

UNIT I

LINEAR DATA STRUCTURES-LIST

Abstract Data Type (ADT) - List ADT- Arrays based Implementation-linked list implementation-singly
linked lists-circularly linked lists-doubly linked list-Application of list-polynomial manipulation-all
operations (insertion, deletion, merge, traversal).

S.
No. Question

Course
Outcom

e

Blooms
Taxanom
y Level

1 What is a data structure?
● A data structure is a method for organizing and storing

data which would allow efficient
data retrieval and usage.

● A data structure is a way of organizing data that considers
not only the items stored, but
also their relationships to each other.

C203.1
BTL1

2 Why do we need data structures?
● Data structures allow us to achieve an important goal:

component reuse.
● Once data structure has been implemented, it can be used

again and again in
various applications.

C203.1 BTL 1

3 List some common data structures.
● Stacks
● Queues
● Lists
● Trees
● Graphs
● Tables

C203.1 BTL 1

4 How data structures are classified?
Data structures are classified into two categories based on

how the data items are
operated:
i. Primitive data structure
ii. Non-Primitive data structure

C203.1 BTL 1

a. Linear data structure
b. Non-linear data structure

5 Differentiate linear and non-linear data structure.
Linear data structure Non-linear data structure
Data are arranged in linear or
sequential manner

Data are not arranged in linear
manner

Every items is related to its
previous
and next item

Every item is attached with
many other
items

Data items can be traversed in
a
single run.

Data items cannot be traversed
in a
single run.

Implementation is easy Implementation is difficult.
Example: array, stack, queue,
linked
list

Example: tree, graph

C203.1

BTL 2

6 Define ADT (Abstract Data Type)
An abstract data type (ADT) is a set of operations and

mathematical abstractions , which
can be viewed as how the set of operations is implemented.
Objects like lists, sets and graphs, along with their operation, can
be viewed as abstract data types, just as integers, real numbers
and Booleans.

C203.1 BTL 1

7 Mention the features of ADT.
a. Modularity
i. Divide program into small functions
ii. Easy to debug and maintain
iii. Easy to modify
b. Reuse
i. Define some operations only once and reuse them in future
c. Easy to change the implementation

C203.1 BTL 2

8 Define List ADT
A list is a sequence of zero or more elements of a given

type. The list is represented as
sequence of elements separated by comma.
A1, A2, A3…..AN

Where N>0 and A is of type element

C203.1

BTL 1

9 What are the ways of implementing linked list?
The list can be implemented in the following ways:

i. Array implementation
ii. Linked-list implementation

C203.1 BTL 1

iii. Cursor implementation
10 What are the types of linked lists?

There are three types
i. Singly linked list
ii. Doubly linked list
iii. Circularly linked list

C203.1 BTL 1

11 How the singly linked lists can be represented?

Each node has two elements
i. Data
ii. Next

C203.1 BTL 1

12 How the doubly linked list can be represented?

Doubly linked list is a collection of nodes where nodes are

connected by forwarded and
backward link.
Each node has three fields:
1. Address of previous node
2. Data
3. Address of next node.

C203.1 BTL 1

13 What are benefits of ADT?
a. Code is easier to understand
b. Implementation of ADT can be changed without requiring
changes to the program
that uses the ADT

C203.1 BTL 1

14 When singly linked list can be represented as circular linked
list?

In a singly linked list, all the nodes are connected with
forward links to the next nodes in
the list. The last node has a next field, NULL. In order to
implement the circularly linked

C203.1 BTL 1

lists from singly linked lists, the last node’s next field is
connected to the first node.

15 When doubly linked list can be represented as circular linked

list?
In a doubly linked list, all nodes are connected with

forward and backward links to the
next and previous nodes respectively. In order to implement
circular linked lists from
doubly linked lists, the first node’s previous field is connected to
the last node and the
last node’s next field is connected to the first node.

C203.1 BTL 1

16 Where cursor implementation can be used?
The cursor implementation of lists is used by many

languages such as BASIC and
FORTRAN that do not support pointers. The two important
features of the cursor
implementation of linked are as follows:

● The data are stored in a collection of structures. Each
structure contains data and a

index to the next structure.
● A new structure can be obtained from the system’s global

memory by a call to
cursorSpace array.

C203.1 BTL 1

17 List down the applications of List.
a. Representation of polynomial ADT
b. Used in radix and bubble sorting
c. In a FAT file system, the metadata of a large file is organized
as a linked list of FAT entries.
d. Simple memory allocators use a free list of unused memory
regions, basically a
linked list with the list pointer inside the free memory itself.

C203.1 BTL 1

18 What are the advantages of linked list?
a. Save memory space and easy to maintain
b. It is possible to retrieve the element at a particular index
c. It is possible to traverse the list in the order of increasing index.

C203.1 BTL 1

d. It is possible to change the element at a particular index to a
different value,without affecting any other elements.

19 Mention the demerits of linked list
a. It is not possible to go backwards through the list
b. Unable to jump to the beginning of list from the end.

C203.1 BTL 2

20 The polynomial equation can be represented with linked list
as​ ​follows:
Coefficient

Exponent Next node link

struct polynomial
{
int coefficient;int exponent;struct polynomial *next;
};

C203.1 BTL 2

21 What are the operations performed in list?
The following operations can be performed on a list
i. Insertion
a. Insert at beginning
b. Insert at end
c. Insert after specific node
d. Insert before specific node
ii. Deletion
a. Delete at beginning
b. Delete at end
c. Delete after specific node
d. Delete before specific node
iii. Merging
iv. Traversal

C203.1 BTL 1

22 What are the merits and demerits of array implementation of
lists?
Merits

● Fast, random access of elements
● Memory efficient – very less amount of memory is

required
Demerits

● Insertion and deletion operations are very slow since the
elements should be

moved.
● Redundant memory space – difficult to estimate the size

of array.

C203.1 BTL 1

23 What is a circular linked list?
A circular linked list is a special type of linked list that

supports traversing from the end
of the list to the beginning by making the last node point back to
the head of the list.

C203.1 BTL 1

24 What are the advantages in the array implementation of list?

 a. Print list operation can be carried out at the linear time
 b. Find Kth operation takes a constant time

C203.1 BTL 1

25 What is the need for the header?

Header of the linked list is the first element in the list and
it stores the number of elements in the list. It points to the first
data element of the list.

C203.1 BTL 1

26 List three examples that uses linked list?
 a. Polynomial ADT
 b.Radix sort
 c.Multi​ ​ lists

C203.1 BTL 1

27 List out the different ways to implement the list?
1. Array Based Implementation
2. Linked list Implementation
 i. Singly linked list
ii. Doubly linked list
iii. Cursor based linked list

C203.1 BTL 1

28 Write the routine for insertion operation of singly linked list.
Void Insert (ElementType X, List L, Position P)
{Position TmpCell;
TmpCell=malloc(sizeof(struct Node));
 if(TmpCell==NULL)
FatalError(“Out of space!!!”);
 TmpCell->Element =X; TmpCell->Next=P->Next;
P->Next=TmpCell;
}

C203.1 BTL 5

29

Advantages of Array over Linked List.
1. Array has a specific address for each element stored in it

and thus we can access any memory directly.
2. As we know the position of the middle element and other

elements are easily accessible too, we can easily perform
BINARY SEARCH in array.

C203.1 BTL 5

30 Disadvantages of Array over Linked List.
1. Total number of elements need to be mentioned or the

memory allocation needs to be done at the time of array
creation

2. The size of array, once mentioned, cannot be increased in
the program. If number of elements entered exceeds the
size of the array ARRAY OVERFLOW EXCEPTION
occurs.

C203.1 BTL 5

31 Advantages of Linked List over Array.

1. Size of the list doesn't need to be mentioned at the
beginning of the program.

2. As the linked list doesn't have a size limit, we can go on
adding new nodes (elements) and increasing the size of
the list to any extent.

C203.1 BTL 5

32 Disadvantages of Linked List over Array.
1. Nodes do not have their own address. Only the address of

the first node is stored and in order to reach any node, we
need to traverse the whole list from beginning to the
desired node.

2. As all Nodes don't have their particular address, BINARY
SEARCH cannot be performed

C203.1 BTL 5

PART-B
1 Explain the various operations of the list ADT with examples C203.1

BTL 2
2 Write the program for array implementation of lists C203.1 BTL 5

3 Write a C program for linked list implementation of list.

C203.1 BTL 5

4 Explain the operations of singly linked lists

C203.1 BTL 2

5 Explain the operations of doubly linked lists C203.1 BTL 2

6 Explain the operations of circularly linked lists

C203.1 BTL 2

7 How polynomial manipulations are performed with lists? Explain
the operations

C203.1 BTL 1

8 Explain the steps involved in insertion and deletion into a singly
and doubly linked list.

C203.1 BTL2

UNIT II

LINEAR DATA STRUCTURES-STACKS,QUEUES

Stack ADT-Operations-applications-Evaluating arithmetic expressions-conversion of infix to postfix

expressions-queue ADT-Operations-circular queue-priority queue-dequeue-applications of queues.

S.
No.

Question Course
Outcome

Blooms
Taxanomy

Level
1 Define Stack.

A stack is an ordered list in which all insertions and
deletions are made at one end, called
the top. It is an abstract data type and based on the principle of
LIFO (Last In First Out).

C203.2 BTL 1

2 What are the operations of the stack?
a. CreateStack/ InitStack(Stack) – creates an empty stack
b. Push(Item) – pushes an item on the top of the stack
c. Pop(Item) – removes the top most element from the stack
d. Top(Stack) – returns the first element from the stack
e. IsEmpty(Stack) – returns true if the stack is empty

C203.2 BTL 1

3 Write the routine to push a element into a stack.
Push(Element X, Stack S)
{ if(IsFull(S)
{ Error(“Full Stack”); }
else
S→Array[++S→TopOfStack]=X;
}

C203.2 BTL 5

4 How the operations performed on linked list implementation
of stack?
a. Push and pop operations at the head of the list.
b. New nodes should be inserted at the front of the list, so that
they become the top of the stack.
c. Nodes are removed from the front(top) of the stack.

C203.2 BTL 1

5 What are the applications of stack?
The following are the applications of stacks
• Evaluating arithmetic expressions
• Balancing the parenthesis
• Towers of Hanoi
• Function calls
Tree traversal

C203.2 BTL 1

6 What are the methods to implement stack in C?
The methods to implement stacks are:

● Array based
● Linked list based

C203.2 BTL 1

7 How the stack is implemented by linked list?
It involves dynamically allocating memory space at run

time while performing stack
operations.
Since it consumes only that much amount of space is required
for holding its data
elements , it prevents wastage of memory space.
struct stack
{

C203.2 BTL 1

int element;
struct stack *next;
}*top;

8 Write the routine to pop a element from a stack.
int pop()
{ if(top==NULL)
{ printf(“\n Stack is empty.\n”);getch();exit(1);}
else
{int temp;
temp=top→element; top=top→next; return temp; }}

C203.2 BTL 5

9 Define queue.
It is a linear data structure that maintains a list of

elements such that insertion happens at
rear end and deletion happens at front end.
FIFO – First In First Out principle

C203.2 BTL 1

10 What are the operations of a queue?
The operations of a queue are

● isEmpty()
● isFull()
● insert()
● delete()
● display()

C203.2 BTL 1

11 Write the routine to insert a element onto a queue.
void insert(int element)
{
if(front==-1)
{
front = rear = front +1;
queue[front] = element;
return;
}
if(rear==99)
{
printf(“Queue is full”);
getch();
return;
}
rear = rear +1;
queue[rear]=element;
}

C203.2 BTL 5

12 What are the types of queue?
The following are the types of queue:

● Double ended queue
● Circular queue
● Priority queue

C203.2 BTL 1

13 Define double ended queue
● It is a special type of queue that allows insertion and

deletion of elements at both

C203.2 BTL 1

Ends.
● It is also termed as DEQUE.

14 What are the methods to implement queue in C?

The methods to implement queues are:
● Array based
● Linked list based

C203.2 BTL 1

15 How the queue is implemented by linked list?
• It is based on the dynamic memory management techniques
which allow allocation and
De-allocation of memory space at runtime.
Insert operation
It involves the following subtasks:

1. Reserving memory space of the size of a queue element
in memory

2. Storing the added value at the new location
3. Linking the new element with existing queue
4. Updating the ​rear ​pointer

Delete operation
It involves the following subtasks:
1. Checking whether queue is empty
2. Retrieving the front most element of the queue
3. Updating the front pointer
4. Returning the retrieved value

C203.2 BTL 1

16 Write the routine to delete a element from a queue
int del()
{int i;
if(front == NULL) /*checking whether the queue is empty*/
{return(-9999);}
else
{i = front→element;front = front→next;return i;}
}

C203.2 BTL 5

17 What are the applications of queue?
The following are the areas in which queues are applicable
a. Simulation
b. Batch processing in an operating systems
c. Multiprogramming platform systems
d. Queuing theory
e. Printer server routines
f. Scheduling algorithms like disk scheduling , CPU scheduling
g. I/O buffer requests

C203.2 BTL 1

18 Define circular queue
A Circular queue is a queue whose start and end locations are
logically connected with
each other. That means the start location comes after the end
location.

C203.2 BTL 1

19 What are push and pop operations?
• Push – adding an element to the top of stack
• Pop – removing or deleting an element from the top of stack

C203.2 BTL 1

20 What are enqueue and dequeue operations?
•​ Enqueue ​- adding an element to the queue at the rear end

If the queue is not full, this function adds an element to
the back of the queue, else it prints “​OverFlow​”.
void enqueue(int queue[], int element, int& rear, int arraySize) {
 if(rear == arraySize) // Queue is full
 printf(“OverFlow\n”);
 else{
 queue[rear] = element; // Add the element to the back
 rear++;
 }
}
• ​Dequeue​ – removing or deleting an element from the queue at
the front end

If the queue is not empty, this function removes the
element from the front of the queue, else it prints “​UnderFlow​”.
void dequeue(int queue[], int& front, int rear) {
 if(front == rear) // Queue is empty
 printf(“UnderFlow\n”);
 else {
 queue[front] = 0; // Delete the front element
 front++;
 }
}

C203.2
BTL 1

21 Distinguish between stack and queue.

 STACK QUEUE

Insertion and deletion are made
at one end.

Insertion at one end rear and
deletion at other end front.

C203.2 BTL4

The element inserted last would
be removed first. So LIFO
structure.

The element inserted first
would be removed first. So
FIFO structure.

Full stack condition:

If(top==Maxsize)

Physically and Logically full
stack

Full stack condition:

If(rear = = Maxsize)

Logically full. Physically
may or may not be full.

22 Convert the infix (a+b)*(c+d)/f into postfix & prefix

expression

Postfix : a b + c d + * f /

Prefix : / * + a b + c d f

C203.2 BTL5

23 Write postfix from of the expression –A+B-C+D?

A-B+C-D+
C203.2 BTL5

24 How do you test for an empty queue?
To test for an empty queue, we have to check whether
READ=HEAD where REAR is a pointer pointing to the last
node in a queue and HEAD is a pointer that pointer to the
dummy header. In the case of array implementation of queue, the
condition to be checked for an empty queue is READ<FRONT.

C203.2 BTL1

25 What are the postfix and prefix forms of the expression?
A+B*(C-D)/(P-R)

Postfix form: ABCD-*PR-/+
Prefix form: +A/*B-CD-PR

C203.2 BTL1

26 Explain the usage of stack in recursive algorithm
implementation?

In recursive algorithms, stack data structures is used to
store the return address when a recursive call is encountered and
also to store the values of all the parameters essential to the
current state of the procedure.

C203.2 BTL5

27 Define priority queue with diagram and give the operations.
Priority queue is a data structure that allows at least the

following two operations.
1. Insert-inserts an element at the end of the list called the rear.
2. DeleteMin-Finds, returns and removes the minimum element
in the priority Queue.

C203.2 BTL1

Operations: Insert, DeleteMin

28 Give the applications of priority queues.
There are three applications of priority queues
1. External sorting.
2. Greedy algorithm implementation.
3. Discrete even simulation.
4. Operating systems.

C203.2 BTL3

29 How do you test for an empty stack?
To check if the stack is empty, we only need to check

whether top and bottom are the same number.
bool stack_empty(stack S) //@requires is_stack(S);
{ return S->top == S->bottom; }

C203.2 BTL1

30 What are the features of stacks?
● Dynamic data structures
● Do not have a fixed size
● Do not consume a fixed amount of memory
● Size of stack changes with

each push() and pop() operation.
Each push() and pop() operation increases and decreases
the size of the stack by 1, respectively.

C203.2 BTL1

31 Write a routine for IsEmpty condition of queue.
If a queue is empty, this function returns 'true', else it returns
'false'.
bool isEmpty(int front, int rear) {
 return (front == rear);
}

C203.2 BTL5

PART-B
1 Explain Stack ADT and its operations C203.2 BTL5

2 Explain array based implementation of stacks C203.2 BTL5

3 Explain linked list implementation of stacks C203.2 BTL5

4 Explain the applications of Stacks C203.2 BTL5

5 Explain how to evaluate arithmetic expressions using stacks C203.2 BTL5

6 Explain queue ADT C203.2 BTL2

7 Explain array based implementation of queues

C203.2 BTL2

8 Explain linked list implementation of queues C203.2 BTL2

http://lh3.ggpht.com/-PWSfBL3DMso/U9C-c4cLAoI/AAAAAAAAGoc/EdjX8GjSMCM/s1600-h/clip_image024%25255B4%25255D.jpg

9 Explain the applications of queues

C203.2 BTL5

10 Explain circular queue and its implementation C203.2 BTL2

11 Explain double ended queue and it​s operations

C203.2 BTL2

12 Explain priority queue and it​s operations

C203.2 BTL5

UNIT III

NON LINEAR DATA STRUCTURES- TREES

Tree ADT-tree traversals-Binary Tree ADT-expression Trees-applications of Trees-Binary search tree
ADT-Threaded binary Tree-AVL Tree-B-Tree-B+Tree-Heap-Applications of Heap.

S.
No. Question Course

Outcome

Blooms
Taxanomy

Level
1 Define non-linear data structure

Data structure which is capable of expressing more
complex relationship than that of physical adjacency is called
non-linear data structure.

C203.3 BTL1

2 Define tree?
A tree is a data structure, which represents hierarchical

relationship between individual data items.

C203.3 BTL1

3 Define leaf?
In a directed tree any node which has out degree o is

called a terminal node or a leaf.

C203.3 BTL1

4 Explain the representations of priority queue.
 Using Heap structure, Using Linked List

C203.3 BTL2

5 List out the steps involved in deleting a node from a binary
search tree.

1. t has no right hand child node t->r == z
2. t has a right hand child but its right hand child node has no

left sub tree
t->r->l == z

 3.t has a right hand child node and the right hand child node
has a left hand child node t->r->l != z

C203.3 BTL1

6 Convert the infix expression (A-B/C)*(D/E-F) into a postfix.
Postfix: ABC/-DE/F-*

C203.3 BTL2

7 What are the steps to convert a general tree into binary tree?
* use the root of the general tree as the root of the binary tree

C203.3 BTL1

* determine the first child of the root. This is the leftmost node
in the general tree at the next
 level
* insert this node. The child reference of the parent node refers
to this node
* continue finding the first child of each parent node and insert it
below the parent node with the
 child reference of the parent to this node.
* when no more first children exist in the path just used, move
back to the parent of the last node

entered and repeat the above process. In other words,
determine the first sibling of the last
 node entered.
* complete the tree for all nodes. In order to locate where the
node fits you must search for the

first child at that level and then follow the sibling references to
a nil where the next sibling can

be inserted. The children of any sibling node can be inserted
by locating the parent and then
 inserting the first child. Then the above process is repeated.

8

What is meant by directed tree?
ed tree is an acyclic diagraph which has one node called its root

with in degree o while all other nodes have in degree I.

C203.3 BTL1

9 What is a ordered tree?
In a directed tree if the ordering of the nodes at each level is
prescribed then such a tree is called ordered tree.

C203.3 BTL1

10 What are the applications of binary tree?
1. Binary tree is used in data processing.
2. File index schemes
3. Hierarchical database management system

C203.3 BTL1

11 What is meant by traversing?
Traversing a tree means processing it in such a way, that each

node is visited only once.

C203.3 BTL1

12 What are the different types of traversing?
The different types of traversing are
a. Pre-order traversal-yields prefix form of expression.
b. In-order traversal-yields infix form of expression.
c. Post-order traversal-yields postfix form of expression​.

C203.3 BTL1

13 What are the two methods of binary tree implementation?

Two methods to implement a binary tree are
a. Linear representation.
b. Linked representation

C203.3 BTL1

14 What is a balance factor in AVL trees?
Balance factor of a node is defined to be the difference

between the height of the node's left subtree and the height of the
node's right subtree.

C203.3 BTL1

15 What is meant by pivot node?
The node to be inserted travel down the appropriate branch track
along the way of the deepest level node on the branch that has a
balance factor of +1 or -1 is called pivot node.

C203.3 BTL1

16 What is the length of the path in a tree?
The length of the path is the number of edges on the path. In a
tree there is exactly one path form the root to each node.

C203.3 BTL1

17 Define expression trees?
eaves of an expression tree are operands such as constants or

variable names and the other nodes contain operators.

C203.3 BTL1

18 What is a threaded binary tree?
A threaded ​binary tree may be defined as follows: "A binary

tree is ​threaded by making all right child pointers that would
normally be null point to the inorder successor of the node, and
all left child pointers that would normally be null point to the
inorder predecessor of the node

C203.3 BTL1

19 What is meant by binary search tree?
Binary Search tree is a binary tree in which each internal

node ​x stores an element such that the element stored in the left
sub tree of ​x are less than or equal to ​x and elements stored in the
right sub tree of ​x​ are greater than or equal to ​x​.

C203.3 BTL2

20 Write the advantages of threaded binary tree.
The difference between a binary tree and the threaded binary tree
is that in the binary trees the nodes are null if there is no child
associated with it and so there is no way to traverse back.
But in a threaded binary tree we have threads associated with the
nodes i.e they either are linked to the predecessor or successor in
the in order traversal of the nodes.
This helps us to traverse further or backward in the in order
traversal fashion.
There can be two types of threaded binary tree :-

1) Single Threaded: - i.e. nodes are threaded either towards its
in order predecessor or successor.

2) Double threaded: - i.e. nodes are threaded towards both the
in order predecessor and successor.

C203.3 BTL5

21 What is the various representation of a binary tree?
Tree Representation
Array representation
Linked list representation

C203.3 BTL1

22 List the application of tree.
(i) Electrical Circuit
ii) Folder structure
a. Binary tree is used in data processing.
b. File index schemes
c. Hierarchical database management system

C203.3 BTL1

23 Define binary tree and give the binary tree node structure. C203.3 BTL1

http://en.wikipedia.org/wiki/Binary_tree

24 What are the different ways of representing a Binary Tree?
● Linear Representation using Arrays.
● Linked Representation using Pointers.

C203.3 BTL1

25 Give the pre & postfix form of the expression (a +
((b*(c-e))/f).

C203.3 BTL2

26 Define a heap. How can it be used to represent a priority
queue?
A priority queue is a different kind of queue, in which the next
element to be removed is defined by (possibly) some other
criterion. The most common way to implement a priority queue is
to use a different kind of binary tree, called a heap. A heap avoids
the long paths that can arise with binary search trees.

C203.3 BTL1

27 What is binary heap?
​It is a complete binary tree of height h has between 2​h and 2​h+1 ​-1

node.​ ​The value of the root node is higher than their child nodes

C203.3 BTL1

28 Define Strictly binary tree?
If every nonleaf node in a binary tree has nonempty left and right
subtrees ,the tree is termed
as a strictly binary tree.

C203.3 BTL1

29 Define complete binary tree?
A complete binary tree of depth d is the strictly binary tree all of
whose are at level d.

C203.3 BTL1

30 What is an almost complete binary tree?
A binary tree of depth d is an almost complete binary tree if :
_ Each leaf in the tree is either at level d or at level d-1
_ For any node nd in the tree with a right descendant at level d,all
the left descendants of nd that are leaves are at level d.

C203.3 BTL1

31 Define AVL Tree.
A AVL tree is a binary search tree except that for every node in
the tree,the height of the
left and right subtrees can differ by atmost 1.

C203.3 BTL1

PART-B
1 Define Tree. Explain the tree traversals with algorithms and

examples. C203.3 BTL5

2 Construct an expression tree for the expression (a + b * c)
+((d * e + 1) * g). Give the outputs when you apply preorder,
inorder and postorder traversals.

C203.3 BTL5

3 Explain binary search tree ADT in detail. C203.3 BTL5

4 Explain AVL tree ADT in detail. C203.3 BTL5

5 Explain b tree and B+ tree ADT in detail. C203.3 BTL5

6 Explain Heap tree ADT in detail. C203.3 BTL5

7 Explain threaded binary tree ADT in detail. C203.3 BTL2

UNIT IV

NON LINEAR DATA STRUCTURES- GRAPHS

Definition-Representation of graph-types of graph-Breadth-first
traversal-Depth-first-Traversal-Topological sort-Bi-connectivity-Cut vertex-Eulercircuits-Applications of
graphs.

S.
N
o.

Question Course
Outcome

Blooms
Taxanom
y Level

1 Define Graph?
A graph G consist of a nonempty set V which is a set of

nodes of the graph, a set E which is the set of edges of the graph,
and a mapping from the set for edge E to a set of pairs of elements
of V. It can also be represented as G= (V, E).

C203.4 BTL1

2 Explain the topological sort.
It is an Ordering of vertices in a directed acyclic graph such

that if there is a path from vi to vj, then vj appears after vi in the
ordering.

C203.4 BTL1

3 Define NP
 ​NP is the class of decision problems for which a given
proposed solution for a given input can be checked quickly to see
if it is really a solution.

C203.4 BTL1

4 Define biconnected graph.
A connected undirected graph is biconnected if there are no

vertices whose removal disconnects the rest of the graph.

C203.4 BTL1

5 Define shortest path problem?
 For a given graph G=(V, E), with weights assigned to the
edges of G, we have to find the shortest path (path length is

C203.4 BTL1

defined as sum of the weights of the edges) from any given source
vertex to all the remaining vertices of G.

6 Mention any two decision problems which are NP-Complete.
NP is the class of decision problems for which a given

proposed solution for a given input can be checked quickly to see
if it is really a solution

C203.4 BTL2

7 Define adjacent nodes?
Any two nodes which are connected by an edge in a graph are
called adjacent nodes. For E is associated with a pair of
nodes​∈​example, if and edge x (u,v) where u, v V, then we say
that the edge x connects the nodes u and v.​ ∈

C203.4 BTL1

8 What is a directed graph?
A graph in which every edge is directed is called a directed graph.

C203.4 BTL1

9 What is a undirected graph?
A graph in which every edge is undirected is called a directed
graph.

C203.4 BTL1

10 What is a loop?
An edge of a graph which connects to itself is called a loop

or sling.

C203.4 BTL1

11 What is a simple graph?
A simple graph is a graph, which has not more than one edge
between a pair of nodes than such a graph is called a simple
graph.

C203.4 BTL1

12 What is a weighted graph?
A graph in which weights are assigned to every edge is called a
weighted graph.

C203.4 BTL1

13 Define out degree of a graph?
In a directed graph, for any node v, the number of edges which
have v as their initial node is called the out degree of the node v.

C203.4 BTL1

14 Define indegree of a graph?
In a directed graph, for any node v, the number of edges which
have v as their terminal node is called the indegree of the node v.

C203.4 BTL1

15 Define path in a graph?
The path in a graph is the route taken to reach terminal

node from a starting node.

C203.4 BTL1

16 What is a simple path?
A path in a diagram in which the edges are distinct is called a
simple path. It is also called as edge simple.

C203.4 BTL1

17 What is a cycle or a circuit?
A path which originates and ends in the same node is

called a cycle or circuit.

C203.4 BTL1

18 What is an acyclic graph?
A simple diagram which does not have any cycles is called

an acyclic graph.

C203.4 BTL1

19 What is meant by strongly connected in a graph?
An undirected graph is connected, if there is a path from

every vertex to every other vertex. A directed graph with this
property is called strongly connected.

C203.4 BTL1

20 When is a graph said to be weakly connected?
When a directed graph is not strongly connected but the

underlying graph is connected, then the graph is said to be weakly
connected.

C203.4 BTL1

21 Name the different ways of representing a graph?
 ​a. Adjacency matrix
 b. Adjacency list

C203.4 BTL1

22 What is an undirected acyclic graph?
When every edge in an acyclic graph is undirected, it is

called an undirected acyclic graph. It is also called as undirected
forest.

C203.4 BTL1

23 What are the two traversal strategies used in traversing a graph?
 ​a. Breadth first search
 b. Depth first search

C203.4 BTL1

24 What is a minimum spanning tree?
A minimum spanning tree of an undirected graph G is a

tree formed from graph edges that connects all the vertices of G at
the lowest total cost.

C203.4 BTL1

25 Define topological sort?
 A topological sort is an ordering of vertices in a directed
acyclic graph, such that if there is a path from v​i​ to v​j​ appears after
v​i​ in the ordering.

C203.4 BTL1

26 What is the use of Kruskal’s algorithm and who discovered it?
Kruskal’s algorithm is one of the greedy techniques to solve the
minimum spanning tree problem. It was discovered by Joseph
Kruskal when he was a second-year graduate student.

C203.4 BTL1

27 What is the use of Dijksra’s algorithm?
Dijkstra’s algorithm is used to solve the single-source

shortest-paths problem: for a given vertex called the source in a
weighted connected graph, find the shortest path to all its other
vertices. The single-source shortest-paths problem asks for a
family of paths, each leading from the source to a different vertex
in the graph, though some paths may have edges in common.

C203.4 BTL1

28 Prove that the maximum number of edges that a graph with n
Vertices is n*(n-1)/2.

Choose a vertex and draw edges from this vertex to the
remaining n-1 vertices. Then, from these n-1 vertices, choose a
vertex and draw edges to the rest of the n-2 Vertices. Continue this
process till it ends with a single Vertex. Hence, the total number of
edges added in graph is
 (n-1)+(n-2)+(n-3)+…+1 =n*(n-1)/2.

C203.4 BTL5

29 Define minimum cost spanning tree?
A spanning tree of a connected graph G, is a tree consisting of

edges and all the vertices of G. In minimum spanning tree T, for a
given graph G, the total weights of the edges of the spanning tree
must be minimum compared to all other spanning trees generated
from G. -Prim’s and Kruskal is the algorithm for finding
Minimum Cost Spanning Tree.

C203.4 BTL1

30 Define Adjacency in graph.
Two node or vertices are adjacent if they are connected to

each other through an edge. In the following example, B is
adjacent to A, C is adjacent to B, and so on.

C203.4 BTL1

31 Define Basic Operations of Graph.
Following are basic primary operations of a Graph

● Add Vertex​ − Adds a vertex to the graph.
● Add Edge​ − Adds an edge between the two vertices of the

graph.
● Display Vertex​ − Displays a vertex of the graph.

C203.4 BTL1

32 What is Levels in graph?
Level of a node represents the generation of a node. If the

root node is at level 0, then its next child node is at level 1, its
grandchild is at level 2, and so on.

C203.4 BTL1

33 What is visiting and traversing in graph.
● Visiting refers to checking the value of a node when

control is on the node.
● Traversing means passing through nodes in a specific

order.

C203.4 BTL1

PART-B
1 Explain the various representation of graph with example in

detail?
C203.4 BTL2

2 Define topological sort? Explain with an example? C203.4 BTL5

3 Explain Dijkstra's algorithm with an example?

C203.4 BTL5

4 Explain Prim's algorithm with an example?

C203.4 BTL5

5 Explain Krushal's algorithm with an example?

C203.4 BTL2

6 Write and explain the prim’s algorithm and depth first search
algorithm.

C203.4 BTL5

7 For the graph given below, construct Prims algorithm
 2

 4 2 1 7
 8 4
 5 1 6
 1 2

C203.4 BTL5

8 Explain the breadth first search algorithm C203.4 BTL5

9 the algorithm to compute lengths of shortest path C203.4 BTL5

10 n the depth first search algorithm. C203.4 BTL2

UNIT V

SEARCHING, SORTING AND HASHING TECHNIQUES

Searching –Linear searching-Binary searching. Sorting-Bubble sort-selection Sort-Insertion Sort-shell
sort-Radix Sort. Hashing-Hash functions-Separate chaining-Open Addressing-Rehashing- Extendible
hashing.

S.
No.

Question Course
Outcome

Blooms
Taxanomy

Level
1 Define sorting

Sorting ​arranges the numerical and alphabetical data present
in a list in a specific order or sequence. There are a number of
sorting techniques available. The algorithms can be chosen based
on the following factors

● Size of the data structure
● Algorithm efficiency

Programmer’s knowledge of the technique

C203.5

BTL1

2 Mention the types of sorting
● Internal sorting
● External sorting

C203.5 BTL2

3 What do you mean by internal and external sorting?
An internal sort is any data sorting process that takes place

entirely within the main memory of a computer. This is possible
whenever the data to be sorted is small enough to all be held in the
main memory.

External sorting is a term for a class of sorting algorithms
that can handle massive amounts of data. External sorting is
required when the data being sorted do not fit into the main
memory of a computing device (usually RAM) and instead they
must reside in the slower external memory (usually a hard drive).

C203.5 BTL1

4 How the insertion sort is done with the array?
It sorts a list of elements by inserting each successive element in
the previously sorted
Sub list.
Consider an array to be sorted A[1],A[2],….A[n]
a. Pass 1: A[2] is compared with A[1] and placed them in sorted
order.
b. Pass 2: A[3] is compared with both A[1] and A[2] and inserted at
an appropriate
place. This makes A[1], A[2],A[3] as a sorted sub array.
c. Pass n-1: A[n] is compared with each element in the sub array

C203.5 BTL1

A [1], A [2] …A [n-1] and inserted at an appropriate position.
5 Define hashing.

Hash function takes an identifier and computes the address of
that identifier in the hash table using some function

C203.5 BTL1

6 What is the need for hashing?
Hashing is used to perform insertions, deletions and find in constant
average time.

C203.5 BTL1

7 Define hash function?
Hash function takes an identifier and computes the address of that
identifier in the hash table using some function.

C203.5 BTL1

8 List out the different types of hashing functions?
The different types of hashing functions are,

a. The division method
b. The mind square method
c. The folding method
d. Multiplicative hashing
e. Digit analysis

C203.5 BTL1

9 What are the problems in hashing?
a. Collision
b. Overflow

C203.5 BTL1

10 What are the problems in hashing?
When two keys compute in to the same location or address in

the hash table through any of the hashing function then it is termed
collision.

C203.5
BTL1

11 what is insertion sort? How many passes are required for the
elements to be sorted ?
one of the simplest sorting algorithms is the insertion sort. Insertion
sort consist of N-1 passes . For pass P=1 through N-1 , insertion
sort ensures that the elements in positions 0 through P-1 are in
sorted order .It makes use of the fact that elements in position 0
through P-1 are already known to be in sorted order .

C203.5
BTL1

12 Write the function in C for insertion sort ?
void insertionsort(elementtype A[] , int N)
{
int j, p;
elementtype tmp;
for(p=1 ; p <N ;p++)
{
tmp = a[p] ;
for (j=p ; j>0 && a [j -1] >tmp ;j--)
a [j]=a [j-1] ;
a [j] = tmp ;
}}

C203.5 BTL5

13 Who invented shellsort ? define it ?
Shellsort was invented by Donald Shell . It works by comparing
element that are distant . The distance between the comparisons
decreases as the algorithm runs until the last phase in which

C203.5 BTL1

adjacent elements are compared . Hence it is referred as
diminishing increment sort.

14 write the function in c for shellsort?
Void Shellsort(Elementtype A[],int N)
{
int i , j , increment ;
elementtype tmp ;
for(elementtype=N / 2;increment > 0;increment / = 2)
For(i= increment ; i <N ; i ++)
{
tmp=A[];
for(j=I; j>=increment; j - =increment)
if(tmp< A[]=A[j – increment];
A[j]=A[j – increment];
Else
Break;
A[j]=tmp;
}}

C203.5 BTL5

15 ferentiate between merge sort and quick sort?
Mergesort quick sort
1. Divide and conquer strategy Divide and conquer strategy
2. Partition by position Partition by value

C203.5 BTL4

16 Mention some methods for choosing the pivot element in quick
sort?
1. Choosing first element
2. Generate random number
3. Median of three

C203.5 BTL2

17 What are the three cases that arise during the left to right scan
in quick sort?
1. I and j cross each other
2. I and j do not cross each other
3. I and j points the same position

C203.5 BTL1

18 What is the need of external sorting?
External sorting is required where the input is too large to fit into
memory. So external sorting Is necessary where the program is too
large

C203.5 BTL1

19 What is sorting?
Sorting is the process of arranging the given items in a logical
order. Sorting is an example where the analysis can be precisely
performed.

C203.5 BTL1

20 What is mergesort?
The mergesort algorithm is a classic divide conquer strategy. The
problem is divided into two arrays and merged into single array

C203.5 BTL1

21 Compare the various hashing techniques.
 Technique Load Factor
 Separate chaining - close to 1
 Open Addressing - should not exceed 0.5
 Rehashing - reasonable load factor

C203.5 BTL2

22 Define collision in hashing.

 When two different keys or identifiers compute into the same
location or address in the hash table through any of the hashing
functions, then it is termed Collision.

C203.5 BTL1

23 Define Double Hashing.
 Double Hashing is a collision-resolution technique used in open
addressing category. In double hashing, we apply a second hash
function to x and probe at a distance of hash2 (x),
2hash2 (x)…………, and so on.

C203.5 BTL1

24 What are applications of hashing?
 The applications of hashing are,

● Compliers use hash table to keep track of declared variables
on source code.

● Hash table is useful for any graph theory problem, where
the nodes have real names instead of numbers.

● Hash tables are used in programs that play games.
● Online spelling checkers use hashing.

C203.5 BTL1

25 What does internal sorting mean?
 Internal sorting is a process of sorting the data in the
main memory

C203.5 BTL1

26 What are the various factors to be considered in deciding a
sorting algorithm?
 Factors to be considered in deciding a sorting algorithm are,
1. Programming time
2. Executing time for program
3. Memory or auxiliary space needed for the programs
environment.

C203.5 BTL1

27 How does the bubble sort get its name?
 The bubble sort derives its name from the fact that the
smallest data item bubbles up to the top of the sorted array.

C203.5 BTL1

28 What is the main idea behind the selection sort?
The main idea behind the selection sort is to find the smallest entry
among in a(j),a(j+1),……..a(n) and then interchange it with a(j).
This process is then repeated for each value of j.

C203.5 BTL1

29 Is the heap sort always better than the quick sort?
 No, the heap sort does not perform better than the quick sort.
Only when array is nearly sorted to begin with the heap sort
algorithm gains an advantage. In such a case, the quick deteriorates
to its worst performance of O (n2).

C203.5 BTL4

30 Name some of the external sorting methods.
 Some of the external sorting methods are,
1. Polyphase sorting
2. Oscillation sorting
3. Merge sorting

C203.5 BTL2

31 Define radix sort
Radix Sort is a clever and intuitive little sorting algorithm.

Radix sort ​is a on comparative integer sorting algorithm that sorts

C203.5 BTL1

data with integer keys by grouping keys by the individual digits
which share the same significant position

32 Define searching
Searching refers to determining whether an element is

present in a given list of elements
or not. If the element is present, the search is considered as
successful, otherwise it is considered as an unsuccessful search.
The choice of a searching technique is based on the following
factors
a. Order of elements in the list i.e., random or sorted
b. Size of the list

C203.5 BTL1

33 Mention the types of searching
The types are

● Linear search
● Binary search

C203.5 BTL2

34 What is meant by linear search?
Linear search ​or ​sequential search ​is a method for finding a
particular value in a list
that consists of checking every one of its elements, one at a time
and in sequence, until
the desired one is found.

C203.5 BTL1

35 What is binary search?
For binary search, the array should be arranged in ascending or
descending order.
In each step, the algorithm compares the search key value with the
middle element of the
array. If the key match, then a matching element has been found
and its index, or Position, is returned.
Otherwise, if the search key is less than the middle element, then
the algorithm repeats its action on the sub-array to the left of the
middle element or, if the search key is greater, on the sub-array to
the right.

C203.5 BTL1

36 What are the collision resolution methods?
The following are the collision resolution methods

● Separate chaining
● Open addressing
● Multiple hashing

C203.5 BTL1

37 Define separate chaining
It is an open hashing technique. A pointer field is added to

each record location, when an
overflow occurs; this pointer is set to point to overflow blocks
making a linked list. In this method, the table can never overflow,
since the linked lists are only extended upon the arrival of new
keys.

C203.5 BTL1

38 What is open addressing?
Open addressing is also called closed hashing, which is an
alternative to resolve the

C203.5 BTL1

Collisions with linked lists. In this hashing system, if a collision
occurs, alternative cells
are tired until an empty cell is found.
There are three strategies in open addressing:

● Linear probing
● Quadratic probing
● Double hashing

39 What is Rehashing?
If the table is close to full, the search time grows and may

become equal to the table size.
When the load factor exceeds a certain value (e.g. greater than 0.5)
we do
Rehashing: Build a second table twice as large as the original
and rehash there all the keys of the original table.
Rehashing is expensive operation, with running time O(N)
However, once done, the new hash table will have good
performance.

C203.5 BTL1

40 What is Extendible Hashing?
Used when the amount of data is too large to fit in main memory
and external storage is used.
N​ records in total to store, ​M​ records in one disk block
The problem​: in ordinary hashing several disk blocks may be
examined to find an element -
a time consuming process.
Extendible hashing​: no more than two blocks are examined.

C203.5 BTL1

PART -B
1 Explain the sorting algorithms C203.5 BTL2

2 Explain the searching algorithms C203.5 BTL5

3 Explain hashing C203.5 BTL5

4 Explain open addressing C203.5 BTL5

5 Write a C program to sort the elements using bubble sort, insertion
sort and radix sort.

C203.5 BTL5

6 Write a C program to perform searching operations using linear and
binary search.

C203.5 BTL5

7 n in detail about separate chaining. C203.5 BTL2

8 Explain Rehashing in detail. C203.5 BTL5

9 Explain Extendible hashing in detail. C203.5 BTL5

