resources.

 Analyze the value and impact of course design and learning resources.

Predictive analytics

Predictive Analytics is a statistical method that utilizes algorithms and machine learning to 

identify trends in data and predict future behaviors

The software for predictive analytics has moved beyond the realm of statisticians and is 

becoming more affordable and accessible for different markets and industries, including the field 

of learning & development.
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For online learning specifically, predictive analytics is often found incorporated in the Learning 

Management System (LMS), but can also be purchased separately as specialized software.

For the learner, predictive forecasting could be as simple as a dashboard located on the main 

screen after logging in to access a course. Analyzing data from past and current progress, visual 

indicators in the dashboard could be provided to signal whether the employee was on track with 

training requirements.

Advantages:

 Personalize the training needs  of employees by identifying their  gaps,  strengths,  and 

weaknesses; specific learning resources and training can be offered to support individual 

needs.

 Retain Talent by tracking and understanding employee career progression and forecasting 

what skills and learning resources would best benefit their career paths. Knowing what 

skills employees need also benefits the design of future training.

 Support employees who may be falling behind or not reaching their potential by offering 

intervention support before their performance puts them at risk.

 Simplified reporting and visuals that keep everyone updated when predictive forecasting 

is required.

Prescriptive analytics

Prescriptive analytics is a statistical method used to generate recommendations and make 

decisions based on the computational findings of algorithmic models.

Generating automated decisions or recommendations requires specific and unique algorithmic 

models and clear direction from those utilizing the analytical technique. A recommendation 

cannot be generated without knowing what to look for or what problem is desired to be solved. 

In this way, prescriptive analytics begins with a problem.

Example

A Training Manager uses predictive analysis to discover that most learners without a particular 

skill will not complete the newly launched course. What could be done? Now prescriptive 

analytics can be of assistance on the matter and help determine options for action. Perhaps an 

algorithm can detect the learners who require that new course, but lack that particular skill, and 

send an automated recommendation that they take an additional training resource to acquire the 

missing skill.
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The accuracy of a generated decision or recommendation, however, is only as good as the quality 

of data and the algorithmic models developed. What may work for one company’s training needs 

may not make sense when put into practice in another company’s training department. Models 

are generally recommended to be tailored for each unique situation and need.

Descriptive vs Predictive vs Prescriptive Analytics

Descriptive Analytics is focused solely on historical data.

You can think of Predictive Analytics as then using this historical data to develop statistical 

models that will then forecast about future possibilities.

Prescriptive Analytics takes Predictive Analytics a step further and takes the possible forecasted 

outcomes and predicts consequences for these outcomes.

What Big Data Analytics Challenges

1. Need For Synchronization Across Disparate Data Sources

As data sets are becoming bigger and more diverse, there is a big challenge to incorporate them 

into an analytical platform. If this is overlooked, it will create gaps and lead to wrong messages  

and insights.

2. Acute Shortage Of Professionals Who Understand Big Data Analysis

The analysis of data is important to make this voluminous amount of data being produced in 

every minute, useful. With the exponential rise of data, a huge demand for big data scientists and 

Big Data analysts has been created in the market. It is important for business organizations to 

hire a data scientist having skills that are varied as the job of a data scientist is multidisciplinary. 

Another major challenge faced by businesses is the shortage of professionals who understand Big 

Data analysis. There is a sharp shortage of data scientists in comparison to the massive amount 

of data being produced.

3. Getting Meaningful Insights Through The Use Of Big Data Analytics

It is imperative for business organizations to gain important insights from Big Data analytics, 

and also it is important that only the relevant department has access to this information. A big 

challenge faced by the companies in the Big Data analytics is mending this wide gap in an 

effective manner.
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4. Getting Voluminous Data Into The Big Data Platform

It is hardly surprising that data is growing with every passing day. This simply indicates that 

business organizations need to handle a large amount of data on daily basis. The amount and 

variety of  data  available  these days can overwhelm any data  engineer  and that  is  why it is 

considered vital to make data accessibility easy and convenient for brand owners and managers.

5. Uncertainty Of Data Management Landscape

With the rise of Big Data, new technologies and companies are being developed every day. 

However, a big challenge faced by the companies in the Big Data analytics is to find out which 

technology will be best suited to them without the introduction of new problems and potential 

risks.

6. Data Storage And Quality

Business organizations are growing at a rapid pace.  With the tremendous growth of the 

companies and large business organizations, increases the amount of data produced. The storage 

of this massive amount of data is becoming a real challenge for everyone. Popular data storage 

options like data lakes/ warehouses are commonly used to gather and store large quantities of 

unstructured and structured data in its native format. The real problem arises when a data lakes/  

warehouse try to combine unstructured and inconsistent data from diverse sources, it encounters 

errors.  Missing data, inconsistent data, logic conflicts, and duplicates data all result in data 

quality challenges.

7. Security And Privacy Of Data

Once business enterprises discover how to use Big Data, it brings them a wide range of 

possibilities and opportunities. However, it also involves the potential risks associated with big 

data when it comes to the privacy and the security of the data. The Big Data tools used for 

analysis and storage utilizes the data disparate sources. This eventually leads to a high risk of 

exposure of the data, making it vulnerable. Thus, the rise of voluminous amount of data increases 

privacy and security concerns.

Terminologies Used In Big Data Environments

 As-a-service infrastructure

Data-as-a-service, software-as-a-service, platform-as-a-service – all refer to the idea that rather 

than selling data, licences to use data, or platforms for running Big Data technology, it can be  

provided “as a service”, rather than as a product. This reduces the upfront capital investment



BIG DATA ANALYTICS 10

necessary for customers to begin putting their data, or platforms, to work for them, as the 

provider bears all of the costs of setting up and hosting the infrastructure. As a customer, as-a-

service infrastructure  can greatly  reduce the  initial  cost  and setup time of  getting Big Data  

initiatives up and running.

 Data science

Data science is the professional field that deals with turning data into value such as new insights  

or predictive models. It brings together expertise from fields including statistics, mathematics, 

computer science, communication as well as domain expertise such as business knowledge. Data 

scientist has recently been voted the No 1 job in the U.S., based on current demand and salary 

and career opportunities.

 Data mining

Data mining is the process of discovering insights from data. In terms of Big Data, because it is 

so large, this is generally done by computational methods in an automated way using methods 

such as decision trees,  clustering analysis and, most recently, machine learning. This can be 

thought of as using the brute mathematical power of computers to spot patterns in data which 

would not be visible to the human eye due to the complexity of the dataset.

 Hadoop

Hadoop is a framework for Big Data computing which has been released into the public domain 

as open source software, and so can freely be used by anyone. It consists of a number of modules 

all tailored for a different vital step of the Big Data process – from file storage (Hadoop File 

System

– HDFS) to database (HBase) to carrying out data operations (Hadoop MapReduce – see below).  

It has become so popular due to its power and flexibility that it has developed its own industry of  

retailers (selling tailored versions), support service providers and consultants.

 Predictive modelling

At its simplest, this is predicting what will happen next based on data about what has happened  

previously. In the Big Data age, because there is more data around than ever before, predictions  

are becoming more and more accurate. Predictive modelling is a core component of most Big 

Data initiatives, which are formulated to help us choose the course of action which will lead to 

the most desirable outcome. The speed of modern computers and the volume of data available 

means that predictions can be made based on a huge number of variables, allowing an ever-

increasing number of variables to be assessed for the probability that it will lead to success.

 MapReduce

MapReduce is a computing procedure for working with large datasets, which was devised due to 

difficulty of reading and analysing really Big Data using conventional computing methodologies. 

As its name suggest, it consists of two procedures – mapping (sorting information into the format 

needed for analysis – i.e. sorting a list of people according to their age) and reducing (performing 

an operation, such checking the age of everyone in the dataset to see who is over 21).
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 NoSQL

NoSQL refers to a database format designed to hold more than data which is simply arranged 

into tables, rows, and columns, as is the case in a conventional relational database. This database 

format has  proven very popular  in  Big Data  applications  because  Big Data  is  often messy, 

unstructured and does not easily fit into traditional database frameworks.

 Python

Python is a programming language which has become very popular in the Big Data space due to 

its ability to work very well with large, unstructured datasets (see Part II for the difference 

between structured and unstructured data). It is considered to be easier to learn for a data science  

beginner than other languages such as R (see also Part II) and more flexible.

 R Programming

R is another programming language commonly used in Big Data, and can be thought of as more  

specialised than Python, being geared towards statistics. Its strength lies in its powerful handling 

of structured data. Like Python, it  has an active community of users who are constantly 

expanding and adding to its capabilities by creating new libraries and extensions.

 Recommendation engine

A recommendation engine is basically an algorithm, or collection of algorithms, designed to 

match an entity (for example, a customer) with something they are looking for. Recommendation 

engines used by the likes of Netflix or Amazon heavily rely on Big Data technology to gain an 

overview of their customers and, using predictive modelling, match them with products to buy or 

content to consume. The economic incentives offered by recommendation engines has been a 

driving force behind a lot of commercial Big Data initiatives and developments over the last 

decade.

 Real-time

Real-time means “as it happens” and in Big Data refers to a system or process which is able to  

give data-driven insights based on what is happening at the present moment. Recent years have 

seen a large push for the development of systems capable of processing and offering insights in 

real-time  (or near-real-time), and advances in computing power as  well  as  development of 

techniques such as machine learning have made it a reality in many applications today.

 Reporting

The crucial “last step” of many Big Data initiative involves getting the right information to the  

people who need it to make decisions, at the right time. When this step is automated, analytics is 

applied to the insights themselves to ensure that they are communicated in a way that they will 

be understood and easy to act on. This will usually involve creating multiple reports based on the 

same data or insights but each intended for a different audience (for example, in-depth technical 

analysis for engineers, and an overview of the impact on the bottom line for c-level executives).

 Spark
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Spark is another open source framework like Hadoop but more recently developed and more 

suited to handling cutting-edge Big Data tasks involving real time analytics and machine learning. 

Unlike Hadoop it does not include its own filesystem, though it is designed to work with 

Hadoop’s HDFS or a number of other options. However, for certain data related processes it is 

able to calculate at over 100 times the speed of Hadoop, thanks to its in-memory processing 

capability. This means it is becoming an increasingly popular choice for projects involving deep 

learning, neural networks and other compute-intensive tasks.

 Structured Data

Structured data is simply data that can be arranged neatly into charts and tables consisting of 

rows, columns or multi-dimensioned matrixes. This is traditionally the way that computers have 

stored data, and information in this format can easily and simply be processed and mined for 

insights. Data gathered from machines is often a good example of structured data, where various 

data points

– speed, temperature, rate of failure, RPM etc. – can be neatly recorded and tabulated for analysis.

 Unstructured Data

Unstructured data is any data which cannot easily be put into conventional charts and tables. This 

can include video data, pictures, recorded sounds, text written in human languages and a great 

deal more. This data has traditionally been far harder to draw insight from using computers 

which were generally designed to read and analyze structured information. However, since it has 

become apparent that a huge amount of value can be locked away in this unstructured data, great 

efforts have been made to create applications which are capable of understanding unstructured 

data – for example visual recognition and natural language processing.

 Visualization

Humans find it very hard to understand and draw insights from large amounts of text or 

numerical data – we can do it, but it takes time, and our concentration and attention is limited. 

For this reason effort has been made to develop computer applications capable of rendering 

information in a visual form – charts and graphics which highlight the most important insights 

which have resulted from our Big Data projects. A subfield of reporting (see above), visualizing 

is  now  often  an  automated process, with visualizations customized  by algorithm to be 

understandable to the people who need to act or take decisions based on them.

Basic availability, Soft state and Eventual consistency

Basic availability implies continuous system availability despite network failures and tolerance 

to temporary inconsistency.

Soft state refers to state change without input which is required for eventual consistency.
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Eventual consistency means that if no further updates are made to a given updated database 

item for long enough period of time , all users will see the same value for the updated item.

Top Analytics Tools

* R   is a language for statistical computing and graphics. It also used for big data analysis. It  

provides a wide variety of statistical tests.

Features:

 Effective data handling and storage facility,

 It provides a suite of operators for calculations on arrays, in particular, matrices,

 It provides coherent, integrated collection of big data tools for data analysis

 It provides graphical facilities for data analysis which display either on-screen or on 

hardcopy

* Apache Spark   is a powerful open source big data analytics tool. It offers over 80 high-level 

operators that make it easy to build parallel apps. It is used at a wide range of organizations to  

process large datasets.

Features:

 It helps to run an application in Hadoop cluster, up to 100 times faster in memory, and 

ten times faster on disk

 It offers lighting Fast Processing

 Support for Sophisticated Analytics

 Ability to Integrate with Hadoop and Existing Hadoop Data

* Plotly         is an analytics tool that lets users create charts and dashboards to share online.

Features:

 Easily turn any data into eye-catching and informative graphics

 It provides audited industries with fine-grained information on data provenance

 Plotly offers unlimited public file hosting through its free community plan

* Lumify    is a big data fusion, analysis, and visualization platform. It helps users to discover 

connections and explore relationships in their data via a suite of analytic options.

Features:

 It provides both 2D and 3D graph visualizations with a variety of automatic layouts

http://www.altamiracorp.com/index.php/lumify/
https://plot.ly/
https://spark.apache.org/
https://www.r-project.org/
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 It provides a variety of options for analyzing the links between entities on the graph

 It comes with specific ingest processing and interface elements for textual content, 

images, and videos

 It spaces feature allows you to organize work into a set of projects, or workspaces

 It is built on proven, scalable big data technologies

* IBM SPSS Modeler   is a predictive big data analytics platform. It offers predictive models and 

delivers to individuals, groups, systems and the enterprise. It has a range of advanced algorithms 

and analysis techniques.

Features:

 Discover insights and solve problems faster by analyzing structured and unstructured data

 Use an intuitive interface for everyone to learn

 You can select from on-premises, cloud and hybrid deployment options

 Quickly choose the best performing algorithm based on model performance

* MongoDB is a NoSQL, document-oriented database written in C, C++, and JavaScript. It is 

free to  use  and  is  an  open  source  tool  that  supports  multiple  operating  systems  including 

Windows Vista ( and later versions), OS  X (10.7 and later  versions), Linux, Solaris, and 

FreeBSD.

Its main features include Aggregation, Adhoc-queries, Uses BSON format, Sharding, Indexing, 

Replication, Server-side execution of javascript, Schemaless, Capped collection, MongoDB 

management service (MMS), load balancing and file storage.

Features:

 Easy to learn.

 Provides support for multiple technologies and platforms.

 No hiccups in installation and maintenance.

 Reliable and low cost.

https://www.ibm.com/us-en/marketplace/spss-modeler
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UNIT II

NoSQL

NoSQL is a non-relational DMS, that does not require a fixed schema, avoids joins, and is easy 

to scale. NoSQL database is used for distributed data stores with humongous data storage needs. 

NoSQL is  used  for  Big  data  and real-time web apps.  For  example  companies  like  Twitter, 

Facebook, Google that collect terabytes of user data every single day.

SQL

Structured Query language (SQL) pronounced as "S-Q-L" or sometimes as "See-Quel" is the 

standard language for dealing with Relational Databases. A relational database defines 

relationships in the form of tables.

SQL programming can be effectively used to insert, search, update, delete database records.

Comparison of SQL and NoSQL

Parameter SQL NOSQL

Definition SQL databases are primarily called
RDBMS or Relational Databases

NoSQL databases are primarily called as Non-
relational or distributed database

Design for Traditional RDBMS uses SQL 
syntax and queries to analyze and 
get the data for further insights. 
They are used for OLAP systems.

NoSQL database system consists of various 
kind of database technologies. These databases 
were developed in response to the demands 
presented for the development of the modern
application.

Query 
Language

Structured query language (SQL) No declarative query language

Type SQL databases are table based
databases

NoSQL databases can be document based, key-
value pairs, graph databases

Schema SQL databases have a predefined
schema

NoSQL databases use dynamic schema for
unstructured data.

Ability to scale SQL databases are vertically
scalable

NoSQL databases are horizontally scalable

Examples Oracle, Postgres, and MS-SQL. MongoDB, Redis, , Neo4j, Cassandra, Hbase.

Best suited for An ideal choice for the  complex
query intensive environment.

It is not good fit complex queries.

Hierarchical
data storage

SQL databases are not suitable for
hierarchical data storage.

More suitable for the hierarchical data store as it
supports key-value pair method.

Variations One type with minor variations. Many different types which include key-value 
stores, document databases, and graph
databases.
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Development 
Year

It was developed in the 1970s to
deal with issues with flat file 
storage

Developed in the late 2000s to overcome issues 
and limitations of SQL databases.

Open-source A mix of open-source like Postgres 
& MySQL, and commercial like
Oracle Database.

Open-source

Consistency It should be configured for strong 
consistency.

It depends on DBMS as some offers strong 
consistency like MongoDB, whereas others 
offer only offers eventual consistency, like
Cassandra.

Best Used for RDBMS database is the right 
option for solving ACID problems.

NoSQL   is   a   best used for solving data 
availability problems

Importance It should be used when data validity
is super important

Use when it's more important to have fast data
than correct data

Best option When you need to support dynamic
queries

Use when you need to scale based on changing
requirements

Hardware Specialized DB hardware (Oracle
Exadata, etc.)

Commodity hardware

Network Highly available network
(Infiniband, Fabric Path, etc.)

Commodity network (Ethernet, etc.)

Storage Type Highly Available Storage (SAN,
RAID, etc.)

Commodity drives storage (standard HDDs,
JBOD)

Best features Cross-platform support, Secure and
free

Easy to use, High performance, and Flexible
tool.

Top
Companies 
Using

Hootsuite, CircleCI, Gauges Airbnb, Uber, Kickstarter

Average salary The average salary for any 
professional   SQL   Developer is
$84,328 per year in the U.S.A.

The average salary for "NoSQL developer" 
ranges from approximately $72,174 per year

ACID vs.

BASE Model

ACID( Atomicity, Consistency,
Isolation, and Durability) is a 
standard for RDBMS

Base ( Basically Available, Soft state,
Eventually Consistent) is a model of many 
NoSQL systems
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RDBMS Versus Hadoop

Distributed Computing Challenges

Designing a distributed system does not come as easy and straight forward. A number 

of challenges need to be overcome in order to get the ideal system. The major challenges in 

distributed systems are listed below:

1. Heterogeneity:

The Internet enables users to access services and run applications over a heterogeneous 

collection of computers and networks. Heterogeneity (that is, variety and difference) applies to 

all of the following:
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o Hardware devices: computers, tablets, mobile phones, embedded devices, etc.

o Operating System: Ms Windows, Linux, Mac, Unix, etc.

o Network: Local network, the Internet, wireless network, satellite links, etc.

o Programming languages: Java, C/C++, Python, PHP, etc.

o Different roles of software developers, designers, system managers

Different programming languages use different representations for characters and data structures 

such as arrays and records. These differences must be addressed if programs written in different 

languages are to be able to communicate with one another. Programs written  by  different 

developers cannot communicate with one another unless they use common standards,  for 

example, for network communication and the 

representation of primitive data items and data structures in messages. For this to happen, 

standards need    to    be    agreed    and    adopted    –    as    have    the    Internet     protocols. 

Middleware:  The term middleware applies to a software layer that provides a programming 

abstraction as well as masking the heterogeneity of the underlying networks, hardware, operating 

systems and programming languages. Most middleware is implemented over the Internet 

protocols, which themselves mask the differences of the underlying networks, but all middleware 

deals with the differences in operating systems 

and hardware

Heterogeneity and mobile code: The term mobile code is used to refer to program code that can 

be transferred from one computer to another and run at the destination – Java applets are an 

example. Code suitable for running on one computer is not necessarily suitable for running on 

another because executable programs are normally specific both to the instruction set and to the 

host operating system.

2. Transparency:

Transparency is defined as the concealment from the user and the application programmer of the 

separation of components in a distributed system, so that the system is perceived as a whole 

rather than as a collection of independent components. In other words, distributed systems 

designers must hide the complexity of the systems as much as they can. Some terms of 

transparency in distributed

systems are:

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located

Migration Hide    that    a    resource     may     move     to     another     location 

Relocation Hide that a resource may be moved to another location while in use 

Replication    Hide    that    a    resource    may    be    copied    in    several    places 

Concurrency Hide that a resource   may   be   shared   by   several   competitive   users 

Failure Hide       the       failure       and       recovery       of       a        resource 

Persistence Hide whether a (software) resource is in memory or a disk

3. Openness

The openness of a computer system is the characteristic that determines whether the system can 

be extended and re-implemented in various ways. The openness of distributed systems is 

determined primarily by the degree to which new resource-sharing services can be added and be
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made available for use by a variety of client programs. If the well-defined interfaces for a system 

are published, it is easier for developers to add new features or replace sub-systems in the future.  

Example: Twitter and Facebook have API that allows developers to develop their own software 

interactively.

4. Concurrency

Both services and applications provide resources that can be shared by clients in a distributed 

system. There is therefore a possibility that several clients will attempt to access a shared 

resource at the same time. For example, a data structure that records bids for an auction may be  

accessed very frequently when it gets close to the deadline time. For an object to be safe in a  

concurrent environment, its operations must be synchronized in such a way that its data remains 

consistent. This can be achieved by standard techniques such as semaphores, which are used in 

most operating systems.

5. Security

Many of the information resources that are made available and maintained in distributed systems 

have a high intrinsic value to their users. Their security is therefore of considerable importance. 

Security for information resources has three components: 

confidentiality (protection against disclosure to unauthorized individuals) 

integrity (protection against alteration or corruption), 

availability for the authorized (protection against interference with the means to access the

resources).

6. Scalability

Distributed systems must be scalable as the number of user increases. The scalability is defined by

B. Clifford Neuman as

A system is said to be scalable if it can handle the addition of users and resources without 

suffering a noticeable loss of performance or increase in administrative complexity

Scalability has 3 dimensions:

o Size

o Number of users and resources to be processed. Problem associated is overloading

o Geography

o Distance between users and resources. Problem associated is communication reliability

o Administration

o As the size of distributed systems increases, many of the system needs to be controlled. 

Problem associated is administrative mess

7. Failure Handling

Computer systems sometimes fail. When faults occur in hardware or software, programs may 

produce incorrect results or may stop before they have completed the intended computation. The 

handling of failures is particularly difficult.
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Hadoop Overview

Hadoop is an Apache open source framework written in java that allows distributed processing 

of large datasets across clusters of computers using simple programming models. The Hadoop 

framework      application      works      in       an       environment       that       provides 

distributed storage and computation across clusters of computers. Hadoop is designed to scale 

up from single server to thousands of machines, each offering local computation and storage.

Hadoop Architecture

At its core, Hadoop has two major layers namely −

 Processing/Computation layer (MapReduce), and

 Storage layer (Hadoop Distributed File System).

MapReduce

MapReduce is  a parallel  programming model for writing distributed applications devised at 

Google for efficient processing of large amounts of data (multi-terabyte data-sets), on large 

clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant manner. The 

MapReduce program runs on Hadoop which is an Apache open-source framework.

Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is based on the Google File System (GFS) and 

provides a distributed file system that is designed to run on commodity hardware. It has many
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similarities with existing distributed file systems. However, the differences from other 

distributed file systems are significant. It is highly fault-tolerant and is designed to be deployed 

on low-cost hardware. It provides high throughput access to application data and is suitable for 

applications having large datasets.

Apart from the above-mentioned two core components, Hadoop framework also includes the 

following two modules −

 Hadoop Common  − These are Java libraries and utilities required by other Hadoop 

modules.

 Hadoop YARN  − This is a framework for job scheduling and cluster resource 

management.

How Does Hadoop Work?

It is quite expensive to build bigger servers with heavy configurations that handle large scale  

processing, but as an alternative, you can tie together many commodity computers with single-  

CPU, as a single functional distributed system and practically, the clustered machines can read 

the dataset in parallel and provide a much higher throughput. Moreover, it is cheaper than one 

high-end server. So this is the first motivational factor behind using Hadoop that it runs across 

clustered and low-cost machines.

Hadoop runs code across a cluster of computers. This process includes the following core tasks 

that Hadoop performs −

 Data is initially divided into directories and files. Files are divided into uniform sized 

blocks of 128M and 64M (preferably 128M).

 These files are then distributed across various cluster nodes for further processing.

 HDFS, being on top of the local file system, supervises the processing.

 Blocks are replicated for handling hardware failure.

 Checking that the code was executed successfully.

 Performing the sort that takes place between the map and reduce stages.

 Sending the sorted data to a certain computer.

 Writing the debugging logs for each job.

Advantages of Hadoop

 Hadoop framework allows the user to quickly write and test distributed systems. It is 

efficient, and it automatic distributes the data and work across the machines and in turn, 

utilizes the underlying parallelism of the CPU cores.
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 Hadoop does not rely on hardware to provide fault-tolerance and high availability 

(FTHA), rather Hadoop library itself has been designed to detect and handle failures at 

the application layer.

 Servers can be added or removed from the cluster dynamically and Hadoop continues to 

operate without interruption.

 Another big advantage of Hadoop is that apart from being open source, it is compatible 

on all the platforms since it is Java based.

Processing Data with Hadoop - Managing Resources and Applications with Hadoop YARN

Yarn  divides  the task on resource management  and job scheduling/monitoring into separate 

daemons. There is one ResourceManager and per-application ApplicationMaster. An application 

can be either a job or a DAG of jobs.

The ResourceManger have two components – Scheduler and AppicationManager.

The scheduler is a pure scheduler i.e. it does not track the status of running application. It only  

allocates resources to various competing applications. Also, it does not restart the job after 

failure due to hardware or application failure. The scheduler allocates the resources based on an 

abstract notion of  a  container.  A container  is  nothing but  a  fraction of  resources like CPU, 

memory, disk, network etc.

Following are the tasks of ApplicationManager:-

 Accepts submission of jobs by client.

 Negotaites first container for specific ApplicationMaster.

 Restarts the container after application failure. 

Below are the responsibilities of 

ApplicationMaster

 Negotiates containers from Scheduler

 Tracking container status and monitoring its progress.

Yarn supports the concept of Resource Reservation via Reservation System. In this, a user can 

fix a number of resources for execution of a particular job over time and temporal constraints.  

The Reservation  System  makes  sure  that  the  resources  are  available  to  the  job  until  its 

completion. It also performs admission control for reservation.

Yarn can scale beyond a few thousand nodes via Yarn Federation. YARN Federation allows to 

wire multiple sub-cluster into the single massive cluster. We can use many independent clusters 

together for a single large job. It can be used to achieve a large scale system.

Let us summarize how Hadoop     works step by step:

 Input data is broken into blocks of size 128 Mb and then blocks are moved to different nodes.

 Once all the blocks of the data are stored on data-nodes, the user can process the data.

 Resource Manager then schedules the program (submitted by the user) on individual nodes.

 Once all the nodes process the data, the output is written back to HDFS.

https://hortonworks.com/apache/hadoop/
https://data-flair.training/blogs/hadoop-schedulers/
https://data-flair.training/blogs/hadoop-yarn-tutorial/
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Interacting with Hadoop Ecosystem

Hadoop Ecosystem Hadoop has an ecosystem that has evolved from its three core components 

processing, resource management, and storage. In this topic, you will learn the components of 

the Hadoop ecosystem and how they perform their roles during Big Data processing. The

Hadoop ecosystem is continuously growing to meet the needs of Big Data. It  comprises the 

following twelve components:

 HDFS(Hadoop Distributed file system)

 HBase

 Sqoop

 Flume

 Spark

 Hadoop MapReduce

 Pig

 Impala

 Hive

 Cloudera Search

 Oozie

 Hue.

Let us understand the role of each component of the Hadoop ecosystem.

Components of Hadoop Ecosystem

Let us start with the first component HDFS of Hadoop Ecosystem.

HDFS (HADOOP DISTRIBUTED FILE SYSTEM)

 HDFS is a storage layer for Hadoop.

 HDFS is suitable for distributed storage and processing, that is, while the data is being 

stored, it first gets distributed and then it is processed.

 HDFS provides Streaming access to file system data.

 HDFS provides file permission and authentication.

 HDFS uses a command line interface to interact with Hadoop.

So what stores data in HDFS? It is the HBase which stores data in HDFS.

HBase

 HBase is a NoSQL database or non-relational database .

 HBase is important and mainly used when you need random, real-time, read, or write 

access to your Big Data.

 It provides support to a high volume of data and high throughput.

 In an HBase, a table can have thousands of columns.
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UNIT-III

INTRODUCTION TO MONGODB AND MAPREDUCE PROGRAMMING

MongoDB is a cross-platform, document-oriented database that provides, high performance, 

high availability, and easy scalability. MongoDB works on concept of collection and document.

Database

Database is a physical container for collections. Each database gets its own set of files on the file  
system. A single MongoDB server typically has multiple databases.

Collection

Collection is  a  group of  MongoDB documents.  It  is  the equivalent  of  an RDBMS table.  A 
collection exists within a single database. Collections do not enforce a schema. Documents 
within a collection can have different  fields.  Typically,  all  documents in a collection are of 
similar or related purpose.

Document

A document is a set of key-value pairs. Documents have dynamic schema. Dynamic schema 
means that documents in the same collection do not need to have the same set  of fields or  
structure, and common fields in a collection's documents may hold different types of data.

The following table shows the relationship of RDBMS terminology with MongoDB.

RDBMS MongoDB

Database Database

Table Collection

Tuple/Row Document

column Field

Table Join Embedded Documents
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Primary Key Primary Key (Default key _id provided by 
MongoDB itself)

Database Server and Client

mysqld/Oracle mongod

mysql/sqlplus mongo

Sample Document

Following example shows the document structure of a blog site, which is simply a comma 
separated key value pair.

{

_id: ObjectId(7df78ad8902c) 

title: 'MongoDB Overview',

description: 'MongoDB is no sql 

database', by: 'tutorials point',

url: 'http://www.tutorialspoint.com', 

tags: ['mongodb', 'database', 'NoSQL'], 

likes: 100,

comments: [

{

user:'user1',

message: 'My first comment', 

dateCreated: new Date(2011,1,20,2,15), 

like: 0
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},

{

user:'user2',

message: 'My second comments', 

dateCreated: new Date(2011,1,25,7,45), 

like: 5

}

]

}

_id is a 12 bytes hexadecimal number which assures the uniqueness of every document. You can 

provide _id while inserting the document. If you don’t provide then MongoDB provides a unique 

id for every document. These 12 bytes first 4 bytes for the current timestamp, next 3 bytes for  

machine id, next 2 bytes for process id of MongoDB server and remaining 3 bytes are simple 

incremental VALUE.

Any relational  database  has  a  typical  schema design  that shows number  of  tables  and the 
relationship between these tables. While in MongoDB, there is no concept of relationship.

Advantages of MongoDB over RDBMS

 Schema less − MongoDB is a document database in which one collection holds different 
documents. Number of fields, content and size of the document can differ from one 
document to another.

 Structure of a single object is clear.

 No complex joins.

 Deep query-ability. MongoDB supports dynamic queries on documents using a 
document- based query language that's nearly as powerful as SQL.

 Tuning.

 Ease of scale-out − MongoDB is easy to scale.

 Conversion/mapping of application objects to database objects not needed.

 Uses internal memory for storing the (windowed) working set, enabling faster access of 
data.
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Why Use MongoDB?

 Document Oriented Storage − Data is stored in the form of JSON style documents.

 Index on any attribute

 Replication and high availability

 Auto-Sharding

 Rich queries

 Fast in-place updates

 Professional support by 

MongoDB Where to Use MongoDB?

 Big Data

 Content Management and Delivery

 Mobile and Social Infrastructure

 User Data Management

 Data Hub

MongoDB supports many datatypes. Some of them are −

 String − This is the most commonly used datatype to store the data. String in MongoDB 
must be UTF-8 valid.

 Integer − This type is used to store a numerical value. Integer can be 32 bit or 64 bit 
depending upon your server.

 Boolean − This type is used to store a boolean (true/ false) value.

 Double − This type is used to store floating point values.

 Min/ Max keys − This type is used to compare a value against the lowest and highest 
BSON elements.

 Arrays − This type is used to store arrays or list or multiple values into one key.

 Timestamp − ctimestamp. This can be handy for recording when a document has been 
modified or added.

 Object − This datatype is used for embedded documents.

 Null − This type is used to store a Null value.

 Symbol − This datatype is used identically to a string; however, it's generally reserved 
for languages that use a specific symbol type.

 Date − This datatype is used to store the current date or time in UNIX time format. You 
can specify your own date time by creating object of Date and passing day, month, year 
into it.

 Object ID − This datatype is used to store the document’s ID.



> db.mycol.insert([
{

title: "MongoDB Overview",
description: "MongoDB is no SQL database", 
by: "tutorials point",
url: "http://www.tutorialspoint.com", 
tags: ["mongodb", "database", "NoSQL"], 
likes: 100

},
{

title: "NoSQL Database",
description: "NoSQL database doesn't have tables", 
by: "tutorials point",
url: "http://www.tutorialspoint.com", 
tags: ["mongodb", "database", "NoSQL"], 
likes: 20,
comments: [

> use sampleDB 
switched to db 
sampleDB
> db.createCollection("mycol")
{ "ok" : 1 }
>
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 Binary data − This datatype is used to store binary data.

 Code − This datatype is used to store JavaScript code into the document.

 Regular expression − This datatype is used to store regular expression.

The find() Method

To query data from MongoDB collection, you need to use MongoDB's find() method. 

Syntax

The basic syntax of find() method is as follows −

>db.COLLECTION_NAME.find()

find() method will display all the documents in a non-structured way. 

Example

Assume we have created a collection named mycol as −

And inserted 3 documents in it using the insert() method as shown below −

http://www.tutorialspoint.com/
http://www.tutorialspoint.com/


> db.mycol.find().pretty()
{

"_id" : ObjectId("5dd4e2cc0821d3b44607534c"), 
"title" : "MongoDB Overview",
"description" : "MongoDB is no SQL database", 
"by" : "tutorials point",
"url" : "http://www.tutorialspoint.com", 
"tags" : [

"mongodb", 
"database", 
"NoSQL"

],

"likes" : 100

> db.mycol.find()
{ "_id" : ObjectId("5dd4e2cc0821d3b44607534c"), "title" : "MongoDB Overview", "description"
: "MongoDB is no SQL database", "by" : "tutorials point", "url" : 
"http://www.tutorialspoint.com", "tags" : [ "mongodb", "database", "NoSQL" ], "likes" : 100 }
{ "_id" :  ObjectId("5dd4e2cc0821d3b44607534d"),  "title" :  "NoSQL Database",  "description" : 
"NoSQL database doesn't have tables", "by" : "tutorials point", "url" : 
"http://www.tutorialspoint.com",  "tags"  :  [  "mongodb",  "database",  "NoSQL"  ],  "likes"  :  20, 
"comments" : [ { "user" : "user1", "message" : "My first comment", "dateCreated" : 
ISODate("2013-12-09T21:05:00Z"), "like" : 0 } ] }
>

BIG DATA ANALYTICS 29

{
user:"user1",
message: "My first comment", 
dateCreated: new Date(2013,11,10,2,35), 
like: 0

}
]

}

])

Following method retrieves all the documents in the collection −

The pretty() Method

To display the results in a formatted way, you can use pretty() method. 

Syntax

>db.COLLECTION_NAME.find().pretty() 

Example

Following example retrieves all the documents from the collection named mycol and arranges 
them in an easy-to-read format.

http://www.tutorialspoint.com/
http://www.tutorialspoint.com/
http://www.tutorialspoint.com/


> db.mycol.findOne({title: "MongoDB Overview"})
{

"_id" : ObjectId("5dd6542170fb13eec3963bf0"), 
"title" : "MongoDB Overview",
"description" : "MongoDB is no SQL database", 
"by" : "tutorials point",

"url" : "http://www.tutorialspoint.com", 
"tags" : [

"mongodb", 
"database", 
"NoSQL"

],
"likes" : 100
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}
{

"_id" : ObjectId("5dd4e2cc0821d3b44607534d"), 
"title" : "NoSQL Database",
"description" : "NoSQL database doesn't have tables", 
"by" : "tutorials point",
"url" : "http://www.tutorialspoint.com", 
"tags" : [

"mongodb", 
"database", 
"NoSQL"

],
"likes" : 20,
"comments" : [

{
"user" : "user1",
"message" : "My first comment",
"dateCreated" : ISODate("2013-12-09T21:05:00Z"),
"like" : 0

}
]

}

The findOne() method

Apart from the find() method, there is findOne() method, that returns only one document. 

Syntax

>db.COLLECTIONNAME.findOne()

Example

Following example retrieves the document with title MongoDB Overview.

http://www.tutorialspoint.com/
http://www.tutorialspoint.com/
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}

RDBMS Where Clause Equivalents in MongoDB

To query the document on the basis of some condition, you can use following operations.

Operation Syntax Example RDBMS

Equivalent

Equality {<key>:{$eg;<value>}} db.mycol.find({"by":"tutorials 
point"}).pretty()

where by = 
'tutorials 
point'

Less Than {<key>:{$lt:<value>}} db.mycol.find({"likes":{$lt:50}}).pretty() where likes
< 50

Less Than 
Equals

{<key>:{$lte:<value>}} db.mycol.find({"likes":{$lte:50}}).pretty() where likes
<= 50

Greater 
Than

{<key>:{$gt:<value>}} db.mycol.find({"likes":{$gt:50}}).pretty() where likes
> 50

Greater 
Than 
Equals

{<key>:{$gte:<value>}} db.mycol.find({"likes":{$gte:50}}).pretty() where likes
>= 50

Not 
Equals

{<key>:{$ne:<value>}} db.mycol.find({"likes":{$ne:50}}).pretty() where likes
!= 50

Values in 
an array

{<key>:{$in:[<value1>,
<value2>,……<valueN>]}}

db.mycol.find({"name":{$in:["Raj",
"Ram", "Raghu"]}}).pretty()

Where 
name 
matches 
any of the 
value in
:["Raj",
"Ram",
"Raghu"]



> db.mycol.find({$and:[{"by":"tutorials point"},{"title": "MongoDB Overview"}]}).pretty()
{

"_id" : ObjectId("5dd4e2cc0821d3b44607534c"), 
"title" : "MongoDB Overview",
"description" : "MongoDB is no SQL database", 
"by" : "tutorials point",
"url" : "http://www.tutorialspoint.com", 
"tags" : [

"mongodb", 
"database", 
"NoSQL"

],
"likes" : 100

}

>
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Values not 
in an array

{<key>:{$nin:<value>}} db.mycol.find({"name":{$nin:["Ramu", 
"Raghav"]}}).pretty()

Where 
name 
values is 
not in the 
array
:["Ramu", 
"Raghav"] 
or, doesn’t 
exist at all

AND in MongoDB 

Syntax

To query documents based on the AND condition, you need to use $and keyword. Following is 
the basic syntax of AND −

>db.mycol.find({ $and: [ {<key1>:<value1>}, { <key2>:<value2>} ] 

}) Example

Following example will show all the tutorials written by 'tutorials point' and whose title is 
'MongoDB Overview'.

For the above given example, equivalent where clause will be ' where by = 'tutorials point' 

AND title = 'MongoDB Overview' '. You can pass any number of key, value pairs in find 
clause.

OR in MongoDB 

Syntax

http://www.tutorialspoint.com/


>db.mycol.find({$or:[{"by":"tutorials point"},{"title": "MongoDB Overview"}]}).pretty()
{

"_id": ObjectId(7df78ad8902c), 
"title": "MongoDB Overview",
"description": "MongoDB is no sql database", 
"by": "tutorials point",
"url": "http://www.tutorialspoint.com", 
"tags": ["mongodb", "database", "NoSQL"], 
"likes": "100"

}
>

>db.mycol.find({"likes": {$gt:10}, $or: [{"by": "tutorials point"},
{"title": "MongoDB Overview"}]}).pretty()

{
"_id": ObjectId(7df78ad8902c), 
"title": "MongoDB Overview",
"description": "MongoDB is no sql database", 
"by": "tutorials point",

"url": "http://www.tutorialspoint.com", 
"tags": ["mongodb", "database", "NoSQL"], 
"likes": "100"

}

>
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To query documents based on the OR condition, you need to use $or keyword. Following is the 
basic syntax of OR −

>db.mycol.find(
{

$or: [

{key1: value1}, {key2:value2}
]

}
).pretty() 

Example

Following example will show all the tutorials written by 'tutorials point' or whose title is 
'MongoDB Overview'.

Using AND and OR 

Together Example

The following example will show the documents that have likes greater than 10 and whose title  
is either 'MongoDB Overview' or by is 'tutorials point'. Equivalent SQL where clause is 'where 

likes>10 AND (by = 'tutorials point' OR title = 'MongoDB Overview')'

http://www.tutorialspoint.com/
http://www.tutorialspoint.com/


db.empDetails.insertMany(
[

{
First_Name: "Radhika", 
Last_Name: "Sharma", 
Age: "26",
e_mail: "radhika_sharma.123@gmail.com", 
phone: "9000012345"

},
{

First_Name: "Rachel", 
Last_Name: "Christopher", 
Age: "27",
e_mail: "Rachel_Christopher.123@gmail.com", 
phone: "9000054321"

},
{

First_Name: "Fathima", 
Last_Name: "Sheik", 
Age: "24",
e_mail: "Fathima_Sheik.123@gmail.com", 
phone: "9000054321"

}
]

)

> db.empDetails.find(
{
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NOR in MongoDB 

Syntax

To query documents based on the NOT condition, you need to use $not keyword. Following is 
the basic syntax of NOT −

>db.COLLECTION_NAME.find(
{

}
)

Example

$not: 
[

]

{key1: value1}, {key2:value2}

Assume we have inserted 3 documents in the collection empDetails as shown below −

Following example will retrieve the document(s) whose first name is not "Radhika" and last 
name is not "Christopher"

mailto:Fathima_Sheik.123@gmail.com
mailto:Rachel_Christopher.123@gmail.com
mailto:radhika_sharma.123@gmail.com


> db.empDetails.find( { "Age": { $not: { $gt: "25" } } } )
{

"_id" : ObjectId("5dd6636870fb13eec3963bf7"), 
"First_Name" : "Fathima",
"Last_Name" : "Sheik", 
"Age" : "24",
"e_mail" : "Fathima_Sheik.123@gmail.com", 
"phone" : "9000054321"

}

$nor:[
40
{"First_Name": "Radhika"},
{"Last_Name": "Christopher"}

]
}

).pretty()
{

"_id" : ObjectId("5dd631f270fb13eec3963bef"), 
"First_Name" : "Fathima",

"Last_Name" : "Sheik", 
"Age" : "24",
"e_mail" : "Fathima_Sheik.123@gmail.com", 
"phone" : "9000054321"

}

NOT in MongoDB 

Syntax

To query documents based on the NOT condition, you need to use $not keyword following is the 
basic syntax of NOT −

>db.COLLECTION_NAME.find(
{

}
).pretty(

) 

Exampl

e

$NOT: 
[

]

{key1: value1}, {key2:value2}

Following example will retrieve the document(s) whose age is not greater than 25

mailto:Fathima_Sheik.123@gmail.com
mailto:Fathima_Sheik.123@gmail.com


MapReduce:

MapReduce addresses the challenges of distributed programming by providing an abstraction 

that isolates  the  developer  from  system-level  details  (e.g.,  locking  of  data  structures,  data 

starvation issues in the processing pipeline, etc.). The programming model specifies simple and 

well-defined interfaces between a small number of components, and therefore is easy for the 

programmer to reason about. MapReduce maintains a separation of what computations are to be 

performed and how those computations are actually carried out on a cluster of machines. The 

first is under the control of the programmer, while the second is exclusively the responsibility of 

the  execution framework or “runtime”. The advantage is that the execution framework only 

needs to be designed once and verified for correctness—thereafter,  as long as the developer 

expresses computations in the programming model, code is guaranteed to behave as expected. 

The upshot is that the developer is freed from having to worry about system-level details (e.g., no 

more debugging race conditions and addressing lock  contention) and  can instead  focus on 

algorithm or application design.

ich often has multiple cores). Why is MapReduce important? In practical terms, it provides a 

very effective tool for tackling large-data problems. But beyond that, MapReduce is important in 

how it has changed the way we organize computations at a massive scale. MapReduce represents 

the first widely-adopted step away from the von Neumann  model that has served  as the 

foundation of computer science over the last half plus century. Valiant called this a bridging 

model [148], a conceptual bridge between the physical implementation of a machine and the 

software that is to be executed on that machine. Until recently, the von Neumann model has 

served us well: Hardware designers focused on efficient implementations of the von Neumann 

model and didn’t have to think much about the actual software that would run on the machines. 

Similarly,  the  software industry  developed software  targeted  at  the  model  without  worrying 

about the hardware details. The result was extraordinary growth: chip designers churned out 

successive generations of increasingly powerful processors, and software engineers were able to 

develop applications in high-level languages that exploited those processors.

MapReduce can be viewed as the first breakthrough in the quest for new abstractions that allow 

us to organize computations, not over individual machines, but over entire clusters. As Barroso 

puts it, the datacenter is the computer. MapReduce is certainly not the first model of parallel 

computation that has been proposed. The most prevalent model in theoretical computer science, 

which dates back several decades, is the PRAM. MAPPERS AND REDUCERS Key-value pairs 

form the basic data structure in MapReduce. Keys and values may be primitives such as integers, 

floating point values, strings, and raw bytes, or they may be arbitrarily complex structures (lists, 

tuples, associative arrays, etc.). Programmers typically need to define their own custom data 

types, although a number of libraries such as Protocol Buffers,5 Thrift,6 and Avro7 simplify the 

task. Part of the design of MapReduce algorithms involves imposing the key-value structure on 

arbitrary datasets. For a collection of web pages, keys may be URLs and values may be the 

actual HTML content. For a graph, keys may represent node ids and values may contain the 

adjacency lists of those nodes (see Chapter 5 for more details). In some algorithms, input keys 

are not particularly



meaningful and are simply ignored during processing, while in other cases input keys are used to 

uniquely identify a datum (such as a record id). In Chapter 3, we discuss the role of complex 

keys and values in the design of various algorithms. In MapReduce, the programmer defines a 

mapper and a reducer with the following signatures: map: (k1, v1) → [(k2, v2)] reduce: (k2, 

[v2]) → [(k3, v3)] The convention [. . .] is used throughout this book to denote a list. The input 

to a MapReduce job starts as data stored on the underlying distributed file system (see Section 

2.5). The mapper is applied to every input key-value pair (split across an arbitrary number of 

files) to generate an arbitrary number of intermediate key-value pairs. The reducer is applied to 

all values associated with the same intermediate key to generate output key-value pairs.8 Implicit 

between the map and reduce phases is a distributed “group by” operation on intermediate keys. 

Intermediate data arrive at  each  reducer  in  order,  sorted  by  the  key.  However,  no  ordering 

relationship is guaranteed for keys across different reducers. Output key-value pairs from each 

reducer are written persistently back onto the distributed file system (whereas intermediate key-

value pairs are transient and not preserved). The output ends up in r files on the distributed file 

system, where r is the number of reducers. For the most part, there is no need to consolidate 

reducer output, since the r files often serve as input to yet another MapReduce job. Figure 2.2 

illustrates this two-stage processing structure. A simple word count algorithm in MapReduce is 

shown in Figure 2.3. This algorithm counts the number of occurrences of every word in a text 

collection, which may be the first step in, for example, building a unigram language model (i.e., 

probability
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distribution over words in a collection). Input key-values pairs take the form of (docid, doc) pairs 

stored on the distributed file system, where the former is a unique identifier for the document, 

and the latter  is  the text  of  the document  itself.  The mapper  takes an input  key-value pair,  

tokenizes the document, and emits an intermediate key-value pair for every word: the word itself  

serves as the key, and the integer one serves as the value (denoting that we’ve seen the word 

once). The MapReduce execution framework guarantees that all values associated with the same 

key are brought together in the reducer. Therefore, in our word count algorithm, we simply need 

to sum up all counts (ones) associated with each word. The reducer does exactly this, and emits  

final keyvalue pairs with the word as the key, and the count as the value. Final output is written 

to the distributed file system, one file per reducer. Words within each file will be sorted by 

alphabetical order, and each file will contain roughly the same number of words. The partitioner,  

which we discuss later in Section 2.4, controls the assignment of words to reducers. The output 

can be examined by the programmer or used as input to another MapReduce program.

There are some differences between the Hadoop implementation of MapReduce and Google’s 

implementation.9 In Hadoop, the reducer is presented with a key and an iterator over all values 

associated with the particular key. The values are arbitrarily ordered. Google’s implementation 

allows the programmer to specify a secondary sort key for ordering the values (if desired)—in 

which case values associated with each key would be presented to the developer’s reduce code in 

sorted order. Later in Section 3.4 we discuss how to overcome this limitation in Hadoop to 

perform secondary sorting. Another difference: in Google’s implementation the programmer is 

not allowed to change the key in the reducer. That is, the reducer output key must be exactly the  

same as the reducer input key. In Hadoop, there is no such restriction, and the reducer can emit 

an arbitrary number of output key-value pairs (with different keys).

To provide a bit more implementation detail: pseudo-code provided in this book roughly mirrors 

how MapReduce programs are written in Hadoop. Mappers and reducers are objects that 

implement the Map and Reduce methods, respectively. In Hadoop, a mapper object is initialized 

for each map task (associated with a particular sequence of key-value pairs called an input split)  

and the Map method is called on each key-value pair by the execution framework. In configuring 

a MapReduce job, the programmer provides a hint on the number of map tasks to run, but the 

execution framework (see next section) makes the final determination based on the physical 

layout of the data (more details in Section 2.5 and Section 2.6). The situation is similar for the 

reduce phase: a reducer object is initialized for each reduce task, and the Reduce method is called 

once per  intermediate  key.  In  contrast  with  the  number  of  map tasks,  the  programmer  can 

precisely specify the number of reduce tasks. We will return to discuss the details of Hadoop job 

execution in Section 2.6, which is dependent on an understanding of the distributed file system 

(covered  in Section  2.5).  To  reiterate:  although  the  presentation  of  algorithms  in  this  book 

closely mirrors the way they would be implemented in Hadoop, our focus is on algorithm 

design and conceptual



understanding—not actual Hadoop programming. For that, we would recommend Tom White’s 

book [154]. What  are the restrictions on mappers and reducers? Mappers and reducers can 

express arbitrary computations over their inputs. However, one must generally be careful about 

use  of external resources since multiple mappers or reducers  may be contending for those 

resources. For example, it may be unwise for a mapper to query an external SQL database, since 

that would introduce a scalability bottleneck on the number of map tasks that could be run in 

parallel (since they might all be simultaneously querying the database).10 In general, mappers 

can emit an arbitrary number of intermediate key-value pairs, and they need not be of the same 

type as the input key-value pairs. Similarly, reducers can emit an arbitrary number of final key-

value pairs, and they can differ in type from the intermediate key-value pairs.  Although not 

permitted in functional programming,  mappers and reducers can have side effects. This is a 

powerful and useful feature: for example, preserving state across multiple inputs is central to the 

design of many MapReduce algorithms (see Chapter 3). Such algorithms can be understood as 

having side effects that only change state that is internal to the mapper or reducer. While the 

correctness of such algorithms may be more difficult to guarantee (since the function’s behavior 

depends not only on the current input but on previous inputs), most potential synchronization 

problems are avoided since internal state is private only to individual mappers and reducers. In 

other cases (see Section

4.4 and Section 6.5), it may be useful for mappers or reducers to have external side effects, such 

as writing files to the distributed file system. Since many mappers and reducers are run in 

parallel, and the distributed file system is a shared global resource, special care must be taken to 

ensure that such operations avoid synchronization conflicts. One strategy is to write a temporary 

file that is renamed upon successful completion of the mapper or reducer .

In addition to the “canonical” MapReduce processing flow, other variations are also possible.  

MapReduce programs can contain no reducers, in which case mapper output is directly written to 

disk (one file per mapper). For embarrassingly parallel problems, e.g., parse a large text 

collection or independently analyze a large number of images, this would be a common pattern. 

The converse—a MapReduce program with no mappers—is not possible, although in some cases 

it is useful for the mapper to implement the identity function and simply pass input key-value 

pairs to the reducers. This has the effect of sorting and regrouping the input for reduce-side 

processing. Similarly,  in  some  cases  it  is  useful  for  the  reducer  to  implement  the  identity 

function, in which case the program simply sorts and groups mapper output. Finally, running 

identity mappers and reducers has the effect of regrouping and resorting the input data (which is 

sometimes useful).

Although in the most common case, input to a MapReduce job comes from data stored on the 

distributed file system and output is written back to the distributed file system, any other system 

that satisfies the proper abstractions can serve as a data source or sink. With Google’s 

MapReduce implementation,  BigTable [34],  a sparse,  distributed,  persistent multidimensional 

sorted map, is frequently used as a source of input and as a store of MapReduce output. HBase is 

an open-source BigTable clone and has similar capabilities. Also, Hadoop has been integrated 

with  existing  MPP (massively parallel processing) relational databases, which allows a 

programmer to write MapReduce jobs over database rows and dump output into a new database 

table. Finally, in some



cases MapReduce jobs may not consume any input at all (e.g., computing π) or may only 

consume a small amount of data (e.g., input parameters to many instances of processorintensive 

simulations running in parallel).

PARTITIONERS AND COMBINERS

We have thus far presented a simplified view of MapReduce. There are two additional elements  

that complete the programming model: partitioners and combiners. Partitioners are responsible 

for dividing  up  the  intermediate  key  space  and  assigning  intermediate  key-value  pairs  to 

reducers. In other words, the partitioner specifies the task to which an intermediate key-value 

pair must be copied. Within each reducer, keys are processed in sorted order (which is how the 

“group by” is implemented). The simplest partitioner involves computing the hash value of the 

key  and  then taking  the  mod  of  that  value  with  the  number  of  reducers.  This  assigns 

approximately the same number of keys to each reducer (dependent on the quality of the hash 

function). Note, however, that the partitioner only considers the key and ignores the value—

therefore, a roughly-even partitioning of the key space may nevertheless yield large differences 

in the number of key-values pairs sent to each reducer (since different keys may have different 

numbers of associated values). This imbalance in the amount of data associated with each key is 

relatively common in many text processing applications due to the Zipfian distribution of word 

occurrences.

Combiners are an optimization in MapReduce that allow for local aggregation before the shuffle 

and sort phase. We can motivate the need for combiners by considering the word count algorithm 

in Figure 2.3, which emits a key-value pair for each word in the collection. Furthermore, all these 

key-value pairs need to be copied across the network, and so the amount of intermediate data will 

be larger than the input collection itself. This is clearly inefficient. One solution is to perform 

local aggregation on the output of each mapper, i.e., to compute a local count for a word over all  

the documents processed by the mapper. With this modification (assuming the maximum amount 

of local aggregation possible), the number of intermediate key-value pairs will be at most the 

number of unique words in the collection times the number of mappers (and typically far smaller  

because each mapper may not encounter every word).

smaller  because each mapper may not  encounter  every word).  The combiner in MapReduce 

supports such an optimization. One can think of combiners as “mini-reducers” that take place on 

the output of the mappers, prior to the shuffle and sort phase. Each combiner operates in isolation 

and therefore does not have access to intermediate output from other mappers. The combiner is 

provided keys and values associated with each key (the same types as the mapper output keys 

and values). Critically, one cannot assume that a combiner will have the opportunity to process 

all values associated with the same key. The combiner can emit any number of key-value pairs, 

but the keys and values must be of the same type as the mapper output (same as the reducer 

input).12 In cases where an operation is both associative and commutative (e.g., addition or 

multiplication), reducers  can directly  serve as  combiners.  In  general,  however,  reducers  and 

combiners are not interchangeable.



In  many cases, proper use of combiners can spell the  difference between an  impractical 

algorithm and an efficient algorithm. This topic will be discussed in Section 3.1, which focuses 

on  various techniques for local aggregation. It suffices to say for now that a combiner can 

significantly reduce the amount of data that needs to be copied over the network, resulting in 

much faster algorithms. The complete MapReduce model is shown in Figure 2.4. Output of the 

mappers are processed by the combiners, which perform local aggregation to cut down on the 

number  of  intermediate  key- value pairs. The partitioner determines which  reducer will be 

responsible for processing a particular key, and the execution framework uses this information to 

copy the data to the right location during the shuffle and sort phase.13 Therefore, a complete 

MapReduce job consists of code for the mapper, reducer, combiner, and partitioner, along with 

job configuration parameters. The execution framework handles everything else.

SECONDARY SORTING

MapReduce sorts intermediate key-value pairs by the keys during the shuffle and sort phase, 

which is very convenient if computations inside the reducer rely on sort order (e.g., the order  

inversion design pattern described in  the previous section).  However,  what  if  in  addition to 

sorting  by  key, we also need to sort by value? Google’s MapReduce implementation 

provides built-in



functionality for  (optional) secondary sorting,  which guarantees that values arrive in sorted 

order. Hadoop, unfortunately, does not have this capability built in.

Consider the example of sensor data from a scientific experiment: there are m sensors each 

taking readings on continuous basis,  where m is potentially a large number.  A dump of the 

sensor data might look something like the following, where rx after each timestamp represents 

the actual sensor readings (unimportant for this discussion, but may be a series of values, one or 

more complex records, or even raw bytes of images).

(t1, m1, r80521) 

(t1, m2, r14209) 

(t1, m3, r76042) ... 

(t2, m1, r21823) 

(t2, m2, r66508)

(t2, m3, r98347)
Suppose we wish to reconstruct the activity at each individual sensor over time. A MapReduce 

program to  accomplish this might  map over the raw data and emit the sensor id as the 

intermediate key, with the rest of each record as the value:

m1 → (t1, r80521)

This would bring all  readings from the same sensor together in the reducer.  However,  since 

MapReduce makes no guarantees about the ordering of values associated with the same key, the 

sensor readings will not likely be in temporal order. The most obvious solution is to buffer all the 

readings in memory and then sort by timestamp before additional processing. However, it should 

be  apparent by  now that  any in-memory buffering  of  data  introduces  a  potential  scalability 

bottleneck. What if we are working with a high frequency sensor or sensor readings over a long 

period of time? What if the sensor readings themselves are large complex objects? This approach 

may not scale in these cases—the reducer would run out of memory trying to buffer all values 

associated with the same key.

This is a common problem, since in many applications we wish to first group together data one  

way (e.g., by sensor id), and then sort within the groupings another way (e.g., by time). 

Fortunately, there is a general purpose solution, which we call the “value-to-key conversion” 

design pattern. The basic idea is to move part of the value into the intermediate key to form a 

composite key, and let the MapReduce execution framework handle the sorting. In the above 

example,  instead of emitting the sensor id as the key, we would emit the sensor id and the 

timestamp as a composite key: (m1, t1) → (r80521)



The sensor reading itself now occupies the value. We must define the intermediate key sort order 

to first sort by the sensor id (the left element in the pair) and then by the timestamp (the right 

element in the pair). We must also implement a custom partitioner so that all pairs associated 

with the same sensor are shuffled to the same reducer. Properly orchestrated, the key-value pairs 

will be presented to the reducer in the correct sorted order: (m1, t1) → [(r80521)] (m1, t2) → 

[(r21823)] (m1, t3) → [(r146925)] . . .

However, note that sensor readings are now split across multiple keys. The reducer will need to 

preserve state and keep track of when readings associated with the current sensor end and the 

next sensor begin.9 The basic tradeoff between the two approaches discussed above (buffer and 

inmemory sort vs. value-to-key conversion) is where sorting is performed. One can explicitly 

implement  secondary sorting in  the  reducer,  which is  likely  to  be  faster  but  suffers  from a 

scalability bottleneck.10 With value-to-key conversion, sorting is offloaded to the MapReduce 

execution framework. Note that this approach can be arbitrarily extended to tertiary, quaternary, 

etc. sorting. This pattern results in many more keys for the framework to sort, but distributed 

sorting is a task that the MapReduce runtime excels at since it lies at the heart of the 

programming model.

INDEX COMPRESSION

We return to the question of how postings are actually compressed and stored on disk. This 

chapter devotes a substantial amount of space to this topic because index compression is one of  

the main differences between a “toy” indexer and one that  works on real-world collections. 

Otherwise, MapReduce inverted indexing algorithms are pretty straightforward.

Let us consider the canonical case where each posting consists of a document id and the term 

frequency. A na¨ıve implementation might represent the first as a 32-bit integer9 and the second 

as a 16-bit integer. Thus, a postings list might be encoded as follows: [(5, 2),(7, 3),(12, 1),(49, 1),

(51, 2), . . .]

where each posting is represented by a pair in parentheses. Note that all brackets, parentheses, 

and commas  are  only  included  to  enhance  readability;  in  reality  the  postings  would  be 

represented as a long stream of integers. This na¨ıve implementation would require six bytes per 

posting. Using this scheme, the entire inverted index would be about as large as the collection 

itself. Fortunately, we can do significantly better. The first trick is to encode differences between 

document  ids  as opposed to  the  document  ids  themselves.  Since the  postings  are  sorted by 

document ids, the differences (called d-gaps) must be positive integers greater than zero. The 

above postings list, represented with d-gaps, would be: [(5, 2),(2, 3),(5, 1),(37, 1),(2, 2)

Of course, we must actually encode the first document id. We haven’t lost any information, since 

the original document ids can be easily reconstructed from the d-gaps. However, it’s not obvious 

that we’ve reduced the space requirements either, since the largest possible d-gap is one less than



the number of documents in the collection. This is where the second trick comes in, which is to  

represent the d-gaps in a way such that it takes less space for smaller numbers. Similarly, we 

want to apply the same techniques to compress the term frequencies, since for the most part they 

are also small values. But to understand how this is done, we need to take a slight detour into 

compression techniques, particularly for coding integers.

Compression, in general, can be characterized as either lossless or lossy: it’s fairly obvious that 

loseless compression is required in this context. To start, it is important to understand that all 

compression techniques represent a time–space tradeoff. That is, we reduce the amount of space 

on disk necessary to store data, but at the cost of extra processor cycles that must be spent coding 

and decoding data. Therefore, it is possible that compression reduces size but also slows 

processing. However, if the two factors are properly balanced (i.e., decoding speed can keep up 

with disk bandwidth), we can achieve the best of both worlds: smaller and faster.

POSTINGS COMPRESSION

Having completed our slight detour into integer compression techniques, we can now return to 

the scalable inverted indexing algorithm shown in Figure 4.4 and discuss how postings lists can 

be properly compressed.  As we can see from the previous section,  there is  a wide range of  

choices that represent different tradeoffs between compression ratio and decoding speed. Actual 

performance also depends on  characteristics of the collection, which, among other factors, 

determine the distribution of d-gaps. B¨uttcher et al. [30] recently compared the performance of  

various compression techniques on coding document ids. In terms of the amount of compression 

that can be obtained (measured in bits per docid), Golomb and Rice codes performed the best,  

followed by γ codes, Simple-9, varInt, and group varInt (the least space efficient). In terms of 

raw decoding speed, the order was almost the reverse: group varInt was the fastest, followed by 

varInt.14 Simple-9 was substantially slower, and the bit-aligned codes were even slower than 

that. Within the bit-aligned codes, Rice codes were the fastest, followed by γ, with Golomb codes 

being the slowest (about ten times slower than group varInt).

Let us discuss what modifications are necessary to our inverted indexing algorithm if we were to 

adopt Golomb compression for d-gaps and represent term frequencies with γ codes. Note that 

this represents  a  space-efficient  encoding,  at  the  cost  of  slower  decoding  compared  to 

alternatives. Whether or not this is actually a worthwhile tradeoff in practice is not important 

here:  use  of Golomb codes serves a pedagogical purpose, to illustrate how one might set 

compression parameters.

Coding term frequencies with γ codes is easy since they are parameterless. Compressing d-gaps 

with Golomb codes, however, is a bit tricky, since two parameters are required: the size of the  

document collection and the number of postings for a particular postings list (i.e., the document 

frequency, or df). The first is easy to obtain and can be passed into the reducer as a constant. The 

df of a term, however, is not known until all the postings have been processed—and 

unfortunately,



the parameter must be known before any posting is coded. At first glance, this seems like a 

chicken-and-egg  problem.  A two-pass  solution  that involves first buffering  the  postings  (in 

memory) would suffer from the memory bottleneck we’ve been trying to avoid in the first place.

To get around this problem, we need to somehow inform the reducer of a term’s df before any 

of its postings arrive. This can be solved with the order inversion design pattern introduced in 

Section

3.3 to compute relative frequencies. The solution is to have the mapper emit special keys of the 

form ht, ∗i to communicate partial document frequencies. That is, inside the mapper, in addition 

to emitting intermediate key-value pairs of the following form:

(tuple ht, docidi,tf f)

we also emit special intermediate key-value pairs like this:

(tuple ht, ∗i, df e)

to keep track of document frequencies associated with each term. In practice, we can accomplish 

this by applying the in-mapper combining design pattern (see Section 3.1). The mapper holds an 

in-memory associative array that keeps track of how many documents a term has been observed 

in (i.e., the local document frequency of the term for the subset of documents processed by the 

mapper). Once the mapper has processed all input records, special keys of the form ht,  ∗i are 

emitted with the partial df as the value.

To ensure that these special keys arrive first, we define the sort order of the tuple so that the 

special symbol ∗ precedes all documents (part of the order inversion design pattern). Thus, for 

each term, the  reducer  will  first  encounter  the  ht,  ∗i  key,  associated  with  a  list  of  values 

representing  partial df  values  originating  from  each  mapper.  Summing  all  these  partial 

contributions will yield the term’s df, which can then be used to set the Golomb compression 

parameter b. This allows the postings to be incrementally compressed as they are encountered in 

the reducer—memory bottlenecks are eliminated since we do not need to buffer postings in 

memory.

Once again, the order inversion design pattern comes to the rescue. Recall that the pattern is 

useful when a reducer needs to access the result of a computation (e.g., an aggregate statistic) 

before it encounters  the data necessary to produce that  computation.  For computing relative 

frequencies, that bit of information was the marginal. In this case, it’s the document frequency.

PARALLEL BREADTH-FIRST SEARCH

One of the most common and well-studied problems in graph theory is the single-source shortest 

path problem, where the task is to find shortest paths from a source node to all other nodes in the  

graph (or alternatively, edges can be associated with costs or weights, in which case the task is to  

compute lowest-cost or lowest-weight paths). Such problems are a staple in undergraduate



algorithm courses, where students are taught the solution using Dijkstra’s algorithm. However, 

this  famous algorithm assumes sequential  processing—how would we solve this  problem in 

parallel, and more specifically, with MapReduce?

Dijkstra(G, w, s) 

2: d[s] ← 0

3: for all vertex v ∈ V do 

4: d[v] ← ∞

5: Q ← {V }

6: while Q 6= ∅ do

7: u ← ExtractMin(Q)

8: for all vertex v ∈ u.AdjacencyList do 

9: if d[v] > d[u] + w(u, v) then

10: d[v] ← d[u] + w(u, v)

Figure 5.2: Pseudo-code for Dijkstra’s algorithm, which is based on maintaining a global priority 

queue of nodes with priorities equal to their distances from the source node. At each iteration, the 

algorithm expands the node with the shortest distance and updates distances to all reachable 

nodes. As a refresher and also to serve as a point of comparison, Dijkstra’s algorithm is shown in 

Figure 5.2, adapted from Cormen, Leiserson, and Rivest’s classic algorithms textbook [41] (often 

simply known as CLR). The input to the algorithm is a directed, connected graph G = (V, E)  

represented with adjacency lists, w containing edge distances such that w(u, v) ≥ 0, and the 

source node s. The algorithm begins by first setting distances to all vertices d[v], v  ∈ V to ∞, 

except for the source node, whose distance to itself is zero. The algorithm maintains Q, a global 

priority queue of vertices with priorities equal to their distance values d

Dijkstra’s algorithm operates by iteratively selecting the node with the lowest current distance 

from the  priority  queue  (initially, this is  the  source  node). At  each  iteration, the  algorithm 

“expands” that node by traversing the adjacency list of the selected node to see if any of those  

nodes can be reached with a path of a shorter distance. The algorithm terminates when the 

priority queue Q is empty, or equivalently, when all nodes have been considered. Note that the 

algorithm as presented in Figure 5.2 only computes the shortest distances. The actual paths can 

be recovered by storing “backpointers” for every node indicating a fragment of the shortest path.

A sample trace of the algorithm running on a simple graph is shown in Figure 5.3 (example also  

adapted from CLR). We start out in (a) with n1 having a distance of zero (since it’s the source)  

and all other nodes having a distance of ∞. In the first iteration (a), n1 is selected as the node to  

expand (indicated by the thicker border). After the expansion, we see in (b) that n2 and n3 can be 

reached at a distance of 10 and 5, respectively. Also, we see in (b) that n3 is the next node 

selected for expansion. Nodes we have already considered for expansion are shown in black. 

Expanding n3, we see in (c) that the distance to n2 has decreased because we’ve found a shorter  

path.  The nodes  that  will  be  expanded  next,  in  order,  are  n5,  n2,  and  n4.  The  algorithm 

terminates with the end state shown in (f), where we’ve discovered the shortest distance to all 

nodes.



The key to Dijkstra’s algorithm is the priority queue that maintains a globallysorted list of nodes 

by current distance. This is not possible in MapReduce, as the programming model does not 

provide a mechanism for exchanging global data. Instead, we adopt a brute force approach 

known as parallel breadth-first search. First, as a simplification let us assume that all edges have 

unit distance (modeling, for example, hyperlinks on the web). This makes the algorithm easier to 

understand, but we’ll relax this restriction later.

The intuition behind the algorithm is this: the distance of all nodes connected directly to the 

source node is  one; the distance of all  nodes directly connected to those is  two; and so on. 

Imagine water rippling away from a rock dropped into a pond— that’s a good image of how 

parallel breadth-first search works. However, what if there are multiple paths to the same node? 

Suppose we wish to compute the shortest distance to node n. The shortest path must go through 

one of the nodes in M that contains an outgoing edge to n: we need to examine all m ∈ M to find 

ms, the node with the shortest distance. The shortest distance to n is the distance to ms plus one.

Pseudo-code for the implementation of the parallel breadth-first search algorithm is provided in 

Figure 5.4. As with Dijkstra’s algorithm, we assume a connected, directed graph represented as 

adjacency lists. Distance to each node is directly stored alongside the adjacency list of that node,  

and initialized to ∞ for all nodes except for the source node. In the pseudo-code, we use n to 

denote the  node  id  (an  integer)  and  N  to  denote  the  node’s  corresponding  data  structure 

(adjacency  list and  current  distance).  The  algorithm works  by  mapping  over  all  nodes  and 

emitting a key-value pair for each neighbor on the node’s adjacency list. The key contains the 

node id of the neighbor, and the value is the current distance to the node plus one. This says: if 

we can reach node n with a distance d, then we must be able to reach all the nodes that are 

connected to n with distance d + 1.



After shuffle and sort, reducers will receive keys corresponding to the destination node ids and 

distances corresponding to all paths leading to that node. The reducer will select the shortest of 

these distances and then update the distance in the node data structure.

h iteration corresponds to a MapReduce job. The first time we run the algorithm, we “discover”  

all nodes that are connected to the source. The second iteration, we discover all nodes connected 

to those, and so on. Each iteration of the algorithm expands the “search frontier” by one hop, 

and, eventually,  all  nodes will  be discovered with their shortest distances (assuming a fully-

connected graph).  Before  we discuss  termination  of  the  algorithm,  there  is  one  more  detail 

required to make the parallel breadth-first search algorithm work. We need to “pass along” the 

graph structure from one iteration to the next. This is accomplished by emitting the node data 

structure itself, with the node id as a key (Figure 5.4, line 4 in the mapper). In the reducer, we 

must  distinguish  the  node data structure from distance values (Figure 5.4, lines 5–6 in the 

reducer), and update the minimum distance in the node data structure before emitting it as the 

final value. The final output is now ready to serve as input to the next iteration.

So how many iterations are necessary to compute the shortest distance to all nodes? The answer 

is the diameter of the graph, or the greatest distance between any pair of nodes. This number is  

surprisingly small for many real-world problems: the saying “six degrees of separation” suggests 

that everyone on the planet is connected to everyone else by at most six steps (the people a 

person knows are one step away, people that they know are two steps away, etc.).  If this is  

indeed true, then parallel breadthfirst search on the global social network would take at most six 

MapReduce iterations.

class Mapper

2: method Map(nid n, node 

N) 3: d ← N.Distance

4: Emit(nid n, N) . Pass along graph structure 

5: for all nodeid m ∈ N.AdjacencyList do

6: Emit(nid m, d + 1) . Emit distances to reachable 

nodes 1: class Reducer

2: method Reduce(nid m, [d1, d2, . . .]) 

3: dmin ← ∞

4: M ← ∅

5: for all d ∈ counts [d1, d2, . . .] do 

6: if IsNode(d) then

7: M ← d . Recover graph structure

8: else if d < dmin then . Look for shorter 

distance 9: dmin ← d

10: M.Distance ← dmin . Update shortest distance 

11: Emit(nid m, node M)



Figure 5.4: Pseudo-code for parallel breath-first search in MapReduce: the mappers emit 

distances to reachable nodes, while the reducers select the minimum of those distances for each 

destination node.  Each iteration (one MapReduce job)  of  the algorithm expands the “search 

frontier” by one hop.

For more serious academic studies of “small world” phenomena in networks, we refer the reader 

to a number of publications [61, 62, 152, 2]. In practical terms, we iterate the algorithm until 

there are  no  more  node  distances  that  are  ∞.  Since  the  graph  is  connected,  all  nodes  are  

reachable, and since all edge distances are one, all discovered nodes are guaranteed to have the 

shortest distances (i.e., there is not a shorter path that goes through a node that hasn’t been 

discovered).

The actual checking of the termination condition must occur outside of MapReduce. Typically, 

execution of an iterative MapReduce algorithm requires a  nonMapReduce “driver” program, 

which submits a MapReduce job to iterate the algorithm, checks to see if a termination condition  

has  been met,  and if  not,  repeats.  Hadoop provides  a  lightweight  API  for  constructs  called 

“counters”,  which,  as  the name suggests,  can be used for counting events  that  occur during 

execution, e.g., number of corrupt records, number of times a certain condition is met, or 

anything that the programmer desires. Counters can be defined to count the number of nodes that  

have distances of ∞: at the end of the job, the driver program can access the final counter value 

and check to see if another iteration is necessary.

Finally,  as with Dijkstra’s algorithm in the form presented earlier, the parallel breadth-first 

search algorithm only finds the shortest distances, not the actual shortest paths. However, the 

path can be straightforwardly recovered. Storing “backpointers” at each node, as with Dijkstra’s 

algorithm, will work, but may not be efficient since the graph needs to be traversed again to 

reconstruct the path segments. A simpler approach is to emit paths along with distances in the 

mapper, so that each node will have its shortest path easily accessible at all times. The additional 

space requirements for shuffling these data from mappers to reducers are relatively modest, since 

for the most part paths (i.e., sequence of node ids) are relatively short.

Up until now, we have been assuming that all edges are unit distance. Let us relax that restriction  

and see what changes are required in the parallel breadth-first search algorithm. The adjacency 

lists, which were previously lists of node ids, must now encode the edge distances as well. In line



6 of the mapper code in Figure 5.4, instead of emitting d + 1 as the value, we must now emit d + 

w where w is the edge distance. No other changes to the algorithm are required, but the 

termination behavior is very different. To illustrate, consider the graph fragment in Figure 5.5, 

where s is the source node, and in this iteration, we just “discovered” node r for the very first  

time. Assume for the sake of argument that we’ve already discovered the shortest distance to 

node  p,  and  that  the shortest  distance  to  r  so  far  goes  through  p.  This, however,  does  not 

guarantee that we’ve discovered the shortest distance to r, since there may exist a path going 

through q that we haven’t encountered yet (because it lies outside the search frontier).6 However, 

as the search frontier expands, we’ll eventually cover q and all other nodes along the path from p 

to q to r—which means that with sufficient iterations, we will discover the shortest distance to r. 

But how do we know that we’ve found the shortest distance to p? Well, if the shortest path to p 

lies within the search frontier, we would have already discovered it. And if it doesn’t, the above 

argument applies. Similarly, we can repeat the same argument for all nodes on the path from s to 

p. The conclusion is that, with sufficient iterations, we’ll eventually discover all the shortest 

distances.

So exactly how many iterations does “eventually” mean? In the worst case, we might need as 

many iterations as there are nodes in the graph minus one. In fact, it is not difficult to construct 

graphs that will elicit this worse-case behavior: Figure 5.6 provides an example, with n1 as the 

source. The parallel breadth-first search algorithm would not discover that the shortest path from 

n1 to n6 goes through n3, n4, and n5 until the fifth iteration. Three more iterations are necessary 

to cover the rest of the graph. Fortunately, for most real-world graphs, such extreme cases are 

rare, and the number of iterations necessary to discover all shortest distances is quite close to the 

diameter of the graph, as in the unit edge distance case.

In practical terms, how  do we know when to stop iterating in the  case  of arbitrary edge 

distances? The algorithm can terminate when shortest distances at every node no longer change. 

Once again, we can use counters to keep track of such events. Every time we encounter a shorter  

distance in the reducer, we increment a counter. At the end of each MapReduce iteration, the 

driver program reads the counter value and determines if another iteration is necessary.

Compared to Dijkstra’s algorithm on a single processor, parallel breadth-first search in 

MapReduce can be characterized as a brute force approach that “wastes” a lot of time performing 

computations whose results are discarded. At each iteration, the algorithm attempts to recompute 

distances to all nodes, but in reality only useful work is done along the search frontier: inside the 

search frontier, the algorithm is simply repeating previous computations.7 Outside the search 

frontier, the algorithm hasn’t discovered any paths to nodes there yet, so no meaningful work is 

done. Dijkstra’s algorithm, on the other hand, is far more efficient. Every time a node is 

explored, we’re guaranteed to have already found the shortest path to it. However, this is made 

possible by maintaining a global data structure (a priority queue) that holds nodes sorted by 

distance—this is not possible in MapReduce because the programming model does not provide 

support  for  global data that is  mutable and accessible by the mappers and reducers. These 

inefficiencies represent the cost of parallelization.

The parallel  breadth-first  search algorithm is instructive in that it  represents the prototypical 

structure  of  a large class  of  graph  algorithms in  MapReduce. They  share in the following 

characteristics:



The graph structure is represented with adjacency lists, which is part of some larger node 

data structure that may contain additional information (variables to store intermediate output,  

features of the nodes). In many cases, features are attached to edges as well (e.g., edge weights).

The graph structure is represented with adjacency lists, which is part of some larger node 

data structure that may contain additional information (variables to store intermediate output, 

features of the nodes). In many cases, features are attached to edges as well (e.g., edge weights).

In addition to computations, the graph itself is also passed from the mapper to the 

reducer. In the reducer, the data structure corresponding to each node is updated and written back 

to disk.

Graph algorithms in MapReduce are generally iterative, where the output of the previous 

iteration serves as input to the next iteration. The process is controlled by a non-MapReduce 

driver program that checks for termination.

For parallel breadth-first search, the mapper computation is the current distance plus edge 

distance (emitting distances to neighbors), while the reducer computation is the Min function 

(selecting the shortest path). As we will see in the next section, the MapReduce algorithm for 

PageRank works in much the same way



INTRODUCTION TO HIVE AND 

PIG

UNIT-IV

The term ‘Big Data’ is used for collections of large datasets that include huge volume, high 
velocity,  and  a  variety  of  data  that  is  increasing  day  by  day.  Using  traditional  data 
management systems, it is difficult to process Big Data. Therefore, the Apache Software 
Foundation  introduced a framework called Hadoop to solve Big Data management and 
processing challenges.

Hadoop

Hadoop is an open-source framework to  store and process Big Data in a distributed 
environment. It  contains  two  modules,  one  is  MapReduce  and  another  is  Hadoop 
Distributed File System (HDFS).

 MapReduce:  It is a parallel programming model for processing large amounts of 
structured, semi-structured, and unstructured data on large clusters of commodity 
hardware.

 HDFS:Hadoop Distributed File System is a part of Hadoop framework, used to 
store and process the datasets. It provides a fault-tolerant file system to run on 
commodity hardware.

The Hadoop ecosystem contains different sub-projects (tools) such as Sqoop, Pig, and Hive 
that are used to help Hadoop modules.

 Sqoop: It is used to import and export data to and from between HDFS and RDBMS.

 Pig: It is a procedural language platform used to develop a script for MapReduce 
operations.

 Hive: It is a platform used to develop SQL type scripts to do MapReduce operations.

Note: There are various ways to execute MapReduce operations:

 The traditional approach using Java MapReduce program for structured, semi-
structured, and unstructured data.

 The scripting approach for MapReduce to process structured and semi structured 
data using Pig.

 The Hive Query Language (HiveQL or HQL) for MapReduce to process 
structured data using Hive.

What is Hive

Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It 
resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy.

Initially Hive was developed by Facebook, later the Apache Software Foundation took it 
up and developed it further as an open source under the name Apache Hive. It is used by 
different companies. For example, Amazon uses it in Amazon Elastic MapReduce.



Hive is not

 A relational database

 A design for OnLine Transaction Processing (OLTP)

 A language for real-time queries and row-level updates

Features of Hive

 It stores schema in a database and processed data into HDFS.

 It is designed for OLAP.

 It provides SQL type language for querying called HiveQL or HQL.

 It is familiar, fast, scalable, and extensible.

Architecture of Hive

The following component diagram depicts the architecture of Hive:

This component diagram contains different units. The following table describes each unit:



Unit Name Operation

User Interface Hive is a data warehouse infrastructure software that can 

create interaction between user and HDFS.  The user interfaces 

that Hive supports are Hive Web UI,  Hive command line, and 

Hive HD Insight (In Windows server).

Meta Store Hive chooses respective database servers to store the 

schema or Metadata of tables, databases, columns in a table, their 

data types, and HDFS mapping.

HiveQL Process Engine HiveQL is similar to SQL for querying on schema info on 

the Metastore. It is one of the replacements of traditional approach 

for MapReduce program. Instead of writing MapReduce program 

in Java, we can write a query for MapReduce job and process it.

Execution Engine The conjunction part of HiveQL process Engine and 

MapReduce is Hive Execution Engine. Execution engine 

processes the query and generates results as same as MapReduce 

results. It uses the flavor of MapReduce.

HDFS or HBASE Hadoop distributed file system or  HBASE are the data 

storage techniques to store data into file system.

Working of Hive

The following diagram depicts the workflow between Hive and Hadoop.



The following table defines how Hive interacts with Hadoop framework:

Step 

No.

Operation

1 Execute Query

The Hive interface such as Command Line or Web UI sends query to Driver (any database 

driver such as JDBC, ODBC, etc.) to execute.

2 Get Plan

The driver takes the help of query compiler that parses the query to check the syntax and 

query plan or the requirement of query.

3 Get Metadata

The compiler sends metadata request to Metastore (any database).

4 Send Metadata

Metastore sends metadata as a response to the compiler.

5 Send Plan

The compiler checks the requirement and resends the plan to the driver. Up to here, the 

parsing and compiling of a query is complete.

6 Execute Plan

The driver sends the execute plan to the execution engine.

7 Execute Job

Internally, the process of execution job is a MapReduce job. The execution engine sends 

the job to JobTracker, which is in Name node and it assigns this job to TaskTracker, 

which is in Data node. Here, the query executes MapReduce job.

7.1 Metadata Ops



Meanwhile in execution, the execution engine can execute metadata operations with 

Metastore.

8 Fetch Result

The execution engine receives the results from Data nodes.

9 Send Results

The execution engine sends those resultant values to the driver.

10 Send Results

The driver sends the results to Hive Interfaces.

File Formats in Hive

 File Format specifies how records are encoded in files
 Record Format implies how a stream of bytes for a given record are encoded
 The default file format is TEXTFILE – each record is a line in the file
 Hive uses different control characters as delimeters in textfiles

 ᶺA ( octal 001) , ᶺB(octal 002), ᶺC(octal 003), \n

 The term field is used when overriding the default delimiter
 FIELDS TERMINATED BY ‘\001’

 Supports text files – csv, tsv
 TextFile can contain JSON or XML documents.

ommonly used File Formats –

1. TextFile format

 Suitable for sharing data with other tools
 Can be viewed/edited manually

2. SequenceFile

 Flat files that stores binary key ,value pair
 SequenceFile offers a Reader ,Writer, and Sorter classes for reading ,writing, and sorting 

respectively
 Supports – Uncompressed, Record compressed ( only value is compressed) and Block 

compressed ( both key,value compressed) formats
3. RCFile

 RCFile stores columns of a table in a record columnar way

4. ORC

5. AVRO



Hive Commands

Hive supports Data definition Language(DDL), Data Manipulation Language(DML) and User 
defined functions.

Hive DDL Commands

create database 

drop database 

create table 

drop table

alter table 

create index 

create view

Hive DML Commands

Select 

Where 

Group By 

Order By 

Load Data 

Join:

o Inner Join

o Left Outer Join

o Right Outer Join

o Full Outer Join 

Hive DDL Commands 

Create Database 

Statement

A database in Hive is a namespace or a collection of tables.



1. hive> CREATE SCHEMA userdb;

2. hive> SHOW 

DATABASES; Drop 

database

1. ive> DROP DATABASE IF EXISTS userdb; 

Creating Hive Tables

Create a table called Sonoo with two columns, the first being an integer and the other a string.

1. hive> CREATE TABLE Sonoo(foo INT, bar STRING);

Create a table called HIVE_TABLE with two columns and a partition column called ds. The 
partition column is a virtual column. It is not part of the data itself but is derived from the 
partition that a particular dataset is loaded into.By default, tables are assumed to be of text input 
format and the delimiters are assumed to be ^A(ctrl-a).

1. hive> CREATE TABLE HIVE_TABLE (foo INT, bar STRING) PARTITIONED BY (ds STRI 

NG);

Browse the table

1. hive> Show tables;

Altering and Dropping Tables

1. hive> ALTER TABLE Sonoo RENAME TO Kafka;

2. hive> ALTER TABLE Kafka ADD COLUMNS (col INT);

3. hive> ALTER TABLE HIVE_TABLE ADD COLUMNS (col1 INT COMMENT 'a comment');

4. hive> ALTER TABLE HIVE_TABLE REPLACE COLUMNS (col2 INT, weight STRING, baz 

INT COMMENT 'baz replaces new_col1');

Hive DML Commands

To understand the Hive DML commands, let's see the employee and employee_department table 
first.



ALTER TABLE table_name ADD [IF NOT EXISTS] PARTITION partition_spec 
[LOCATION 'location1'] partition_spec [LOCATION 'location2'] ...;

partition_spec:
: (p_column = p_col_value, p_column = p_col_value, ...)

hive> ALTER TABLE employee
> ADD PARTITION (year=’2012’)
> location '/2012/part2012';

LOAD DATA

1. hive> LOAD DATA LOCAL INPATH './usr/Desktop/kv1.txt' OVERWRITE INTO TABLE Employe 

e;

SELECTS and FILTERS

1. hive> SELECT E.EMP_ID FROM Employee E WHERE E.Address='US'; 

GROUP BY

1. hive> hive> SELECT E.EMP_ID FROM Employee E GROUP BY E.Addresss; 

Adding a Partition

We can add partitions to a table by altering the table. Let us assume we have a table 
called employee with fields such as Id, Name, Salary, Designation, Dept, and yoj.

Syntax:

The following query is used to add a partition to the employee table.

Renaming a Partition

The syntax of this command is as follows.



hive> ALTER TABLE employee PARTITION (year=’1203’)
> RENAME TO PARTITION (Yoj=’1203’);

ALTER TABLE table_name DROP [IF EXISTS] PARTITION partition_spec, PARTITION 
partition_spec,...;

SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference 
[WHERE where_condition] 
[GROUP BY col_list] 
[HAVING having_condition]
[CLUSTER BY col_list | [DISTRIBUTE BY col_list] [SORT BY col_list]] 
[LIMIT number];

hive> ALTER TABLE employee DROP [IF EXISTS]
> PARTITION (year=’1203’);

ALTER TABLE table_name PARTITION partition_spec RENAME TO PARTITION 
partition_spec;

The following query is used to rename a partition:

Dropping a Partition

The following syntax is used to drop a partition:

The following query is used to drop a partition:

Hive Query Language

The Hive Query Language (HiveQL) is  a  query language for  Hive to  process  and analyze 
structured data in a Metastore. This chapter explains how to use the SELECT statement with 
WHERE clause.

SELECT statement is used to retrieve the data from a table. WHERE clause works similar to a  
condition. It filters the data using the condition and gives you a finite result. The built-in 
operators and functions generate an expression, which fulfils the condition.

Syntax

Given below is the syntax of the SELECT query:

Example

Let us take an example for SELECT…WHERE clause. Assume we have the employee table as 
given below, with fields named Id, Name, Salary, Designation, and Dept. Generate a query to 
retrieve the employee details who earn a salary of more than Rs 30000.



hive> SELECT * FROM employee WHERE salary>30000;

import java.sql.SQLException; 
import java.sql.Connection; 
import java.sql.ResultSet; 
import java.sql.Statement; 
import java.sql.DriverManager;

public class HiveQLWhere {
private static String driverName = "org.apache.hadoop.hive.jdbc.HiveDriver"; 

public static void main(String[] args) throws SQLException {

// Register driver and create driver 
instance Class.forName(driverName);

// get connection
Connection con = DriverManager.getConnection("jdbc:hive://localhost:10000/userdb", "",

"");

// create statement
Statement stmt = con.createStatement();

// execute statement

+        +                  +                 +                         +          +
| ID | Name | Salary | Designation | Dept |
+        +                  +                 +                         +          +
|1201 | Gopal | 45000 | Technical manager | TP |
|1202 | Manisha | 45000 | Proofreader | PR |
|1203 | Masthanvali | 40000 | Technical writer | TP |
|1204 | Krian | 40000 | Hr Admin | HR |
|1205 | Kranthi | 30000 | Op Admin | Admin |
+        +                  +                 +                         +          +

The following query retrieves the employee details using the above scenario:

On successful execution of the query, you get to see the following response:

+        +                  +                 +                         +          +
| ID | Name | Salary | Designation | Dept |
+        +                  +                 +                         +          +
|1201 | Gopal | 45000 | Technical manager | TP |
|1202 | Manisha | 45000 | Proofreader | PR |
|1203 | Masthanvali | 40000 | Technical writer | TP |
|1204 | Krian | 40000 | Hr Admin | HR |

+        +                  +                 +                         +          + 

JDBC Program

The JDBC program to apply where clause for the given example is as follows.



$ javac HiveQLWhere.java
$ java HiveQLWhere

SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference 
[WHERE where_condition] 
[GROUP BY col_list] 
[HAVING having_condition] 
[ORDER BY col_list]] 
[LIMIT number];

Resultset res = stmt.executeQuery("SELECT * FROM employee WHERE salary>30000;");

System.out.println("Result:");
System.out.println(" ID \t Name \t Salary \t Designation \t Dept ");

while (res.next()) {
System.out.println(res.getInt(1) + " " + res.getString(2) + " " + res.getDouble(3) + " " + 

res.getString(4) + " " + res.getString(5));
}
con.close();

}
}

Save the program in a file named HiveQLWhere.java. Use the following commands to compile 
and execute this program.

Output:

ID Name Salary Designation Dept 
1201 Gopal 45000 Technical manager TP
1202 Manisha 45000 Proofreader PR
1203 Masthanvali 40000 Technical writer TP
1204 Krian 40000 Hr Admin HR

The ORDER BY clause is used to retrieve the details based on one column and sort the result set 
by ascending or descending order.

Syntax

Given below is the syntax of the ORDER BY clause:



import java.sql.SQLException; 
import java.sql.Connection; 
import java.sql.ResultSet; 
import java.sql.Statement; 
import java.sql.DriverManager;

public class HiveQLOrderBy {
private static String driverName = "org.apache.hadoop.hive.jdbc.HiveDriver"; 

public static void main(String[] args) throws SQLException {

// Register driver and create driver 
instance Class.forName(driverName);

// get connection

hive> SELECT Id, Name, Dept FROM employee ORDER BY DEPT;

Example

Let us take an example for SELECT...ORDER BY clause. Assume employee table as given 
below, with the fields named Id, Name, Salary, Designation, and Dept. Generate a query to 
retrieve the employee details in order by using Department name.

+        +                  +                 +                         +          +
| ID | Name | Salary | Designation | Dept |
+        +                  +                 +                         +          +
|1201 | Gopal | 45000 | Technical manager | TP |
|1202 | Manisha | 45000 | Proofreader | PR |
|1203 | Masthanvali | 40000 | Technical writer | TP |
|1204 | Krian | 40000 | Hr Admin | HR |
|1205 | Kranthi | 30000 | Op Admin | Admin |

+        +                  +                 +                         +          +

The following query retrieves the employee details using the above scenario:

On successful execution of the query, you get to see the following response:

+        +                  +                 +                         +          +
| ID | Name | Salary | Designation | Dept |
+        +                  +                 +                         +          +
|1205 | Kranthi | 30000 | Op Admin | Admin |
|1204 | Krian | 40000 | Hr Admin | HR |
|1202 | Manisha | 45000 | Proofreader | PR |
|1201 | Gopal | 45000 | Technical manager | TP |
|1203 | Masthanvali | 40000 | Technical writer | TP |
+        +                  +                 +                         +          + 

JDBC Program

Here is the JDBC program to apply Order By clause for the given example.



SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference 
[WHERE where_condition] 
[GROUP BY col_list] 
[HAVING having_condition] 
[ORDER BY col_list]]

$ javac HiveQLOrderBy.java
$ java HiveQLOrderBy

Connection con = DriverManager.getConnection("jdbc:hive://localhost:10000/userdb", "",
"");

// create statement
Statement stmt = con.createStatement();

// execute statement
Resultset res = stmt.executeQuery("SELECT * FROM employee ORDER BY DEPT;"); 
System.out.println(" ID \t Name \t Salary \t Designation \t Dept ");

while (res.next()) {
System.out.println(res.getInt(1) + " " + res.getString(2) + " " + res.getDouble(3) + " " + 

res.getString(4) + " " + res.getString(5));
}

con.close();
}

}

Save the program in a file named HiveQLOrderBy.java. Use the following commands to 
compile and execute this program.

Output:

ID Name Salary Designation Dept
1205 Kranthi 30000 Op Admin Admin
1204 Krian 40000 Hr Admin HR
1202 Manisha 45000 Proofreader PR
1201 Gopal 45000 Technical manager TP

1203 Masthanvali 40000 Technical writer TP
1204 Krian 40000 Hr Admin HR

The GROUP BY clause is used to group all the records in a result set using a particular 
collection column. It is used to query a group of records.

Syntax

The syntax of GROUP BY clause is as follows:



import java.sql.SQLException; 
import java.sql.Connection; 
import java.sql.ResultSet; 
import java.sql.Statement; 
import java.sql.DriverManager;

public class HiveQLGroupBy {
private static String driverName = "org.apache.hadoop.hive.jdbc.HiveDriver"; 

public static void main(String[] args) throws SQLException {

// Register driver and create driver 
instance Class.forName(driverName);

// get connection

hive> SELECT Dept,count(*) FROM employee GROUP BY DEPT;

[LIMIT number];

Example

Let us take an example of SELECT…GROUP BY clause. Assume employee table as given 
below, with Id, Name, Salary, Designation, and Dept fields. Generate a query to retrieve the 
number of employees in each department.

+        +                  +                 +                         +          +
| ID | Name | Salary | Designation | Dept |
+        +                  +                 +                         +          +
|1201 | Gopal | 45000 | Technical manager | TP |
|1202 | Manisha | 45000 | Proofreader | PR |
|1203 | Masthanvali | 40000 | Technical writer | TP |
|1204 | Krian | 45000 | Proofreader | PR |
|1205 | Kranthi | 30000 | Op Admin | Admin |
+        +                  +                 +                         +          +

The following query retrieves the employee details using the above scenario.

On successful execution of the query, you get to see the following response:

+        +                  +
| Dept | Count(*) |
+        +                  +
|Admin | 1 |
|PR | 2 |
|TP | 3 |
+        +                  + 

JDBC Program

Given below is the JDBC program to apply the Group By clause for the given example.



join_table:

table_reference JOIN table_factor [join_condition]
| table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference 
join_condition
| table_reference LEFT SEMI JOIN table_reference join_condition
| table_reference CROSS JOIN table_reference [join_condition]

$ javac HiveQLGroupBy.java
$ java HiveQLGroupBy

Connection con = DriverManager. 
getConnection("jdbc:hive://localhost:10000/userdb", "", "");

// create statement
Statement stmt = con.createStatement();

// execute statement
Resultset res = stmt.executeQuery(“SELECT Dept,count(*) ” + “FROM employee GROUP 

BY DEPT; ”);
System.out.println(" Dept \t count(*)");

while (res.next()) {
System.out.println(res.getString(1) + " " + res.getInt(2));

}
con.close();

}

}

Save the program in a file named HiveQLGroupBy.java. Use the following commands to 
compile and execute this program.

Output:

Dept Count(*) 
Admin 1
PR 2
TP 3

JOIN is a clause that is used for combining specific fields from two tables by using values 
common to each one. It is used to combine records from two or more tables in the database.

Syntax

Example

We will use the following two tables in this chapter. Consider the following table named 
CUSTOMERS..



+     +             +      +              +             +
| ID | NAME | AGE | ADDRESS | SALARY |
+     +             +      +              +             +
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
| 2 | Khilan | 25 | Delhi | 1500.00 |
| 3 | kaushik | 23 | Kota | 2000.00 |
| 4 | Chaitali | 25 | Mumbai | 6500.00 |
| 5 | Hardik   | 27 | Bhopal | 8500.00 |
| 6 | Komal | 22 | MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
+     +             +      +              +             + 

Consider another table ORDERS as 

follows:

+      +                            +                 +          +
|OID | DATE | CUSTOMER_ID | AMOUNT |
+      +                            +                 +          +
| 102 | 2009-10-08 00:00:00 | 3 | 3000 |
| 100 | 2009-10-08 00:00:00 | 3 | 1500 |
| 101 | 2009-11-20 00:00:00 | 2 | 1560 |
| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+      +                            +                 +          + 

There are different types of joins given as 

follows:

 JOIN

 LEFT OUTER JOIN

 RIGHT OUTER JOIN

 FULL OUTER JOIN

JOIN

JOIN clause is used to combine and retrieve the records from multiple tables. JOIN is same as  
OUTER JOIN in SQL. A JOIN condition is to be raised using the primary keys and foreign 
keys of the tables.

The following query executes JOIN on the CUSTOMER and ORDER tables, and retrieves the 
records:

hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT 
FROM CUSTOMERS c JOIN ORDERS o
ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following response:

+     +             +      +          +
| ID | NAME | AGE | AMOUNT |
+     +             +      +          +
| 3 | kaushik | 23 | 3000 |
| 3 | kaushik | 23 | 1500 |

| 2 | Khilan | 25 | 1560 |



| 4 | Chaitali | 25 | 2060 |
+     +             +      +          + 

LEFT OUTER JOIN

The HiveQL LEFT OUTER JOIN returns all the rows from the left table, even if there are no 
matches in the right table. This means, if the ON clause matches 0 (zero) records in the right 
table, the JOIN still returns a row in the result, but with NULL in each column from the right 
table.

A LEFT JOIN returns all the values from the left table, plus the matched values from the right 
table, or NULL in case of no matching JOIN predicate.

The following query demonstrates LEFT OUTER JOIN between CUSTOMER and ORDER 
tables:

hive> SELECT c.ID, c.NAME, o.AMOUNT, 
o.DATE FROM CUSTOMERS c
LEFT OUTER JOIN ORDERS o 
ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following response:

+     +             +          +                            +
| ID | NAME | AMOUNT | DATE |
+     +             +          +                            +
| 1 | Ramesh | NULL | NULL |
| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |
| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |
| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |
| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |
| 5 | Hardik   | NULL | NULL |
| 6 | Komal | NULL | NULL |
| 7 | Muffy | NULL | NULL |

+     +             +          +                            + 

RIGHT OUTER JOIN

The HiveQL RIGHT OUTER JOIN returns all the rows from the right table, even if there are no 
matches in the left table. If the ON clause matches 0 (zero) records in the left table, the JOIN 
still returns a row in the result, but with NULL in each column from the left table.

A RIGHT JOIN returns all the values from the right table, plus the matched values from the left  
table, or NULL in case of no matching join predicate.

The following query demonstrates RIGHT OUTER JOIN between the CUSTOMER and 
ORDER tables.

notranslate"> hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c 
RIGHT OUTER JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following response:

+        +             +          +                            +



| ID | NAME | AMOUNT | DATE |
+        +             +          +                            +
| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |
| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |
| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |
| 4 | Chaitali | 2060   | 2008-05-20 00:00:00 |
+        +             +          +                            + 

FULL OUTER JOIN

The HiveQL FULL OUTER JOIN combines the records of both the left and the right outer 
tables that fulfil the JOIN condition. The joined table contains either all the records from both 
the tables, or fills in NULL values for missing matches on either side.

The following query demonstrates FULL OUTER JOIN between CUSTOMER and ORDER 
tables:

hive> SELECT c.ID, c.NAME, o.AMOUNT, 
o.DATE FROM CUSTOMERS c
FULL OUTER JOIN ORDERS o 
ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following response:

+        +             +          +                            +
| ID | NAME | AMOUNT | DATE |
+        +             +          +                            +
| 1 | Ramesh | NULL | NULL |
| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |
| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |
| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |
| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |
| 5 | Hardik   | NULL | NULL |
| 6 | Komal | NULL | NULL |
| 7 | Muffy | NULL | NULL |
| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |
| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |
| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |
| 4 | Chaitali | 2060   | 2008-05-20 00:00:00 |
+        +             +          +                            +

Bucketing #

•Bucketing concept is based on (hashing function on the bucketed column) mod (by total number 
of buckets). The hash_function depends on the type of the bucketing column.

•Records with the same bucketed column will always be stored in the same bucket.

•We use CLUSTERED BY clause to divide the table into buckets.

https://www.educative.io/collection/page/6089575797620736/6248215343005696/6394690049933312#bbucketingb


•Physically, each bucket is just a file in the table directory, and Bucket numbering is 1-based.

•Bucketing can be done along with Partitioning on Hive tables and even without partitioning.

•Bucketed tables will create almost equally distributed data file parts, unless there is skew in data.

•Bucketing is enabled by setting hive.enforce.bucketing= 

true; Advantages

•Bucketed tables offer efficient sampling than by non-bucketed tables. With sampling, we can try 
out queries on a fraction of data for testing and debugging purpose when the original data sets are 
very huge.

•As the data files are equal sized parts, map-side joins will be faster on bucketed tables than non- 
bucketed tables.

•Bucketing concept also provides the flexibility to keep the records in each bucket to be sorted 
by one or more columns. This makes map-side joins even more efficient, since the join of each 
bucket becomes an efficient merge-sort.

Bucketing Vs Partitioning

•Partitioning helps in elimination of data, if used in WHERE clause, where as bucketing helps in 
organizing data in each partition into multiple files, so that the same set of data is always written 
in same bucket.

•Bucketing helps a lot in joining of columns.

•Hive Bucket is nothing but another technique of decomposing data or decreasing the data into 
more manageable parts or equal parts.

Sampling

•TABLESAMPLE() gives more disordered and random records from a table as compared to 
LIMIT. •We can sample using the rand() function, which returns a random number.

SELECT * from users TABLESAMPLE(BUCKET 3 OUT OF 10 ON rand()) s; 

SELECT * from users TABLESAMPLE(BUCKET 3 OUT OF 10 ON rand()) s;

•Here rand() refers to any random column. •The denominator in the bucket clause represents the 
number of buckets into which data will be hashed. •The numerator is the bucket number selected.

SELECT * from users TABLESAMPLE(BUCKET 2 OUT OF 4 ON name) s;

•If the columns specified in the TABLESAMPLE clause match the columns in the CLUSTERED 
BY clause, TABLESAMPLE queries only scan the required hash partitions of the table.

SELECT * FROM buck_users TABLESAMPLE(BUCKET 1 OUT OF 2 ON id) s LIMIT 1;



Joins and Types # 

Reduce-Side Join

•If datasets are large, reduce side join takes 

place. Map-Side Join

•In case one of the dataset is small, map side join takes place. •In map side join, a local job runs 
to create hash-table from content of HDFS file and sends it to every node.

SET hive.auto.convert.join =true; 

Bucket Map Join

•The data must be bucketed on the keys used in the ON clause and the number of buckets for one  
table must be a multiple of the number of buckets for the other table. •When these conditions are  
met, Hive can join individual buckets between tables in the map phase, because it does not have 
to fetch the entire content of one table to match against each bucket in the other table.  •set 
hive.optimize.bucketmapjoin =true; •SET hive.auto.convert.join =true;

SMBM Join

•Sort-Merge-Bucket (SMB) joins can be converted to SMB map joins as well.

•SMB joins are used wherever the tables are sorted and bucketed.

•The join boils down to just merging the already sorted tables, allowing this operation to be 
faster than an ordinary map-join.

•set hive.enforce.sortmergebucketmapjoin =false;

•set hive.auto.convert.sortmerge.join =true;

•set hive.optimize.bucketmapjoin = true;

•set hive.optimize.bucketmapjoin.sortedmerge = 

true; LEFT SEMI JOIN

•A left semi-join returns records from the lefthand table if records are found in the righthand 
table that satisfy the ON predicates.

•It’s a special, optimized case of the more general inner join.

•Most SQL dialects support an IN … EXISTS construct to do the same thing.

•SELECT and WHERE clauses can’t reference columns from the righthand table.

•Right semi-joins are not supported in Hive.

https://www.educative.io/collection/page/6089575797620736/6248215343005696/6394690049933312#joins-and-types


•The reason semi-joins are more efficient than the more general inner join is as follows:

•For a given record in the lefthand table, Hive can stop looking for matching records in the 
righthand table as soon as any match is found.

•At that point, the selected columns from the lefthand table record can be projected

•A file format is a way in which information is stored or encoded in a computer file.

•In Hive it refers to how records are stored inside the file.

•InputFormat reads key-value pairs from files.

•As we are dealing with structured data, each record has to be its own structure.

•How records are encoded in a file defines a file format.

•These file formats mainly vary between data encoding, compression rate, usage of space and 
disk I/O.

•Hive does not verify whether the data that you are loading matches the schema for the table or 
not. •However, it verifies if the file format matches the table definition or not.

SerDe in Hive #

•The SerDe interface allows you to instruct Hive as to how a record should be processed.

•A SerDe is a combination of a Serializer and a Deserializer (hence, Ser-De).

•The Deserializer interface takes a string or binary representation of a record, and translates it 
into a Java object that Hive can manipulate.

•The Serializer, however, will take a Java object that Hive has been working with, and turn it 
into something that Hive can write to HDFS or another supported system.

•Commonly, Deserializers are used at query time to execute SELECT statements, and Serializers 
are used when writing data, such as through an INSERT-SELECT statement.

CSVSerDe

•Use ROW FORMAT SERDE ‘org.apache.hadoop.hive.serde2.OpenCSVSerde’

•Define following in SERDEPROPERTIES 

( " separatorChar " = < value_of_separator

, " quoteChar " = < value_of_quote_character ,

" escapeChar “ = < value_of_escape_character
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)

JSONSerDe

•Include hive-hcatalog-core-0.14.0.jar •Use ROW FORMAT SERDE ’ 
org.apache.hive.hcatalog.data.JsonSerDe ’

RegexSerDe

•It is used in case of pattern matching. •Use ROW FORMAT 

SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe‘

•In SERDEPROPERTIES, define input pattern and output 

fields. For Example

•input.regex = ‘(.)/(.)@(.*)’ •output.format.string’ = ’ 1 s 2 s 3 s’;

USE PARTITIONING AND BUCKETING

•Partitioning a table stores data in sub-directories categorized by table location, which allows 
Hive to exclude unnecessary data from queries without reading all the data every time a new 
query is made.

•Hive does support Dynamic Partitioning (DP) where column values are only known at 
EXECUTION TIME. To enable Dynamic Partitioning :

SET hive.exec.dynamic.partition =true;

•Another  situation  we want  to  protect  against  dynamic  partition  insert  is  that  the  user  may 
accidentally specify all partitions to be dynamic partitions without specifying one static partition,  
while the original intention is to just overwrite the sub-partitions of one root partition.

SET hive.exec.dynamic.partition.mode 

=strict; To enable bucketing:

SET hive.enforce.bucketing =true;

Optimizations in Hive #

•Use Denormalisation , Filtering and Projection as early as possible to reduce data before join.

•Join is a costly affair and requires extra map-reduce phase to accomplish query job. With De- 
normalisation, the data is present in the same table so there is no need for any joins, hence the 
selects are very fast.
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•As join requires data to be shuffled across nodes, use filtering and projection as early as 
possible to reduce data before join.

TUNE CONFIGURATIONS

•To increase number of mapper, reduce split size :

SET mapred.max.split.size =1000000; (~1 MB)

•Compress map/reduce output

SET mapred.compress.map.output =true; 

SET mapred.output.compress =true;

•Parallel execution

•Applies to MapReduce jobs that can run in parallel, for example jobs processing different 
source tables before a join.

SET hive.exec.parallel =true; 

USE ORCFILE

•Hive supports ORCfile , a new table storage format that sports fantastic speed improvements 
through techniques like predicate push-down, compression and more.

•Using ORCFile for every HIVE table is extremely beneficial to get fast response times for your 
HIVE queries.

USE TEZ

•With Hadoop2 and Tez , the cost of job submission and scheduling is minimized.

•Also Tez does not restrict the job to be only Map followed by Reduce; this implies that all the 
query execution can be done in a single job without having to cross job boundaries.

•Let’s look at an example. Consider a click-stream event table:

CREATE TABLE clicks 
( timestamp date,
sessionID string, 
url string, 
source_ip string
)
STORED as ORC
tblproperties (“ orc.compress ” = “SNAPPY”);

•Each record represents a click event, and we would like to find the latest URL for each sessionID

• One might consider the following approach:



SELECT clicks.sessionID, clicks.url FROM clicks inner join (select sessionID, max(timestamp) 
as max_ts from clicks group by sessionID) latest ON clicks.sessionID = latest.sessionID and 
clicks.timestamp = latest.max_ts;

•In the above query, we build a sub-query to collect the timestamp of the latest event in each 
session, and then use an inner join to filter out the rest.

•While the query is a reasonable solution —from a functional point of view— it turns out there’s 
a better way to re-write this query as follows:

SELECT ranked_clicks.sessionID ,  ranked_clicks.url FROM (SELECT  sessionID ,  url , 
RANK() over  (partition  by  sessionID,order  by  timestamp  desc  )  as  rank  FROM  clicks) 
ranked_clicks WHERE ranked_clicks.rank =1;

•Here, we use Hive’s OLAP functionality (OVER and RANK) to achieve the same thing, but 
without a Join.

•Clearly, removing an unnecessary join will almost always result in better performance, and 
when using big data this is more important than ever.

MAKING MULTIPLE PASS OVER SAME DATA

•Hive has a special syntax for producing multiple aggregations from a single pass through a 
source of data, rather than rescanning it for each aggregation.

•This change can save considerable processing time for large input data sets.

•For example, each of the following two queries creates a table from the same source table, 

history: INSERT OVERWRITE TABLE sales

SELECT * FROM history WHERE 

action=‘purchased’; INSERT OVERWRITE TABLE 

credits

SELECT * FROM history WHERE action=‘returned’;

Optimizations in Hive

•This syntax is correct, but inefficient.

•The following rewrite achieves the same thing, but using a single pass through the source 
history table:

FROM history

INSERT OVERWRITE sales SELECT * WHERE action=‘purchased’ 

INSERT OVERWRITE credits SELECT * WHERE action=‘returned’;



What is Apache Pig

Apache Pig is a high-level data flow platform for executing MapReduce programs of Hadoop. 
The language used for Pig is Pig Latin.

The Pig scripts get internally converted to Map Reduce jobs and get executed on data stored in  
HDFS. Apart from that, Pig can also execute its job in Apache Tez or Apache Spark.

Pig can handle any type of data, i.e., structured, semi-structured or unstructured and stores the 
corresponding results into Hadoop Data File System. Every task which can be achieved using 
PIG can also be achieved using java used in MapReduce.

Features of Apache Pig

Let's see the various uses of Pig technology.

1) Ease of programming

Writing complex java programs for map reduce is quite tough for non-programmers. Pig makes 
this process easy. In the Pig, the queries are converted to MapReduce internally.

2) Optimization opportunities

It is how tasks are encoded permits the system to optimize their execution automatically, 
allowing the user to focus on semantics rather than efficiency.

3) Extensibility

A user-defined function is written in which the user can write their logic to execute over the data 
set.

4) Flexible

It can easily handle structured as well as unstructured data.

5) In-built operators

It contains various type of operators such as sort, filter and joins. 

Differences between Apache MapReduce and PIG

Advantages of Apache Pig

o Less code - The Pig consumes less line of code to perform any operation.

o Reusability - The Pig code is flexible enough to reuse again.



o Nested data types - The Pig provides a useful concept of nested data types like tuple, 

bag, and map.

Pig Latin

The Pig Latin is a data flow language used by Apache Pig to analyze the data in Hadoop. It is a 
textual language that abstracts the programming from the Java MapReduce idiom into a notation.

Pig Latin Statements

The Pig Latin statements are used to process the data. It is an operator that accepts a relation as 
an input and generates another relation as an output.

o It can span multiple lines.

o Each statement must end with a semi-colon.

o It may include expression and schemas.

o By default, these statements are processed using multi-query 

execution Pig Latin Conventions

Convention Description

( ) The parenthesis can enclose one or more items. It can also be used to indicate 

the tuple data type. 

Example - (10, xyz, (3,6,9))

[ ] The straight brackets can enclose one or more items. It can also be used to 

indicate the map data type. 

Example - [INNER | OUTER]

{ } The curly brackets enclose two or more items. It can also be used to indicate 

the bag data type 

Example - { block | nested_block }

... The horizontal ellipsis points indicate that you can repeat a portion of the code. 

Example - cat path [path ...]



Latin Data Types

Simple Data Types

Type Description

int It defines the signed 32-bit 

Example - 2

integer.

long It defines the signed 64-bit 

Example - 2L or 2l

integer.

float It defines 32-bit floating point 

Example - 2.5F or 2.5f or 2.5e2f or 2.5.E2F

number.

double It defines 64-bit floating point 

Example - 2.5 or 2.5 or 2.5e2f or 2.5.E2F

number.

chararray It defines character array in Unicode UTF-8 

Example - javatpoint

format.

bytearray It defines the byte array.

boolean It defines the boolean type 

Example - true/false

values.

datetime It defines the values in datetime 

Example - 1970-01- 01T00:00:00.000+00:00

order.

biginteger It defines Java BigInteger 

Example - 5000000000000

values.

bigdecimal It defines Java BigDecimal 

Example - 52.232344535345

values.



Pig Data Types

Apache Pig supports many data types. A list of Apache Pig Data Types with description and 
examples are given below.

Type Description Example

Int Signed 32 bit integer 2

Long Signed 64 bit integer 15L or 15l

Float 32 bit floating point 2.5f or 2.5F

Double 32 bit floating point 1.5 or 1.5e2 or 

1.5E2

charArray Character array hello javatpoint

byteArray BLOB(Byte array)

tuple Ordered set of fields (12,43)

bag Collection f tuples {(12,43),(54,28)}

map collection of tuples [open#apache]

Apache Pig Execution Modes

You can run Apache Pig in two modes, namely, Local Mode and HDFS mode. 

Local Mode

In this mode, all the files are installed and run from your local host and local file system. There
is no need of Hadoop or HDFS. This mode is generally used for testing purpose. 

MapReduce Mode

MapReduce mode is where we load or process the data that exists in the Hadoop File System
(HDFS) using Apache Pig. In this mode, whenever we execute the Pig Latin statements to 
process the data, a MapReduce job is invoked in the back-end to perform a particular operation 
on the data that exists in the HDFS.

Apache Pig Execution Mechanisms



Apache Pig scripts can be executed in three ways, namely, interactive mode, batch mode, and 
embedded mode.

 Interactive Mode (Grunt shell) − You can run Apache Pig in interactive mode using the 
Grunt shell.  In this shell, you can enter the Pig Latin statements and get the output 
(using Dump operator).

 Batch Mode (Script) − You can run Apache Pig in Batch mode by writing the Pig Latin 
script in a single file with .pig extension.

 Embedded Mode  (UDF) − Apache Pig provides the provision of  defining our  own 
functions (User Defined Functions) in programming languages such as Java, and using 
them in our script.

 Given below in the table are some frequently used Pig Commands.

Command Function

load Reads data from the system

Store Writes data to file system

foreach Applies expressions to each record and outputs one or more records

filter Applies predicate and removes records that do not return true



Group/cogroup Collects records with the same key from one or more inputs

join Joins two or more inputs based on a key

order Sorts records based on a key

distinct Removes duplicate records

union Merges data sets

split Splits data into two or more sets based on filter conditions

stream Sends all records through a user-provided binary

dump Writes output to stdout



limit Limits the number of records

Complex Types

Type Description

tuple It defines an 

Example - (15,12)

ordered set of fields.

bag It defines

Example - {(15,12), (12,15)}

a collection of tuples.

map It defines a 

Example - [open#apache]

set of key-value pairs.

Pig Latin – Relational Operations

The following table describes the relational operators of Pig Latin.

Operator Description

Loading and Storing

LOAD To Load the data from the file system (local/HDFS) into a relation.

STORE To save a relation to the file system (local/HDFS).

Filtering



FILTER To remove unwanted rows from a relation.

DISTINCT To remove duplicate rows from a relation.

FOREACH, 
GENERATE

To generate data transformations based on columns of data.

STREAM To transform a relation using an external program.

Grouping and Joining

JOIN To join two or more relations.

COGROUP To group the data in two or more relations.

GROUP To group the data in a single relation.

CROSS To create the cross product of two or more relations.

Sorting

ORDER To arrange a relation in a sorted order based on one or more fields 
(ascending or descending).

LIMIT To get a limited number of tuples from a relation.

Combining and Splitting

UNION To combine two or more relations into a single relation.

SPLIT To split a single relation into two or more relations.



Diagnostic Operators

DUMP To print the contents of a relation on the console.

DESCRIBE To describe the schema of a relation.

EXPLAIN To view the logical, physical, or MapReduce execution plans to compute 
a relation.

ILLUSTRATE To view the step-by-step execution of a series of statements.

Eval Functions

Given below is the list of eval functions provided by Apache Pig.

S.N. Function & Description

1 AVG()

To compute the average of the numerical values within a bag.

2 BagToString()

To concatenate the elements of a bag into a string. While concatenating, we can place a 
delimiter between these values (optional).

3 CONCAT()

To concatenate two or more expressions of same type.

4 COUNT()

To get the number of elements in a bag, while counting the number of tuples in a bag.

5 COUNT_STAR()

https://www.tutorialspoint.com/apache_pig/apache_pig_count_star.htm
https://www.tutorialspoint.com/apache_pig/apache_pig_count.htm
https://www.tutorialspoint.com/apache_pig/apache_pig_concat.htm
https://www.tutorialspoint.com/apache_pig/apache_pig_bagtostring.htm
https://www.tutorialspoint.com/apache_pig/apache_pig_avg.htm


It is similar to the COUNT() function. It is used to get the number of elements in a bag.

6 DIFF()

To compare two bags (fields) in a tuple.

7 IsEmpty()

To check if a bag or map is empty.

8 MAX()

To calculate the highest value for a column (numeric values or chararrays) in a single-column 
bag.

9 MIN()

To get the minimum (lowest) value (numeric or chararray) for a certain column in a single- 
column bag.

10 PluckTuple()

Using the Pig Latin PluckTuple() function, we can define a string Prefix and filter the 
columns in a relation that begin with the given prefix.

11 SIZE()

To compute the number of elements based on any Pig data type.

12 SUBTRACT()

To subtract two bags. It takes two bags as inputs and returns a bag which contains the tuples 
of the first bag that are not in the second bag.

13 SUM()

To get the total of the numeric values of a column in a single-column bag.

14 TOKENIZE()

To split a string (which contains a group of words) in a single tuple and return a bag which 
contains the output of the split operation.

https://www.tutorialspoint.com/apache_pig/apache_pig_tokenize.htm
https://www.tutorialspoint.com/apache_pig/apache_pig_sum.htm
https://www.tutorialspoint.com/apache_pig/apache_pig_subtract.htm
https://www.tutorialspoint.com/apache_pig/apache_pig_size.htm
https://www.tutorialspoint.com/apache_pig/apache_pig_plucktuple.htm
https://www.tutorialspoint.com/apache_pig/apache_pig_min.htm
https://www.tutorialspoint.com/apache_pig/apache_pig_max.htm
https://www.tutorialspoint.com/apache_pig/apache_pig_isempty.htm
https://www.tutorialspoint.com/apache_pig/apache_pig_diff.htm


<project xmlns = "http://maven.apache.org/POM/4.0.0" 
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation
.org/xsd/maven-4.0.0.xsd">

= "http://maven.apache.org/POM/4.0.0http://maven.apache

<modelVersion>4.0.0</modelVersion>
<groupId>Pig_Udf</groupId>
<artifactId>Pig_Udf</artifactId>
<version>0.0.1-SNAPSHOT</version>

<build>
<sourceDirectory>src</sourceDirectory>

Apache Pig provides extensive support for User Defined Functions (UDF’s). Using these 
UDF’s, we can define our own functions and use them. The UDF support is provided in six 
programming languages, namely, Java, Jython, Python, JavaScript, Ruby and Groovy.

For writing UDF’s, complete support is provided in Java and limited support is provided in all 
the remaining languages. Using Java, you can write UDF’s involving all parts of the processing 
like data load/store, column transformation, and aggregation. Since Apache Pig has been written 
in Java, the UDF’s written using Java language work efficiently compared to other languages.

In Apache Pig, we also have a Java repository for UDF’s named Piggybank. Using Piggybank, 
we can access Java UDF’s written by other users, and contribute our own UDF’s.

Types of UDF’s in Java

While writing UDF’s using Java, we can create and use the following three types of functions −

 Filter Functions − The filter functions are used as conditions in filter statements. These 
functions accept a Pig value as input and return a Boolean value.

 Eval Functions − The Eval functions are used in FOREACH-GENERATE statements. 
These functions accept a Pig value as input and return a Pig result.

 Algebraic Functions  − The Algebraic functions act on inner bags in a 
FOREACHGENERATE statement. These functions are used to perform full 
MapReduce operations on an inner bag.

Writing UDF’s using Java

To write a UDF using Java, we have to integrate the jar file Pig-0.15.0.jar. In this section, we 
discuss how to write a sample UDF using Eclipse. Before proceeding further, make sure you 
have installed Eclipse and Maven in your system.

Follow the steps given below to write a UDF function −

 Open Eclipse and create a new project (say myproject).

 Convert the newly created project into a Maven project.

 Copy the following content in the pom.xml. This file contains the Maven dependencies 
for Apache Pig and Hadoop-core jar files.

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache/
http://maven.apache/


import java.io.IOException; 
import org.apache.pig.EvalFunc; 
import org.apache.pig.data.Tuple;

import java.io.IOException; 
import org.apache.pig.EvalFunc; 
import org.apache.pig.data.Tuple;

public class Sample_Eval extends EvalFunc<String>{ 

public String exec(Tuple input) throws IOException {
if (input == null || input.size() == 0) 
return null;
String str = (String)input.get(0); 
return str.toUpperCase();

<plugins>
<plugin>

<artifactId>maven-compiler-plugin</artifactId>
<version>3.3</version>
<configuration>

<source>1.7</source>
<target>1.7</target>

</configuration>
</plugin>

</plugins>

</build>

<dependencies>

<dependency>
<groupId>org.apache.pig</groupId>
<artifactId>pig</artifactId>
<version>0.15.0</version>

</dependency>

<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>0.20.2</version>

</dependency>

</dependencies>

</project>

 Save the file and refresh it. In the Maven Dependencies section, you can find the 
downloaded jar files.

 Create a new class file with name Sample_Eval and copy the following content in it.



}
}

While writing UDF’s, it is mandatory to inherit the EvalFunc class and provide implementation 
to exec() function. Within this function, the code required for the UDF is written. In the above 
example, we have return the code to convert the contents of the given column to uppercase.

 After compiling the class without errors, right-click on the Sample_Eval.java file. It 
gives you a menu. Select export as shown in the following screenshot.

 On clicking export, you will get the following window. Click on JAR file.



 Proceed further by clicking Next> button. You will get another window where you need 
to enter the path in the local file system, where you need to store the jar file.



 Finally click the Finish button. In  the specified folder, a Jar file sample_udf.jar is 
created. This jar file contains the UDF written in Java.

Using the UDF

After writing the UDF and generating the Jar file, follow the steps given below − 

Step 1: Registering the Jar file

After writing UDF (in Java) we have to register the Jar file that contain the UDF using the Register
operator. By registering the Jar file, users can intimate the location of the UDF to Apache Pig.

Syntax

Given below is the syntax of the Register operator. 

REGISTER path;

Example

As an example let us register the sample_udf.jar created earlier in this chapter.

Start Apache Pig in local mode and register the jar file sample_udf.jar as shown below.

$cd PIG_HOME/bin
$./pig –x local

REGISTER '/$PIG_HOME/sample_udf.jar'

Note − assume the Jar file in the path − /$PIG_HOME/sample_udf.jar 

Step 2: Defining Alias

After registering the UDF we can define an alias to it using the Define operator.

Syntax

Given below is the syntax of the Define operator.

DEFINE alias {function | [`command` [input] [output] [ship] [cache] [stderr] ] };

Example

Define the alias for sample_eval as shown 

below. DEFINE sample_eval sample_eval();

Step 3: Using the UDF

After defining the alias you can use the UDF same as the built-in functions. Suppose there is a 
file named emp_data in the HDFS /Pig_Data/ directory with the following content.

001,Robin,22,newyork 
002,BOB,23,Kolkata 
003,Maya,23,Tokyo 
004,Sara,25,London 
005,David,23,Bhuwaneshwar 
006,Maggy,22,Chennai



grunt> emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING PigStorage(',') 
as (id:int, name:chararray, age:int, city:chararray);

grunt> Upper_case = FOREACH emp_data GENERATE sample_eval(name);

007,Robert,22,newyork 
008,Syam,23,Kolkata 
009,Mary,25,Tokyo 
010,Saran,25,London 
011,Stacy,25,Bhuwaneshwar 
012,Kelly,22,Chennai

And assume we have loaded this file into Pig as shown below.

Let us now convert the names of the employees in to upper case using the UDF sample_eval.

Verify the contents of the relation Upper_case as shown below.

grunt> Dump Upper_case;

(ROBIN) 
(BOB)
(MAYA)

(SARA) 
(DAVID) 
(MAGGY) 
(ROBERT) 
(SYAM)
(MARY) 
(SARAN) 
(STACY) 
(KELLY)

Parameter substitution in Pig

Earlier I have discussed about writing reusable         scripts         using         Apache         Hive  ,         now we see how to 

achieve same functionality using Pig Latin.

Pig Latin has an option called param  ,         using this we can write dynamic scripts .

Assume ,we have a file called numbers with below 

data. 12

23

34

12

56

https://wiki.apache.org/pig/ParameterSubstitution
http://www.hadooplessons.info/2013/08/reusable-scripts-in-hive.html


Numbers = load ‘/data/numbers’ as (number:int); 

specificNumber = filter numbers by number==12; 

Dump specificNumber;

specificNumber = filter numbers by number==34;

Pig –f /path/to/numbers.pig

specificNumber = filter numbers by number==$dynanumber

Pig –param dynanumber=12 –f numbers.pig

Numbers = load ‘$path’ as (number:int);

specificNumber = filter numbers by number==’$ dynanumber';

34

57

12

Usually we write above code in a file .let us assume we have written it in a file called 

numbers.pig And we write code from file using

Later if we want to see only numbers equals to 34, then we change second line to

and we re-run the code using same command.
But Its not a good practice to touch the code in production ,so we can make this script dynamic 
by using –param option of Piglatin.
Whatever values we want to decide at the time of running we make them dynamic .now we want 
to decide number to be filtered at the time running job,we can write second line like below.

and we run code like below.

Assume we even want to take path at the time of running script, now we write code like below



Pig –param path=/data/path –param dynanumber =34 –f numbers.pig

Path = 

/data/numbers 

Pig –param-file dyna.params –f numbers.pig

Dump specificNumber;

And run like below

If you feel this code is missing readability, we can specify all these dynamic values in a file like 
below
##Dyna.params (file name)

Then you can run script with param-file option like below.

Pig Latin provides four different types of diagnostic operators −

 Dump operator

 Describe operator

 Explanation operator

 Illustration operator

Word Count Example Using Pig Script:

lines = LOAD '/user/hadoop/HDFS_File.txt' AS (line:chararray);

words = FOREACH lines GENERATE FLATTEN(TOKENIZE(line)) as word; 

grouped = GROUP words BY word;

wordcount = FOREACH grouped GENERATE group, COUNT(words); 

DUMP wordcount;

The above pig script, first splits each line into words using the TOKENIZE operator. 

The tokenize function creates a bag of words. Using the FLATTEN function, the 

bag is



converted into a tuple. In the third statement, the words are grouped together so that the 

count can be computed which is done in fourth statement.

Pig at Yahoo

Pig was initially developed by Yahoo! for its data scientists who were using Hadoop. It 

was incepted to focus mainly on analysis of large datasets rather than on writing mapper 

and reduce functions. This allowed users to focus on what they want to do rather than  

bothering with how its done. On top of this with Pig language you have the facility to 

write commands in other languages like Java, Python etc. Big applications that can be 

built on Pig Latin can be custom built for different companies to serve different tasks 

related to data management. Pig systemizes all the branches of data and relates it in a 

manner that when the time comes, filtering and searching data is checked efficiently and 

quickly.

Pig Versus Hive

Pig Vs Hive

Here are some basic difference between Hive and Pig which gives an idea of which to use 
depending on the type of data and purpose.

Why Go for Hive When Pig is There?

The tabular column below gives a comprehensive comparison between the two. The Hive can be 
used in places where partitions are necessary and when it is essential to define and create cross- 
language services for numerous languages.





UNIT-V

Overview of machine learning (ML)

Machine learning is a branch in computer science that studies the design of algorithms that can  
learn.  Typical  machine  learning  tasks  are  concept  learning,  function  learning  or  “predictive 
modeling”, clustering and finding predictive patterns. These tasks are learned through available 
data that were observed through experiences or instructions,  for example. Machine learning 
hopes that including the experience into its tasks will eventually improve the learning. The 
ultimate goal is to improve the learning in such a way that it becomes automatic, so that humans 
like ourselves don’t need to interfere any more.

In  supervised learning  (SML), the learning algorithm is presented with labelled example 
inputs, where the labels indicate the desired output. SML itself is composed of  classification, 
where the output is categorical, and regression, where the output is numerical.

In  unsupervised learning  (UML), no labels are provided, and the learning algorithm focuses 
solely on detecting structure in unlabelled input data.

Note that there are also  semi-supervised learning approaches that use labelled data to inform 
unsupervised learning on the unlabelled data to identify and annotate new classes in the dataset 
(also called novelty detection).

Reinforcement learning, the learning algorithm performs a task using feedback from operating 
in a real or synthetic environment.

Broadly, there are 3 types of Machine Learning Algorithms

1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning:



List of Common Machine Learning Algorithms

Here is the list of commonly used machine learning algorithms. These algorithms can be applied to 
almost any data problem:

1. Linear Regression
2. Logistic Regression
3. Decision Tree
4. SVM

5. Naive Bayes
6. kNN
7. K-Means
8. Random Forest
9. Dimensionality Reduction Algorithms
10. Gradient Boosting algorithms

1. GBM
2. XGBoost
3. LightGBM
4. CatBoost

Regression analysis consists of a set of machine learning methods that allow us to predict a continuous outcome 
variable (y) based on the value of one or multiple predictor variables (x).

Briefly, the goal of regression model is to build a mathematical equation that defines y as a function of the x 
variables. Next, this equation can be used to predict the outcome (y) on the basis of new values of the predictor 
variables (x).

Linear         regression         is the most simple and popular technique for predicting a continuous variable. It assumes a linear 
relationship between the outcome and the predictor variables.
The linear regression equation can be written as y = b0 + b*x + e, where:

 b0 is the intercept,

 b is the regression weight or coefficient associated with the predictor variable x.

 e is the residual error

Technically, the linear regression coefficients are detetermined so that the error in predicting the outcome value is 
minimized. This method of computing the beta coefficients is called the Ordinary     Least         Squares     method.
When you have multiple predictor variables, say x1 and x2, the regression equation can be written as y = b0 + b1*x1
+ b2*x2 +e. In some situations, there might be an interaction effect between some predictors, that is for example, 
increasing the value of a predictor variable x1 may increase the effectiveness of the predictor x2 in explaining the  
variation in the outcome variable.
Note also that, linear regression models can incorporate both continuous and categorical         predictor         variables  .   
When you build the linear regression model, you need to diagnostic whether linear model is suitable for your data. 
In some cases, the relationship between the outcome and the predictor variables is not linear. In these situations, you 
need to build a non-linear regression, such as polynomial         and         spline     regression  .  
When you have multiple predictors in the regression model, you might want to select the best combination of 
predictor variables to build an optimal predictive model. This process called model selection  ,   consists of comparing 
multiple models containing different sets of predictors in order to select the best performing model that minimize the 
prediction error. Linear model selection approaches include best         subsets regression         and stepwise     regression  

In some situations, such as in genomic fields, you might have a large multivariate data set containing some 
correlated predictors.  In  this  case,  the  information,  in  the  original  data  set,  can  be  summarized  into  few new 
variables (called principal components) that are a linear combination of the original variables. This few principal 
components can be used to build a linear model, which might be more performant for your data. This approach is 
know as principal component-based methods, which include: principal     component     regression     and     partial     least   

squares     regression  .  

http://www.sthda.com/english/articles/37-model-selection-essentials-in-r/152-principal-component-and-partial-least-squares-regression-essentials/
http://www.sthda.com/english/articles/37-model-selection-essentials-in-r/152-principal-component-and-partial-least-squares-regression-essentials/
http://www.sthda.com/english/articles/37-model-selection-essentials-in-r/154-stepwise-regression-essentials-in-r/
http://www.sthda.com/english/articles/37-model-selection-essentials-in-r/155-best-subsets-regression-essentials-in-r/
http://www.sthda.com/english/articles/37-model-selection-essentials-in-r/
http://www.sthda.com/english/articles/40-regression-analysis/162-nonlinear-regression-essentials-in-r-polynomial-and-spline-regression-models/
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http://www.sthda.com/english/articles/40-regression-analysis/163-regression-with-categorical-variables-dummy-coding-essentials-in-r/
http://www.sthda.com/english/articles/40-regression-analysis/164-interaction-effect-in-multiple-regression-essentials/
http://www.sthda.com/english/articles/40-regression-analysis/165-linear-regression-essentials-in-r/
http://www.sthda.com/english/articles/40-regression-analysis/165-linear-regression-essentials-in-r/


An alternative method to simplify a large multivariate model is to use penalized regression  ,    which penalizes the 
model for having too many variables. The most well known penalized regression include ridge regression and 
the lasso regression.
You can apply all these different regression models on your data, compare the models and finally select the best  
approach that explains well your data. To do so, you need some statistical metrics to compare the performance of the  
different models in explaining your data and in predicting the outcome of new test data.

The best model is defined as the model that has the lowest prediction error. The most popular metrics for comparing 
regression         models  ,   include:

 Root Mean Squared Error, which measures the model prediction error. It corresponds to the average difference 
between the observed known values of the outcome and the predicted value by the model. RMSE is computed 
as RMSE = mean((observeds - predicteds)^2) %>% sqrt(). The lower the RMSE, the better the model.

 Adjusted R-square, representing the proportion of variation (i.e., information), in your data, explained by the 
model. This corresponds to the overall quality of the model. The higher the adjusted R2, the better the model

Note that, the above mentioned metrics should be computed on a new test data that has not been used to train (i.e. 
build) the model. If you have a large data set, with many records, you can randomly split the data into training set  
(80% for building the predictive model) and test set or validation set (20% for evaluating the model performance).

One of the most robust and popular approach for estimating a model performance is k-fold         cross-validation  .         It can 
be applied even on a small data set. k-fold cross-validation works as follow:
1.Randomly split the data set into k-subsets (or k-fold) (for example 5 subsets)
2.Reserve one subset and train the model on all other subsets
3.Test the model on the reserved subset and record the prediction error
4.Repeat this process until each of the k subsets has served as the test set.
5.Compute the average of the k recorded errors. This is called the cross-validation error serving as the performance 

metric for the model.

Clustering in Machine Learning

Clustering or cluster analysis is a machine learning technique, which groups the unlabelled dataset. It can be defined  
as "A way of grouping the data points into different clusters, consisting of similar data points. The objects with 

the possible similarities remain in a group that has less or no similarities with another group."

It does it by finding some similar patterns in the unlabelled dataset such as shape, size, color, behavior, etc., and  

divides them as per the presence and absence of those similar patterns.

It is an  unsupervised learning     method, hence no supervision is provided to the algorithm, and it deals with the  
unlabeled dataset.

After applying this clustering technique, each cluster or group is provided with a cluster-ID. ML system can use this  

id to simplify the processing of large and complex datasets.

The clustering technique is commonly used for statistical data analysis.

Example:  Let's understand the clustering technique with the real-world example of Mall: When we visit any 
shopping mall, we can observe that the things with similar usage are grouped together. Such as the t-shirts are 
grouped in one section, and trousers are at other sections, similarly, at vegetable sections, apples, bananas, Mangoes, 
etc., are grouped in separate sections, so that we can easily find out the things. The clustering technique also works 
in the same way. Other examples of clustering are grouping documents according to the topic.

The clustering technique can be widely used in various tasks. Some most common uses of this technique are:

o Market Segmentation

o Statistical data analysis

https://www.javatpoint.com/unsupervised-machine-learning
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o Social network analysis

o Image segmentation

o Anomaly detection, etc.

Apart from these general usages, it is used by the  Amazon  in its recommendation system to provide the 
recommendations as per the past search of products. Netflix also uses this technique to recommend the movies and 
web-series to its users as per the watch history.

The below diagram explains the working of the clustering algorithm. We can see the different fruits are divided into  
several groups with similar properties.

Types of Clustering Methods

The clustering methods are broadly divided into Hard clustering (datapoint belongs to only one group) and Soft 

Clustering (data points can belong to another group also). But there are also other various approaches of Clustering 
exist. Below are the main clustering methods used in Machine learning:

1. Partitioning Clustering

2. Density-Based Clustering

3. Distribution Model-Based Clustering

4. Hierarchical Clustering

5. Fuzzy Clustering

Partitioning Clustering

It is a type of clustering that divides the data into non-hierarchical groups. It is also known as the centroid-based 

method. The most common example of partitioning clustering is the K-Means     Clustering     algorithm  .  

https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning


In this type, the dataset is divided into a set of k groups, where K is used to define the number of pre-defined groups. 
The cluster center is created in such a way that the distance between the data points of one cluster is minimum as  
compared to another cluster centroid.

Density-Based Clustering

The density-based clustering method connects the  highly-dense areas into clusters, and the  arbitrarily  shaped 
distributions are formed as long as the dense region can be connected. This algorithm does it by identifying different 
clusters in the dataset and connects the areas of high densities into clusters. The dense areas in data space are divided 
from each other by sparser areas.

These algorithms can face difficulty in clustering the data points  if  the dataset  has varying densities and high  
dimensions.



Distribution Model-Based Clustering

In the distribution model-based clustering method, the data is divided based on the probability of how a dataset 
belongs to a particular distribution. The grouping is done by assuming some distributions commonly Gaussian 

Distribution.

The example of this type is the Expectation-Maximization Clustering algorithm that uses Gaussian Mixture 
Models (GMM).



Fuzzy Clustering

Fuzzy clustering is a type of soft method in which a data object may belong to more than one group or cluster. Each  
dataset has a set of membership coefficients, which depend on the degree of membership to be in a cluster. Fuzzy C- 

means algorithm  is the example of this type of clustering; it is sometimes also known as the Fuzzy k-means 
algorithm.

Clustering Algorithms

The Clustering algorithms can be divided based on their models that are explained above. There are different types 
of clustering algorithms published, but only a few are commonly used. The clustering algorithm is based on the kind 
of data that we are using. Such as, some algorithms need to guess the number of clusters in the given dataset,  
whereas some are required to find the minimum distance between the observation of the dataset.

Here we are discussing mainly popular Clustering algorithms that are widely used in machine learning:

1. K-Means algorithm: The k-means algorithm is one of the most popular clustering algorithms. It classifies 

the dataset by dividing the samples into different clusters of equal variances. The number of clusters must 

be specified in this algorithm. It is fast with fewer computations required, with the linear complexity of 

O(n).

2. Mean-shift algorithm:  Mean-shift algorithm tries to find the dense areas in the smooth density of data 

points. It is an example of a centroid-based model, that works on updating the candidates for centroid to be  

the center of the points within a given region.

3. DBSCAN Algorithm: It stands for Density-Based Spatial Clustering of Applications with Noise. It is 

an example of a density-based model similar to the mean-shift, but with some remarkable advantages. In 

this algorithm, the areas of high density are separated by the areas of low density. Because of this, the 

clusters can be found in any arbitrary shape.

https://www.javatpoint.com/fuzzy-logic


4. Expectation-Maximization Clustering using GMM: This algorithm can be used as an alternative for the 

k-means algorithm or for those cases where K-means can be failed. In GMM, it is assumed that the data  

points are Gaussian distributed.

5. Agglomerative Hierarchical algorithm: The Agglomerative hierarchical algorithm performs the bottom- 

up hierarchical  clustering.  In this,  each data point  is  treated as a single cluster  at  the outset  and then  

successively merged. The cluster hierarchy can be represented as a tree-structure.

6. Affinity Propagation: It is different from other clustering algorithms as it does not require to specify the  

number of clusters. In this, each data point sends a message between the pair of data points until 

convergence. It has O(N2T) time complexity, which is the main drawback of this algorithm.

Applications of Clustering

Below are some commonly known applications of clustering technique in Machine Learning:

o In Identification of Cancer Cells:  The clustering algorithms are widely used for the identification of 

cancerous cells. It divides the cancerous and non-cancerous data sets into different groups.

o In Search Engines: Search engines also work on the clustering technique. The search result appears based 

on the closest object to the search query. It does it by grouping similar data objects in one group that is far  

from the other dissimilar objects. The accurate result of a query depends on the quality of the clustering  

algorithm used.

o Customer Segmentation: It is used in market research to segment the customers based on their choice and 

preferences.

o In Biology: It is used in the biology stream to classify different species of plants and animals using the 

image recognition technique.

o In Land Use: The clustering technique is used in identifying the area of similar lands use in the GIS 

database. This can be very useful to find that for what  purpose the particular land should be used, that 

means for which purpose it is more suitable.

o Customer Segmentation: It is used in market research to segment the customers based on their choice and 

preferences.

o In Biology: It is used in the biology stream to classify different species of plants and animals using the 

image recognition technique.

o In Land Use: The clustering technique is used in identifying the area of similar lands use in the GIS 

database. This can be very useful to find that for what  purpose the particular land should be used, that 

means for which purpose it is more suitable.



Collaborative Filtering with R

Collaborative filtering is another technique that can be used for recommendation. 
The underlying concept behind this technique is as follows:

 Assume Person A likes Oranges, and Person B likes Oranges.

 Assume Person A likes Apples.

 Person B is likely to have similar opinions on Apples as A than some other random person.

The implications of collaborative filtering are obvious: you can predict and recommend items to 
users based on preference similarities. There are two types of collaborative filtering: user-based 
and item-based.
Item Based Collaborative Filtering takes the similarities between items’ consumption history.
User Based Collaborative Filtering considers similarities between user consumption history.

Association Rule Mining

Association Rule Mining is used when you want to find an association between different objects 

in  a set, find frequent patterns in  a  transaction database, relational  databases or any  other 

information repository. The applications of Association Rule Mining are found in Marketing, 

Basket Data Analysis (or Market Basket Analysis) in retailing, clustering and classification. It 

can tell you what items do customers frequently buy together by generating a set of rules



called Association Rules. In simple words, it gives you output as rules in form if this then that. 

Clients can use those rules for numerous marketing strategies:

 Changing the store layout according to trends

 Customer behavior analysis

 Catalogue design

 Cross marketing on online stores

 What are the trending items customers buy

 Customized emails with add-on sales 

Consider the following example:

Given is a set of transaction data. You can see transactions numbered 1 to 5. Each 

transaction shows items bought in that transaction. You can see that Diaper is bought with Beer in



three transactions. Similarly, Bread is bought with milk in three transactions making them both 

frequent item sets. Association rules are given in the form as below:

A=>B[Support,Confidence]A=>B[Support,Confidence]

The part before =>=> is referred to as if (Antecedent) and the part after =>=> is referred to as then 

(Consequent).

Where A and B are sets of items in the transaction data. A and B are disjoint sets.

Computer=>Anti−virusSoftware[Support=20%,confidence=60%]Computer=>Anti−virusSoftwar 

e[Support=20%,confidence=60%]

Above rule says:

1. 20% transaction show Anti-virus software is bought with purchase of a Computer

2. 60% of customers who purchase Anti-virus software is bought with purchase of a 

Computer

In the following section you will learn about the basic concepts of Association Rule Mining: 

Basic Concepts of Association Rule Mining
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Market Basket Analysis using R

Learn about Market Basket Analysis & the APRIORI Algorithm that works behind it. You'll see 

how it is helping retailers boost business by predicting what items customers buy together.

You are a data scientist (or becoming one!), and you get a client who runs a retail store. Your 

client gives you data for all transactions that consists of items bought in the store by several 

customers over a period of time and asks you to use that data to help boost their business. Your 

client will use your findings to not only change/update/add items in inventory but also use them 

to change the layout of the physical store or rather an online store. To find results that will help 

your client, you will use Market Basket Analysis (MBA) which uses Association Rule Mining 

on the given transaction data.

Association Rule Mining

Association Rule Mining is used when you want to find an association between different objects 

in  a set, find frequent patterns in  a  transaction database, relational  databases or any  other 

information repository. The applications of Association Rule Mining are found in Marketing, 

Basket Data Analysis (or Market Basket Analysis) in retailing, clustering and classification. It 

can tell you what items do customers frequently buy together by generating a set of rules 

called Association Rules. In simple words, it gives you output as rules in form if this then that. 

Clients can use those rules for numerous marketing strategies:

 Changing the store layout according to trends

 Customer behavior analysis

 Catalogue design

 Cross marketing on online stores

 What are the trending items customers buy

 Customized emails with add-on sales



Consider the following example:

Given is a set of transaction data. You can see transactions numbered 1 to 5. Each transaction 

shows items bought in that transaction. You can see that  Diaper is bought with Beer  in three 

transactions. Similarly, Bread is bought with milk in three transactions making them both 

frequent item sets. Association rules are given in the form as below:

A=>B[Support,Confidence]A=>B[Support,Confidence]

The part before =>=> is referred to as if (Antecedent) and the part after =>=> is referred to as 

then (Consequent).

Where A and B are sets of items in the transaction data. A and B are disjoint sets.

Computer=>Anti−virusSoftware[Support=20%,confidence=60%]Computer=>Anti−virusSoftwar 

e[Support=20%,confidence=60%]

Above rule says:

1. 20% transaction show Anti-virus software is bought with purchase of a Computer



2. 60% of customers who purchase Anti-virus software is bought with purchase of a 

Computer

In the following section you will learn about the basic concepts of Association Rule Mining:

Basic Concepts of Association Rule Mining

1. Itemset: Collection of one or more items. K-item-set means a set of k items.

2. Support Count: Frequency of occurrence of an item-set

3. Support (s): Fraction of transactions that contain the item-set 'X' 

Support(X)=frequency(X)NSupport(X)=frequency(X)N

For a Rule A=>B, Support is given by: 

Support(A=>B)=frequency(A,B)NSupport(A=>B)=frequency(A,B)N



Note:  P(AUB) is the probability of A and B occurring together.  P denotes 

probability. Go ahead, try finding the support for Milk=>Diaper as an exercise.

1. Confidence (c): For a rule A=>B Confidence shows the percentage in which B is bought 

with A.

Confidence(A=>B)=P(A∩B)P(A)=frequency(A,B)frequency(A)Confidence(A=>B)=P(A∩B)P( A)=frequen

cy(A,B)frequency(A)

The number of transactions with both A and B divided by the total number of transactions having 

A.

Confidence(Bread=>Milk)=34=0.75=75%Confidence(Bread=>Milk)=34=0.75=75% 

Now find the confidence for Milk=>Diaper.

Note:  Support and Confidence measure how interesting the rule is. It is set by the minimum 

support and minimum confidence thresholds. These thresholds set by client help to compare the 

rule strength according to your own or client's will. The closer to threshold the more the rule is of 

use to the client.

1. Frequent Itemsets: Item-sets whose support is greater or equal than minimum support 

threshold (min_sup). In above example min_sup=3. This is set on user choice.

2. Strong rules: If a rule A=>B[Support, Confidence] satisfies min_sup and 

min_confidence then it is a strong rule.

3. Lift: Lift gives the correlation between A and B in the rule A=>B. Correlation shows 

how one item-set A effects the item-set B.

Lift(A=>B)=SupportSupp(A)Supp(B)Lift(A=>B)=SupportSupp(A)Supp(B)

For example, the rule {Bread}=>{Milk}, lift is calculated 

as: support(Bread)=45=0.8support(Bread)=45=0.8 

support(Milk)=45=0.8support(Milk)=45=0.8



Lift(Bread=>Milk)=0.60.8∗0.8=0.9Lift(Bread=>Milk)=0.60.8∗0.8=0.9

 If the rule had a lift of 1,then A and B are independent and no rule can be derived from 

them.

 If the lift is > 1, then A and B are dependent on each other, and the degree of which is 

given by ift value.

 If the lift is < 1, then presence of A will have negative effect on B.

Goal of Association Rule Mining

When you apply Association Rule Mining on a given set of transactions T your goal will be to 

find all rules with:

1. Support greater than or equal to min_support

2. Confidence greater than or equal to min_confidence

APRIORI Algorithm

In this part of the tutorial, you will learn about the algorithm that will be running 

behind R libraries for Market Basket Analysis. This will help you understand your 

clients more and perform analysis with more attention. If you already know about 

the APRIORI algorithm and how it works, you can get to the coding     part  .

Association Rule Mining is viewed as a two-step approach:

1. Frequent Itemset Generation: Find all frequent item-sets with support >= 

pre-determined min_support count

2. Rule Generation:  List all Association Rules from frequent item-sets. 

Calculate Support and Confidence for all rules. Prune rules that fail 

min_support and min_confidence thresholds.

Frequent Itemset Generation is the most computationally expensive step because 

it requires a full database scan.

Among the above steps, Frequent Item-set generation is the most costly in terms of computation.

https://www.datacamp.com/community/tutorials/market-basket-analysis-r#code


Above you have seen the example of only 5 transactions, but in real-world transaction data for

retail can exceed up to GB s and TBs of data for which an optimized algorithm is needed to 

prune out Item-sets that will not help in later steps. For this APRIORI Algorithm is used.

Decision Trees

Decision Trees are a popular Data Mining technique that makes use of a tree-like structure to 

deliver consequences based on input decisions. One important property of decision trees is that it 
is used for both regression and classification. This type of classification method is  capable of 

handling heterogeneous as well as missing data. Decision Trees are further capable of producing 
understandable rules. Furthermore, classifications can be performed without many computations. 
As mentioned above, both the classification and regression tasks can be performed with the help 
of Decision Trees. You can perform either classification or regression tasks here. Decision Trees 
can be visualised as follows:

To create a decision tree, you need to follow certain steps:

1. Choosing a Variable

2. Assigning Data to Nodes

3. Pruning the Tree

Common R Decision Trees Algorithms

There are three most common Decision Tree Algorithms:

 Classification and Regression Tree (CART) investigates all kinds of variables.
 Zero (developed by J.R. Quinlan) works by aiming to maximize information gain achieved 

by assigning each individual to a branch of the tree.
 Chi-Square Automation Interaction Detection (CHAID) – It is reserved for the 

investigation of discrete and qualitative independent and dependent variabl

Applications of Decision Trees

Decision Trees are used in the following areas of applications:

 Marketing and Sales – Decision Trees play an important role in a decision-oriented sector 
like marketing. In order to understand the consequences of marketing activities, 
organisations



make use of Decision Trees to initiate careful measures.  This helps in making efficient 
decisions that help the company to reap profits and minimize losses.

 Reducing Churn Rate –  Banks make use of  machine learning algorithms  like Decision 
Trees to retain their customers. It is always cheaper to keep customers than to gain new 
ones. Banks  are  able  to  analyze  which  customers  are  more  vulnerable  to  leaving  their 
business. Based on the output, they are able to make decisions by providing better services, 

discounts as well as several other features. This ultimately helps them to reduce the churn 
rate.

 Anomaly & Fraud Detection – Industries like finance and banking suffer from various cases 
of fraud. In order to filter out anomalous or fraud loan applications,  information and 
insurance fraud, these companies deploy decision trees to provide them with the necessary 
information to identify fraudulent customers.

 Medical Diagnosis – Classification trees identifies patients who are at risk of suffering from 
serious diseases such as cancer and diabetes.

How to Create Decision Trees in R

The Decision Tree techniques can detect criteria for the division of individual items of a group 
into predetermined classes that are denoted by n.
In the first step, the variable of the root node is taken. This variable should be selected based on  
its ability to separate the classes efficiently. This operation starts with the division of variable 
into the given classes. This results in the creation of subpopulations. This operation repeats until  
no separation can be obtained.

A tree exhibiting not more than two child nodes is a binary tree. The origin node is referred to as 
a node and the terminal nodes are the trees.

Defining Big Data

Big data is not a single technology but a combination of old and new technologies that helps 
companies gain actionable insight. Therefore, big data is the capability to manage a huge volume 
of disparate data, at the right speed, and within the right time frame to allow real-time analysis 
and reaction. As we note earlier in this chapter, big data is typically broken down by three 

characteristics: ✓ Volume: How much data ✓ Velocity: How fast that data is processed ✓ 

Variety: The various types of data Although it’s convenient to simplify big data into the three 
Vs, it can be misleading and overly simplistic. For example, you may be managing a relatively 
small amount of very disparate, complex data or you may be processing a huge volume of very 
simple data. That simple data may be all structured or all unstructured. Even more important is 
the fourth V: veracity. How accurate is that data in predicting business value? Do the results of a 
big data analysis actually make sense? It is critical that you don’t underestimate the task at hand. 
Data must be able to be verified based on both accuracy and context. An innovative business 
may want to be able to analyze massive amounts of data in real time to quickly assess the value 
of that customer and the potential to provide additional offers to that customer. It is necessary to 
identify the right amount and types of data that can be analyzed to impact business outcomes. 
Big data incorporates all data, including structured data and unstructured data from e-mail, social 
media, text streams, and more. This kind of data management requires that companies leverage 
both their structured and unstructured data

Installing R packages

To use the data file with the format specified earlier, we don't need to install extra R packages. 
We just need to use the built-in functions available with R. Importing the data into R To 
perform

https://data-flair.training/blogs/machine-learning-algorithms/


analytics-related activities, we need to use the following functions to get the data into R: • CSV: 
read.csv() is intended for reading the comma separated value (CSV) files, where the decimal 
point is ",".
The retrieved data will be stored into one R object, which is considered as Dataframe. Dataframe
<- read.csv("data.csv",sep=",") •  TXT:  To  retrieve  the  tab  separated  values,  the  read.table() 
function will be used with some important parameters and the return type of this function will be 
Dataframe type. Dataframe <- read.table("data.csv", sep="\t") • .RDATA: Here, the .
RDATA format is used by R for storing the workspace data for a particular time period. It is 
considered as  image file.  This  will  store/retrieve all  of  the data  available  in  the workspace.  
load("history.RDATA") • .rda: This is also R's native data format, which stores the specific data  
variable as per requirement. load("data_variables_a_and_b.rda")
Exporting the data from R To export the existing data object from R and to support data files as 
per requirements, we need to use the following functions: • CSV: Write the dataframe object into 
the csv data file via the following command: write.csv(mydata, "c:/mydata.csv", sep=",", 
row.names=FALSE) •
TXT: Write the data with the tab delimiters via the following command: write.table(mydata, 

"c:/mydata.txt", sep="\t") • .RDATA: To store the workspace data variables available to R 
session, use the following command: save.image() • .rda: This function is used to store specific 
data objects that can be reused later. Use the following code for saving them to the .rda files. # 
column vector a <- c(1,2,3) # column vector b <- c(2,4,6) # saving it to R (.rda) data format 
save(a, b, file=" data_variables_a_and_b.rda")
Importing the data into R We know how to check MySQL tables and their fields. After 
identification of  useful  data tables,  we can import  them in R using the following RMySQL 
command.
To retrieve the custom data from MySQL database as per the provided SQL query, we need to 
store it in an object: rs = dbSendQuery(mydb, "select * from sample_table") The available data-  
related information can be retrieved from MySQL to R via the fetch command as  follows: 
dataset
= fetch(rs, n=-1) Here, the specified parameter n = -1 is used for retrieving all pending records.
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