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20. Define Universal quantification and Existential quantification. 

Ans: The Universal quantification of a predicate formula P(x) is the proposition, denoted by )( xxP that 

is true if P (a) is true for all subject a. 

The Existential quantification of a predicate formula P(x) is the proposition, denoted by )( xxP that is true 

if P(a) is true for some subject a. 

 PART – B 

1(a) What is meant by Tautology? Without using truth table, show that 

(( ) ( ( ))) ( ) ( )P Q P Q R P Q P R                 is a tautology. 

Solution: A Statement formula which is true always irrespective of the truth values of the individual 
variables is called a tautology. 

Consider  ( ( ) ( ( ) ( ) ( ) ( ) (1)P Q R P Q R P Q R P Q P R                    

Consider ( ) ( ) ( ) ( ) (( ) ( )) (2 )P Q P R P Q P R P Q P R                   

Using (1) and (2)  

(( ) ( ) ( )) (( ) ( ))

[( ) ( )] [( ) ( )]

         

         

P Q P Q P R P Q P R

P Q P R P Q P R T
 

1(b) Prove the following equivalences by proving the equivalences of the dual 

 
(( ) ( )) ( )P Q P Q P Q P         

 
Solution: It‟s dual is  

(( ) ( )) ( )P Q P Q P Q P         
 

Consider, 

(( ) ( )) ( )P Q P Q P Q P         
 

Reasons 

( ( ) ( ) ) ( )

( (Q ) ( Q )) ( )

( (Q Q ) P ) ( )

(T P ) ( )

P ( )

P Q P Q P Q

P P P Q

P Q

P Q

P Q

P

      

      

     

   

  



 

(Demorgan‟s law) 

(Commutative law) 

(Distributive law) 

( )P P T    

( )P T P   
(Absorption law) 

 

2(a) Prove that ( ) ( ) ( )P Q R Q P R Q      . 

Solution: 

( ) ( )P Q R Q    Reasons 

( ) ( )

( ) )

( )

P Q R Q

P R Q

P R Q

P R Q

     

    

   

  

 

Since  P Q P Q     

 

Distribution law 

 
Demorgan‟s law 

 

since  P Q P Q     
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2(b) Obtain DNF of ( ) (( ) )Q P R P R Q      . 

Solution:
 

( ) (( ) )     Q P R P R Q  
( ( )) ( (( ) ) (D e m o rg a n  la w )

( ( )) (( ) ) (D e m o rg a n  la w )

( ( )) ( ) (( ) ) (( ) )

(E x te n d e d  d is tr ib u te d  la w )

( ) ( ) ( ) (N e g a tio n  la w )

( ) (

      

        

                 

             

     

Q P R P R Q

Q P R P R Q

Q P R Q Q P R P R P R Q

P Q R F F R R P Q R

P Q R P ) (N e g a tio n  la w )  Q R

 

3(a) Obtain Pcnf and Pdnf of the formula ( ) ( )P Q P Q       

 Solution:   

Let S = )()( QPQP    

P Q  P  Q P  Q QP 

 

S Minterm Maxterm 

T T F F F F T QP    

T F F T T T T QP    

F T T F T T T QP    

F F T T T F F  QP   

 

 

 

 

 

 

 

 

PCNF: QP   and PDNF:  )( QP ( QP  )  ( ) P Q  
3(b) Obtain PDNF of    .P P Q P    

Solution: 

   ~ ( (~ ))

~ ( ~ ) ( )

(~ ) ( ~ ) ( )

(~ ( ~ ) ( ~ )) ( ( ~ ))

(~ ) (~ ~ ) ( ~ ) ( ) ( ~ )

(~ ) (~ ~ ) ( ~ ) ( )

P P Q P P P Q P

P P Q P P

P T P Q P P

P Q Q P Q P Q Q

P Q P Q P Q P Q P Q

P Q P Q P Q P Q

      

    

     

       

         

       

 

4(a) Without constructing the truth table obtain the product-of-sums canonical form of the formula 

).()( PQRP  Hence find the sum-of products canonical form. 

Solution: 

Let  

       

( ) ( )

( ( ) ) (( ) ( ))

( ) ( ) ( )

[( ) ] [( ) ] [( ) ]

[( ) ( ) [( ) ( )] [( ) ( )]

( ) ( ) ( ) ( )

( ) ( )

S P R Q P

P R Q P P Q

P R Q P P Q

P R F Q P F P Q F

P R Q Q Q P R R P Q R R

P R Q P R Q Q P R Q P R

P Q R P Q R

    

       

       

          

                

                

       

 

( ) ( ) ( ) ( ) ( )S P R Q P R Q P Q R P Q R P Q R                        (Pcnf) 
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       S  The remaining maxterms of P,Q and R.  

          S  ( )P Q R      )( RQP  ).( RQP   

              )( S Apply duality principle to S  

           S  ( )P Q R      ( )P Q R     ( )P Q R      (PDNF) 

4(b) Obtain the PDNF and PCNF of   ( ( ( ))).     P P Q Q R
 

Solution: 

( ( ( ) ) )

( ( ( ) ) )

( )

     

    

  

P P Q Q R

P P Q Q R

P Q R

 

 ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

(( ) ( ) ( )

( ) ( ) ( ) ( ))

( ) ( ) ( )

( ) ( ) (

  

               

                 

                 

                 

           

        

S P Q R

S P Q R P Q R P Q R

P Q R P Q R P Q R P Q R

S P Q R P Q R P Q R

P Q R P Q R P Q R P Q R

P Q R P Q R P Q R

P Q R P Q R ) ( )        P Q R P Q R

 

5(a) Using indirect method of proof, derive p   ~s  from the premises p  ( q r),  q  ~p, s  ~r and p. 

Solution: 

 Let   ~ ( p   ~s ) be an additional premise. 

~( p   ~s )  ~( ~p   ~s )    (p s) 
 

1) p  ( q r) Rule P 

2) p Rule P 

3) ( q r) Rule T,  1,2 

4) p s Rule AP 

5) s Rule T,4 

6) s  ~r Rule P 

7) ~r Rule T, 5, 6 

8) q Rule T3,7 

9) q  ~p Rule P 

10) ~P Rule T, 8, 9 

11) p  ~p Rule T, 2,10 

12) F Rule T, 11 
 

5(b) Prove that the premises  ( ), ( ), an d ( )a b c d b c a d       are inconsistent. 

Solution: 

 

{1} a d  Rule P 

{1} ,a d  
Rule T 

{3} ( )a b c 
 

Rule P 

{1,3} b c  Rule T 
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{1,3} b c   Rule T 

{6} ( )d b c    
Rule P 

{6} ( )b c d      
 Rule T 

{6} ( )b c d     
Rule T 

{1,3,6} d  Rule T 

{1,3,6} d d   Rule T 

 

 
 

 

 

 
 

 

This is a false value.  Hence the set of a premises are inconsistent 

 

6(a) Use the indirect method to prove that the conclusion ( )zQ z follows from the premises  

( ( ) ( ))x P x Q x  and (y)y P
 

Solution: 

1 ( )zQ z   P(assumed) 

2 ( )z Q z   T, (1) 

3 (y)y P  P 

4 (a )P  ES,  (3) 

5 (a )Q  US,  (2) 

6 (a ) (a )P Q   T, (4),(5) 

7 ( (a ) (a ))P Q   T, (6) 

8 ( ( ) Q (x ))x P x   P 

9 (a ) (a )P Q  
US, (8) 

10 (a ) (a ) ( (a ) (a ))P Q P Q     
T,(7),(9) contradiction 

Hence the proof. 

6(b) Show that R S  can be derived from the premises ( ), &P Q S R P Q     

Solution: 

R  Assumed premises 

R P   Rule P 

R P  Rule T 

P  Rule T 

( )P Q S   Rule P 

Q S  Rule P 

Q  Rule P 

S  Rule T 

R S  Rule CP 
 

7(a) Prove that xPxQx, xRx QxxRxPx . 
Solution: 

Step                      Derivation                       Rule 

1                  xPxQx P 

2                 xRxQx P 

3                 RxQx US, (2) 

4                 Rx P ( assumed) 

5                 Qx T,(3),(4) 
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6                 PxQx US, (1) 

7                Px T, (5),(6) 

8                  RxPx CP, (4),(7) 

9                xRxPx UG, (9) 
 

Hence the argument is valid 

7(b) Show that (  x) (P(x)  Q(x))     ( x) P(x)    ( x) Q(x)   

Solution: 

1) (  x) (P(x)  Q(x))   Rule P 

2) P(a)  Q(a) ES, 1 

3) P(a) Rule T, 2 

4) Q(a) Rule T, 2 

5) (  x) P(x) EG, 3 

6) (  x) Q(x)   EG, 4 

7) (  x) P(x)    ( x) Q(x)   Rule T, 5, 6 
 

8(a) Show that the following statements constitute a valid argument. 

If there was rain, then traveling was difficult. If they had umbrella, then traveling was not difficult. 

They had umbrella. Therefore there was no rain. 

Solution: 

Let    P : There was rain   Q : Traveling was difficult      R : They had umbrella     

Then, the given statements are symbolized as  

(1) P  Q    (2)  R  ~Q      (3) R 

Conclusion : ~P 

1) R Rule P 

2) R   ~ Q Rule P 

3) ~ Q Rule T,1,2 

4) P   Q Rule P 

5) ~ P Rule T,3,4 

Therefore, it is a valid conclusion. 

 

8(b) Show that the following premises are inconsistent. 

(1) If Nirmala misses many classes through illness then he fails high school. 

(2) If Nirmala fails high school, then he is uneducated. 

(3) If Nirmala reads a lot of books then he is not uneducated. 

(4) Nirmala misses many classes through illness and reads a lot of books.  
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Solution: 

E :  Nirmala misses many classes 

S:  Nirmala fails high school 

A:  Nirmala reads lot of books 

H:  Nirmala is uneducated 

Statement:  

(1) SE   

(2) HS   

(3) HA ~  

(4) AE   

Premises are : AEHAHSSE  ,~,,  

1) SE   Rule P 

2) HS   Rule P 

3) E  H Rule T, 1,2 

4) HA ~  Rule P 

5) H ~A Rule T,4 

6) E ~A Rule T,3,5 

7) AE ~~   Rule T,6 

8) ~(E  A) Rule T,7 

9) E  A Rule P 

10) (E  A)   ~ (E  A) Rule T,8,9 

 Which is nothing but false  

Therefore given set of premises are inconsistent 

 

9(a) Show that the hypotheses,”It is not sunny this afternoon and it is colder than yesterday,” ” We will 

go swimming only if it is sunny,” “If we do not go swimming then we will take a canoe trip,” and “If 

we take a canoe trip, then we will be home by sunset “lead to the conclusion “we will be home by 

sunset”. 

Solution: 

p – It is sunny this afternoon. 

q- It is colder than yesterday 
r- we will go swimming 

s- we will take a canoe trip 

t- we will be home by sunset 

The given premises are , , &p q r p r s s t       

Step  Reason 
p q   Hypothesis 
p  step 1 

r p  Hypothesis 

r  moduus tollens step 2 &3 
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r s   Hypothesis 

s modus ponens step 4 &5 

s t  Hypothesis 

t modus ponens step 6&7 

 

9(b) Prove that 2 is irrational by giving a proof using contradiction. 

Solution: 

Let P: 2  is irrational. 

Assume ~P is true, then 2  is rational, which leads to a  contradiction. 

By our assumption is 
b

a
2 , where a and b have  no common factors ---------------(1) 

                               
2

2

2

b

a
      

22
2 ab     a

2
  is even.   a = 2c 

                             
22

42 cb      
22

2 cb           
2

b is even      b is  even as well. 

                              a and b have common factor 2  (since a and b are even) 
                    But it contradicts (1) 

                   This is a contradiction. 

Hence ~P is false. 

Thus P: 2  is irrational is true. 

10(a) Let p, q, r be the following statements: 

p: I will study discrete mathematics 

q: I will watch T.V. 

r: I am in a good mood. 

Write the following statements in terms of p, q, r and logical connectives. 

(1) If I do not study and I watch T.V., then I am in good mood. 

(2) If I am in good mood, then I will study or I will watch T.V. 

(3) If I am not in good mood, then I will not watch T.V. or I will study. 

(4) I will watch T.V. and I will not study if and only if I am in good mood. 

Solution: 

(1) ( )

( 2 ) ( )

(3 ) ( )

( 4 ) ( )

p q r

r p q

r q p

q p r

  

 

   

  
 

10(b) Give a direct proof of the statement.”The square of an odd integer is an odd integer”. 

Solution: 

Given: The square of an odd integer is an odd integer”. 

P: n is an odd integer. 

Q:n
2
 is an odd integer 

Hypothesis: Assume that P is true 

Analysis : n=2k+1 where k is some integer. 

                  n
2
=(2k+1)

2
=2(2k

2
+2k)+1 

Conclusion: n
2
 is not divisible by 2.Therefore n

2
 is an odd integer.  

                    
P Q  is true. 
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 UNIT II COMBINATORICS 
 PART – A 
1. State pigeon hole principle. 

Ans: If (n+1) pigeons occupies n holes then at least one hole has more than 1 pigeon. 

2. State the generalized pigeon hole principle. 

Ans: If m pigeons occupies n holes (m>n), then at least one hole has more than 
1

1
 


 
 

m

n
 pigeons. 

3. Show that, among 100 people, at least 9 of them were born in the same month. 

Ans: Here no.of pigeon =m= no. of people =100 

No. of holes = n= no. of month =12 

Then by generalized pigeon hole principle, 
1 0 0 1

1 9
1 2

 
 

 
 

 were born in the same month.  

4. In how many ways can 6 persons occupy 3 vacant seats? 

Ans: Total no of ways =
3

6 c = 20 ways. 

5. How many permutations of the letters in ABCDEFGH contain the string ABC . 

Ans: Because the letters ABC must occur as block, we can find the answer by finding no of permutation of 

six objects, namely the block ABC and individual letters D,E,F,G and  H . Therefore, there are 6! =720 

permutations of the letters in ABCDEFGH which contains the string ABC. 

6. How many different bit strings are there of length 7? 

Ans: By product rule, 2
7
=128 ways 

7. How many ways are there to form a committee, if the committee consists of 3 educationalists and 4 

socialist, if there are 9 educationalists and 11 socialist? 

Ans: The 3 educationalist can be chosen from 9 educationalists in 
3

9 c  ways. 

The 4 socialist can be chosen from 11 socialist in 11C4 ways. 

By product rule, the no of ways to select, the committee is = 9C3.11C4 = 27720 ways.  

8. There are 5 questions in a question paper in how many ways can a boy solve one or more questions? 

Ans: The boy can dispose of each question in two ways .He may either solve it or leave it.  

Thus the no. of ways of disposing all the questions=
5

2 . 

But this includes the case in which he has left all the questions unsolved. 

The total no of ways of solving the paper =
5

2 1  = 31. 

9. If the sequence  3 2 1. ,
n

n
a n   , then find the corresponding recurrence relation. 

Ans: For n ≥ 1  3 .2
n

n
a  , 

1

1

2
3 .2 3 .

2

n

n

n
a




    

1

2

n

n

a
a


  

1
2

n n
a a


  

  
1

2
n n

a a


 , for n≥1,  with
0

3a  . 

10. If seven colours are used to paint 50 bicycles, then show that at least 8 bicycles will be the same 

colour. 

Ans: Here, No. of  Pigeon = 𝑚 = No. of bicycle=50 

No. of Holes =  𝑛 = No. of colours = 7 

By generalized pigeon hole principle, we have 
5 0 1

1 8
7

 
 

 
 
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11. Find the recurrence relation whose solution is 5 2( ) .
k

S k   

Ans:  Given  ( ) 5 .2
k

S k  
1

( 1) 5 .2
k

S k


    = 
5

.2
2

k
   2 ( 1) 5 .2 ( )

k
S k S k      

2 ( 1) ( ) 0 , (0 ) 5S k S k w ith S     is the required recurrence relation.  

12. Find the associated homogeneous solution for 
1

3 2
n n

a a n


  . 

Ans: Its associated homogeneous equation is 
1

3 0
n n

a a


   

Its characteristic equation is r-3 =0  r =3 

Now, the solution of associated homogeneous equation is .3
n

n
a A  

13. Solve 7 1 1 0 2 0( ) ( ) ( )S k S k S k      

Ans: The associated homogeneous relation is ( ) 7 ( 1) 1 0 ( 2 ) 0S k S k S k      

Its characteristic equation is  
2

7 1 0 0r r    ( 2 )( 5 ) 0r r      r =2,5 

The solution of associated homogeneous equation is .2 .5
k k

k
S A B   

14. Define Generating function. 

Ans: The generating function for the sequence„s‟ with terms
0 1

, , . . . . . . . . .
n

a a a …,of real numbers is the 

infinite sum .  G(x) = G(s,x) = 
0 1

. . . . . . . . . . . . . .
n

n
a a x a x        =

0

n

n

n

a x





 . 

15. Find the generating function for the sequence „s‟ with terms 1,2,3,4……..  

Ans: 
0

( ) ( , ) ( 1)
n

n

G x G s x n x





     =
2

1 2 3 ..........x x      = 
2

2

1
(1 )

(1 )
x

x


 


. 

16. How many permutations of (a, b, c, d, e, f, g) end with a?      [November 2014] 

Ans: 6! 1!=720          

17. Find the number of arrangements of the letters in MAPPANASSRR.  

Ans: Number of arrangements 
1 1! 3 9 9 1 6 8 0

3 ! 2 ! 2 ! 4 8
   

18. In how many ways can letters    of the word “INDIA” be arranged? 

Ans: The word contains 5 letters of which 2 are I‟s. 

 The number of words possible   =
5 !

6 0
2 !

 . 

19. How many students must be in a class to guarantee that atleast two students receive the same score 

on the final exam if the exam is graded on a scale from 0 to 100 points. 

Ans: There are 101 possible scores as 0, 1, 2, …,100. By Pigeon hole principle, we have among 102 

students there must be atleast two students with the same score. The class should contain minimum 102 

students. 

20 Show that among any group of five (not necessarily consecutive) integers, there are two with same 

remainder when divided by 4. 

Ans: Take any group of five integers. When these are divided by 4 each have some remainder. 

Since there are five integers and four possible remainders when an integer is divided by 4, the 

pigeonhole principle implies that given five integers, atleast two have the same remainder. 
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 PART – B 

1(a) 
Using Mathematical induction prove that  

2

1

1 2 1

6

( ) ( )
n

i

n n n
i



 
  

Solution: 

Let P(n) : 1
2
 + 2

2
 + …..+ n

2
 = 

6

)12()1(  nnn
 

(1) Assume P(1) : 1
2
 = 

6

)11.2()11(1 
 is true 

(2) Assume P(k) : 1
2
 + 2

2
 + …..+k

2
 = 

6

)12()1(  kkk
 is true, where k is any integer. 

(3) P(k + 1) = 1
2
 + 2

2
 + …..+k

2
 + (k + 1)

2
 =  

2
)1(

6

)12()1(



k

kkk
 

                                   = 
6

]1)1(2[(]1)1([)1(  kkk
 

Therefore P(k + 1) is true. 

Hence, 





n

i

nnn
i

1

2

6

)12()1(
 is true for all n. 

1(b) 
Use mathematical Induction to prove that 3

n
  7

n
  2 is divisible by 8, for n 1. 

Solution: 

Let Pn : 3
n

  7
n

  2 is divisible by 8. 

(i) P1 : 3
1

  7
1

  2 8 is divisible by 8, is true. 

(ii) Assume Pk  : 3
k

  7
k

  2 is divisible by 8 is true ------(1) 

Claim: Pk 1 is true 

Pk 1  3
k+1

  7
k+1

  2 

 33
k
 7 7

k
  2 

 3.3
k
 37

k
 47

k
 6  4 

 33
k
 7

k
  2 47

k
1

 47
k
1 is divisible by 8 and by (1) 33

k
  7

k
  2 is divisible by 8. 

Pk 1  33
k

  7
k

  2 47
k

  1 is divisible by 8 is true. 

2(a) Prove by mathematical induction that 
2 2 1

6 7
n n 

  is divisible by 43 for each positive integer n. 

Solution:  

S(1): Inductive step: for 𝑛 =  1, 

      
1 2 2 1

6 7
 

 =559, which is divisible by 43 

So  S(1) is true. 

Assume S(k) is true (i.e) 
2 2 1

6 7 4 3
k k

m
 

   for some integer m. 
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To prove S(k+1) is true.Now  
3 2 3 3 2 1 2

2 2 1 2 1

2 1

2 1

6 7 6 7 .7

6 (6 7 ) 4 3 .7

6 .4 3 4 3 .7

4 3(6 7 )

k k k k

k k k

k

k

m

m

   

  





  

  

 

 

 

Which is divisible by 43. 

So S(k+1) is true. By Mathematical Induction , S(n) is true for all integer n. 

2(b) Using mathematical induction ,prove that                  

 Let p (n) = . 

 Assume p (1):  is true. 

 Assume p(k) :  is true 

 Claim  p(k+1) is true. 

 P(k+1) :  2 3 1
2 2 2 ... 2 2

k k 
        =    =    =   

 P(k+1) is true.  

Hence it is true for all n. 

3(a) Suppose there are six boys and five girls,  

(1) In how many ways can they sit in a row. 

(2) In how many ways can they sit in a row, if the boys and girls each sit together. 

(3) In how many ways can they sit in a row, if the girls are to sit together and the boy don‟t sit 

together. 

(4) How many seating arrangements are there with no two girls sitting together. 

Solution: 

1.  There are 6 + 5 = 11 persons and they can sit in 11P11 ways. 
     11P11 = 11! ways 

2.  The boys among themselves can sit in 6! ways and girls among themselves can sit in 5! ways.They can 

be considered as 2 units and can be permuted in 2! ways.   

      
Thus the required seating arrangement can be done in = 2! x 6! x 5! ways 

                                                                                            = 172800 ways 

3.  The boys can sit in 6! Ways and girls in 5! ways. 
     Since girls have to sit together they are considered as one unit.  Among the 6 boys either 0 or 1 or 2  or 3 

or 4 or 5 or 6 have to sit to the left of the girls units.  Of these seven ways 0  and 6 cases have to be omitted 

as the boys do not sit together.Thus the required number of arrangements = 5 x 6! x 5!  =  432000 ways. 

4.  The boys can sit in 6 ! ways.  There are seven places where the girls can be placed.  Thus the total 
arrangements are 7P5 x 6! Ways = 1814400 ways. 

3(b) A bit is either 0 or 1 . A byte is a sequence of 8 bits. Find the number of bytes.Among these how many 

are (i) Starting with 11 and ending with 00 (ii) Starting with 11 but not ending  with 00. 

Solution:  

(1) Consider a byte starting with 11 and ending with 00.Now the remaining 4 places can be filled with 

either 0 or 1 which can be done in 2
4
.Hence there are 16 bytes starting with 00 and ending with11. 

(2) Consider a byte starting with 11 and not ended with 00 Now there are 3 bytes which is not ended with 
00(ended with 01,10 and 11).Now the remaining 4 places can be filled with either 0 or 1 which can be done 

in 2
4
ways.Hence there are 3×16=48  bytes starting with 00 but not  ending with11 

4(a) How many positive integers 'n ' can be formed using the digits 3,4,4,5,5,6,7 if 'n ' has to exceed 

50,00,000 ? 

Solution: 

Consider a 7digit number  
1 2 3 4 5 6 , 7
, , , , ,p p p p p p p , in order to be a number ≥ 5000000 , 

1
p is filled with 

2 3 1
2 2 2 ......... 2 2 2

n n 
     

2 3
2 2 2 ......... 2

n
   

1 1 1
2 2 2


 

2 3 1
2 2 2 ......... 2 2 2

k k 
     

1 1
2 2 2

k k 
 

1
2 .2 2

k 


2
2 2

k 

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either 5 or 6 or 7 (mutually exclusive) 

Case(1): 
1

p is filled with 5 and remaining 6 position are filled with 3, 4, 4(repeated),5,6,7 in =
6 !

3 6 0
2 !

  

Case(2): 
1

p is filled with 6 and remaining 6 positions are filled with 3,4,4 (repeated) 5,5 (repeated), 7 in 

=
6 !

1 8 0
2 ! 2 !

  

Case(3) 
1

p is filled with 7 and remaining 6 position are filled with 3,4,4(repeated),5,5 (repeated), 6 in 

=
6 !

1 8 0
2 ! 2 !

  

All above 3 cases are mutually exclusive in total 360+180+180=720 ways. 

4(b) Prove that in any group of six people there must be atleast three mutual friends or three mutual 

enemies.  

Proof: 
Let the six people be A, B, C, D, E and F. Fix A. The remaining five people can accommodate into two 

groups namely  

(1) Friends of A and   (2) Enemies of A  

Now by generalized Pigeon hole principle, at least one of the group must contain 31
2

15








 
people. 

Let the friend of A contain 3 people.(Let it be B, C, D) 

Case(1) If any two of these three people (B, C, D) are friends, then these two together with A form three 

mutual friends. 
Case(2) If no two of these three people are friends, then these three people (B, C, D) are mutual enemies.  

In either case, we get the required conclusion.  

If the group of enemies of A contains three people, by the above similar argument, we get the required 
conclusion.  

5(a) A computer password consists of a letter of English alphabet followed by 2 or 3 digits. Find the 

following : 

(1) The total number of passwords that can be formed 

(2) The number of passwords that no digit repeats. 

Sol: (1) Since there are 26 alphabets and 10 digits and the digits can be repeated by the product rule the 

number of 3-character password is 26.10.10=2600 
Similarly the number of 4 character password is 26.10.10.10=26000 

Hence the tool number of password is 2600+26000=28600. 

(2) Since the digits are not repeated, the first digit after alphabet can be taken from any one out of 10, the 

second digit from remaining 9 digits and so on. 
Thus the number of 3-character password is 26.10.9=2340 

Similarly the number of 4- character password is 26.10.9.8=18720 

Hence the total number of password is 2340+18720=21060. 

5(b) Show that among (𝒏 + 𝟏) positive integers not exceeding 2n there must be an integer that 

divides one of the other integers. 

Solution: 

Let the (𝑛 + 1)  integers be 
1 2 1
, , . . .

n
a a a


 

Each of these numbers can be expressed as an odd multiple of a power of 2. 

i.e 2
k i

i i
a m   

Where 
i

k  non negative integer 

i
m odd integer where i =1, 2,3,..., n +1. 
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Here, Pigeon=The odd positive integers 
1 2 1
, , . . .

n
m m m


less than 2n 

Pigeon= 'n ' odd positive integer less than 2n . 

Hence by pigeon hole principle, 2 of the integers must be equal. 

Now 2
k i

i i
a m  and 2

kj

j j
a m  

2
( )

2

k i

i

i jk j

j

a
m m

a
   

Case-1: If 
i j

k k  then 2 i
k

 divides 2
j

k

and hence 
i

a  divides 
j

a . 

Case-2: If 
i j

k k  then 
j

a  divides 
i

a . 

6(a)  In A survey of 100 students, it was found that 30 studied Mathematics, 54 studied Statistics, 25 

studied Operations Research, 1 studied all the three subjects, 20 studied Mathematics and Statistics, 

3 studied Mathematics and Operation Research and 15 studied Statistics and Operation Research. 

Find how many students studied none of these subjects and how many students studied only 

Mathematics? 

Solution. 

n(A) = 30; n(B) = 54;n(C) = 25;  

n(AB) = 20;  n(AC) = 3;  n(BC) = 15;  

n(ABC)=1  

n(ABC) = n(A)+n(B)+n(C) – n(AB) – n(BC) – n(AC) + n(ABC) = 72 

None of the subjects = 28. 

Only mathematics = 8. 

6(b) A total of 1232 students have taken a course in Spanish, 879 have taken a course in French, and 114 

have taken a course in Russian. Further, 103 have taken courses in both Spanish and Russian, 23 

have taken courses in both Spanish and French and 14 have taken courses in both French and 

Russian. If 2092 students have taken atleast one of Spanish, French and Russian, how many students 

have taken a course in all three languages? 

Solution: S-Spanish,F-French, R-Russian 

|S|=1232     |F|=879    |R|=114    |S∩R|=103     |S∩F|=23       |F∩R|=14 

|S∪F∪R|=2092 

|S∪F∪R=|S|+|F|+|R|-|S∩F|- |S∩R|-|F∩R|+|S∩F∩R| 

 |S∩F∩R|=7 

7(a) Find all the solution of the recurrence relation an = 5an–1 – 6 an–2 + 7
n
 

Solution: 

Given non-homogeneous equation can be written as an – 5an–1 + 6 an–2 – 7
n
 = 0 

Now, its associated homogeneous equation is an – 5an–1 + 6 an–2 = 0 

Its characteristic equation is r
2 
– 5r + 6 = 0 

Roots are r = 2,3 

Solution is 
nnh

n
cca 32

21

)(
  

To find particular solution 

Since F(n) = 7
n
, then the solution is of the form C.7

n
, where C is a constant. 

Therefore, the equation an = 5an–1 – 6 an–2 + 7
n
 becomes C7

n
 = 5C7

n–1
–6C7

n–2
+7

n
  ……(1) 

Dividing the both sides of (1) by 7
n–2

. 

(1) 
22

2

2

1

2
7

7

7

76

7

75

7

7.












n

n

n

n

n

n

n

n
CCC


20

49
C  
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Hence the particular solution is 
np

n
a 7

20

49)(









  

Therefore, 
nnn

n
cca 7

20

49
)3()2(

21 









 
7(b) Find the number of integers between 1 and 250 that are not divisible by any of the integers 2, 3, 5 &7. 

Sol: Let A, B, C,D are the set of integers between 1 and 250 that are divisible by 2, 3, 5, 7 respectively. 

      

35]
7

250
[||,50]

5

250
[||

83]
3

250
[||,125]

2

250
[||





DC

BA

 

16
15

250

35

250

)5,3(

250
||

17
14

250

72

250

)7,2(

250
||

25
10

250

52

250

)5,2(

250
||

41
6

250

32

250

)3,2(

250
||













































































































































LCM
CB

LCM
DA

LCM
CA

LCM
BA

 

          

2 5 0 2 5 0 2 5 0
| | 1 1

(7 , 3 ) 7 3 2 1

2 5 0 2 5 0 2 5 0
| | 7

(5 , 7 ) 5 7 3 5

B D
L C M

C D
L C M

     
         

    

     
         

    

 

           

1
7532

250

)7,5,3,2(

250
||

2
753

250

)7,5,3(

250
||

3
752

250

)7,5,2(

250
||

5
732

250

)7,3,2(

250
||

8
532

250

)5,3,2(

250
||

























































































































LCM
DCBA

LCM
DCB

LCM
DCA

LCM
DBA

LCM
CBA

 

| | | | | | | | | | | | | | | | | |

| | | | | | | | | |

| | | |

              

            

      

A B C D A B C D A B A C A D B C

B D C D A B C A B D A C D

B C D A B C D

                   

=125+83+50+35-41-25-17-16-11-7+8+5+3+2-1=193 

The number of integers between 1 and 250 that is divisible by any of the integers 2, 3, 5 and 7=193 
Therefore not divisible by any of the integers 2, 3, 5 and 7=250-193=57. 
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8(a) Solve the recurrence relation )(2
21 


nnn

aaa where 𝒏 ≥ 𝟐 and 2,1
10
 aa  

 
022

)(2

21

21









nnn

nnn

aaa

aaa
 

The characteristic equation is given by  

      

nn
iBiAa

ii

i
i

)1()1( isSolution 

1,1

1
2

22

2

)2(442

022

n

2





















 

  Where A and B are arbitrary constants  

   Now, we have  

    

















x

y

ir

iyxz

1
tan

]sin[cos



  

By Demoivre‟s theorem we have,  

     































4
sin

4
cos]2[)1(and

4
sin

4
cos]2[

]
4

sin
4

cos2[)1(







n
i

n
i

n
i

n

ii

nn

n

nn

  

Now, 

1 2

[[ 2 ] c o s s in ] [[ 2 ] c o s s in ]
4 4 4 4

[ 2 ] ( ) c o s ( ) s in
4 4

[ 2 ] c o s s in ] (1)
4 4

n n

n

n

n

n

n n n n
a A i B i

n n
A B i A B

n n
a C C

   

 

 

   
      

   

 
    

 

 
   

 

 

Is the required solution. Let 
1

C =𝐴 + 𝐵,     
2

C =𝑖(𝐴 − 𝐵) 

Since 𝑎0 = 1, 𝑎1 = 2 
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1

2

]

2

1
sin

2

1
22

]
4

sin
4

cos]2[

1

0]0sin0cos)[2()1(

2

21

21

21

1

1

1

210































C

CC

CC

CCa

C

CCa



 

]
4

sin
4

cos]2[ 









 nn
a

n

n

 
 

8(b) Solve the recurrence relation of the Fibonacci sequence of numbers 2,
21




nfff
nnn

      with initial conditions 1,1
21
 ff . 

Sol: The sequence of Fibonacci numbers satisfies the recurrence relation  

        )1(.....
21 


nnn

fff       and satisfies the initial conditions 1,1
21
 ff . 

         )2...(0)1(
21


 nnn
fff  

          Let 𝑓𝑛 = 𝑟𝑛  be a solution of the given equation. 

         The characteristic equation is 𝑟2 − 𝑟 − 1 = 0 

          

)4...(2)51()51(

1
2

51

2

51
1

)3...(
2

51

2

51

 By theorem

2

51
,

2

51
Let 

2

411

21

2111

21

21
















 














 














 














 



















ff

f

rr

r

nn

n

 

 

)5...(4)51()51(

1
4

)51(

4

)51(

1
2

51

2

51
1

2

2

1

2

2

2

2

1

2

2

2

122
























 














 






ff
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2

1 2

1

1

1

1

2

2

2

( 4 ) (1 5 )

(1 5 ) (1 5 ) (1 5 ) 2 (1 5 ) .. .( 6 )

(6 ) (5 ) (1 5 )[1 5 1 5 ] 2 2 5 4

(1 5 )[ 2 5 ] 2 2 5

(1 5 )[ 2 5 ] 2 (1 5 )

1

5

1
4 ) (1 5 ) (1 5 ) 2

5

1
1 (1 5 ) 2

5

1
(1 5 ) 2 1

5

1
1

5

  

     

        

    

    



    

   

   

 

 















 

2

2

5 1
(1 5 )

5

1

5

1 1 5 1 1 5
(3)

2 25 5

n n

n
f






 




     
     

   
   

 

 

9(a) Solve the recurrence relation 15 and5,2with 6116
210321



aaaaaaa

nnnn
  

[November 2014] 

Solution: 

The unique Solution to this recurrence relation and the given initial condition is the sequence {
n

a } with 

1 2 2 .3
n n

n
a     

9(b) A factory makes custom sports cars at an interesting rate. In the first month only one car is made, in 

the second month two cars are made and so on, with n cars made in the nth month. 

(1) Set up recurrence relation for the number of cars produced in the first n months by this factory. 

(2) How many cars are produced in the first year? 

Solution: 

(i) 
1 1 2 1

, 0 ( 1, 2 , )
n n o

a n a a a a a e tc


       

(ii) By recursively 
1 2

7 8a   

10(a) Solve 𝑺(𝒏 + 𝟏) − 𝟐𝑺(𝒏) = 𝟒𝒏,  with 𝑺(𝟎) = 𝟏 and 𝒏 ≥ 𝟏 

Solution: Given        𝑎𝑛+1 − 2𝑎𝑛 − 4𝑛 = 0 

                 Multiply by 
n

x , and sum over all 0 ton   . 
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1

0 0 0

2 4 0

1 3
( )

(1 2 )(1 4 )

n n n n

n n

n n n

a x a x x

x
G x

x x

  



  

  




 

  
 

By Applying Partial fractions we get 
1 1

,
2 2

A B   

0 0

1 1

1 1
( ) 2 4

2 2

h e n c e  w e  g e t

2 2 ( 4 )

n n n n

n n

n n

n

G x x x

a

 

 

 

 

 

 

  

10(b) Find the generating function of Fibonacci sequence.   

Solution 

Fibonacci sequence : 
1 2

, 2
n n n

f f f n
 

    with 
1

0 , 1
o

f f   

Multiply by 
n

z , and sum over all 2n  . 

1 2

2 2 2

2

0 1 0
( ) ( (z ) ) ( ( ))

n n n

n n n

n n n

f z f z f z

G z f f z z G f z G z

  

 

  

 

    

  
 

Where 

0

2

0 1 0

2

( )

( . ) ( ) ( ) ( )

( )
1

n

n

n

G z f z

i e G z z G z z G z f f z z f

z
G z

z z







    


 



 

 UNIT III GRAPH THEORY 
 PART – A 
01. Define Graph. 

Ans: A graph G = (V,E) consists of a finite non empty set V, the element of which are the vertices of G, 

and a finite set E of unordered pairs of distinct elements of V called the edges of G. 

02. Define complete graph. 

Ans: A graph of n vertices having each pair of distinct vertices joined by an edge is called a Complete 

graph and is denoted by Kn. 

03. Define regular graph. 

Ans: A graph in which each vertex has the same degree is called a regular graph. A regular graph has k – 

regular if each vertex has degree k. 

04. Define Bipartite Graph with example. 

Ans: Let G = (V,E) be a graph. G is bipartite graph if its vertex set V can be partitioned into two nonempty 

disjoint subsets V1 and V2 , called a bipartition, such that each edge has one end in V1 and in V2 . For eg 

6
C  

 

 

 

 

V1 

V2 V3 

V4 

V6 V5
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1(b) In any graph show that the number of odd vertices is even. 

Let G = (V, E) be the undirected graph. Let 𝑣1 and 𝑣2  be the set of vertices of G of even and odd degrees 

respectively.  Then by hand shaking theorem,  

2e = 

1 2

d eg ( ) d eg ( )

i j

i j

v v v v

v v

 

  .  Since each deg(vi) is even, 

1

d eg ( )

i

i

v v

v



 is even.  Since LHS is even, we 

get 

2

d eg ( )

j

j

v v

v



 is even.  Since each deg(vj) is odd, the number of terms contain in 

2

d eg ( )

j

j

v v

v



 or v2 is  

 

even, that is, the number of vertices of odd degree is even. 

2(a) Prove that a simple graph with at least two vertices has at least two vertices of same degree. 

Proof: 
Let G be a simple graph with n   2 vertices. 

The graph G has no loop and parallel edges. Hence the degree of each vertex is   n-1. 

Suppose that all the vertices of G are of different degrees. 
Following degrees 0, 1, 2, …, n-1 are possible for n vertices of G. 

Let u be the vertex with degree 0. Then u is an isolated vertex. 

Let v be the vertex with degree n-1 then v has n-1 adjacent vertices. 
Because v is not an adjacent vertex of itself, therefore every vertex of G other than u is an adjacent vertex 

of G. 

Hence u cannot be an isolated vertex, this contradiction proves that simple graph contains two vertices of 

same degree. 

2(b) 
Prove that the maximum number of edges in a simple graph with n vertices is 

2

( 1)

2
c

n n
n


  

Proof: 

We prove this theorem, by the method of mathematical induction.  For 𝑛 =  1, a graph with 1 vertex has 

no edges.  Therefore the result is true for n = 1. 

For n = 2, a graph with two vertices may have atmost one edge.  Therefore 2 (2 –1) / 2 = 1.   
Hence for n = 2, the result is true. 

Assume that the result is true for n = k, i.e, a graph with k vertices has atmost 
2

)1( kk
edges. 

Then for n = k + 1, let G be a graph having n vertices and G be the graph obtained from G, by deleting one 

vertex say, „v‟  V(G). 

Since G has k vertices then by the hypothesis, G has atmost 
2

)1( kk
edges. Now add the vertex v to G. 

„v‟ may be adjacent to all the k vertices of G. 

Therefore the total number of edges in G are 
2

)1( kk
 + k = 

2

)1( kk
.   

Therefore the result is true for n = k+1. 

Hence, the maximum number of edges in a simple graph with „n‟ vertices is 
2

)1( nn
. 

3(a) 
Show that a simple graph G with n vertices is connected if it has more than 

( 1 )(n 2 )

2

n
ed g es

 

 
Proof: 

Suppose G is not connected. Then it has a component of k vertices for some k,  
The most edges G could have is 
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2

2

( 1) ( )( 1)
( , 2 ) ( , 2 )

2

2

k k n k n k
C k C n k

n n
k n k

    
  


  

 

This quadratic function of f is minimized at k = n/2 and maximized at k = 1 or k = n – 1 

Hence, if G is not connected, then the number of edges does not exceed the value of this function at 1 and 

at n-1, namely 
( 1)(n 2 )

.
2

n  
 

3(b) If a graph G has exactly two vertices of odd degree, then prove that there is a path joining these two 

vertices. 

Proof: 

Case (i): Let G be connected. 
Let v1 and v2 be the only vertices of G with are of odd degree. But we know that number of odd vertices is 

even. So clearly there is a path connecting v1 and v2, because G is connected. 

Case (ii): Let G be disconnected 
Then the components of G are connected. Hence v1 and v2 should belong to the same component of G. 

Hence, there is a path between v1 and v2. 

4(a) 
Prove that a simple graph with n vertices and k components can have at most 

2

1knkn ))(( 

edges. 

Let the number of vertices of the ith component of G be 𝑛𝑖 , 𝑛𝑖 ≥ 1..  

Then 

1 1

2

2 2

1

2 2 2 2 2 2

1 1

( 1) ( )

( 1) 2

th a t is ( 1) 2 2 2

k k

i i

i i

k

i

i

k k

i i

i i

n n n n k

n n n k k

n n n k k n n n k k n k

 



 

    

 
     

 

         

 



 

 

Now the maximum number of edges in the ith component of G = 





k

i

i

ii n
n

nn

1

2

22

1

2

)1(
 

2 2
( 2 2 ) ( )( 1)

2 2 2

n n k k n k n n k n k      
    

4(b) If all the vertices of an undirected graph are each of degree k, show that the number of edges of the 

graph is a multiple of k. 
Solution: Let 2n be the number of vertices of the given graph….(1) 

Let 
e

n be the number of edges of the given graph. 

By Handshaking theorem, we  have 
2

1

d e g 2

2 2 (1)

n

i e

i

e

e

v n

n k n

n n k











 

Number of edges =multiple of 𝑘. 
Hence the number of edges of the graph is a multiple of k 
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5(a) Draw the graph with 3 vertices A,B,C, D & E such that the deg(A)=3,B is an odd vertex, deg(C)=2 

and D and E are adjacent. 

Solution: 

d(E)=5 ,d(C)=2,d(D)=5 ,d(A)=3  d(B)=1 

 

 
 

5(b) Draw the complete graph 
5

K  with vertices A,B,C,D,E. Draw all complete sub graph of 
5

K  with 4 

vertices. 

Solution: 

 
complete sub graph with 4 vertices  

 

 

                                         
 

6(a) Prove that a given connected graph G is Euler graph if and only if all vertices of G are of even 

degree.  

Solution: 

Case (i) Prove If G is Euler graph→ Every vertex of G has even degree. 

Case (ii) Prove If  Every vertex of G has even degree.→  G is Euler graph ( by Contradiction Method). 
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6(b) Find the adjacency matrix of the given directed graph. 

(i)                                                             (ii) 

  
Answer: 

0 2 0 0 0 0

1 1 0 1 2 0 1 1 0 0

0 0 0 1 0 1 2 1 0 0
( ) ( )

0 0 0 0 0 1 1 2 0 0

1 0 1 0 0 0 0 0 0 3

0 0 0 1 3 0

i i i

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

7(a) Show that isomorphism of simple graphs is an equivalence relation.     [November 2014] 

Solution: 

G is isomorphism to itself by the identity function, So isomorphism is reflexive. Suppose that G is 

isomorphic to H.Then there exists a one –to-one correspondence f from G to H that preserves adjacency  

and nonadjacency.It follows  that 
1

f


 is a one-to-one correspondence from H to G that preserves adjacency 

and non-adjacency.Hence isomorphism is symmetric.If G is isomorphic to H and H is isomorphic to K then 

there are ono-to-one correspondences f and g from G to H and from H to K that preserves adjacency and 

nonadjacency.It follows that g f is a one-to-one correspondencies from G to K that preserves adjacency 

and non-adjacency.Hence isomorphism is transitive.  

7(b) Find the incidence matrix for the following graph. 

                 

 

 

 

 (i)                                                       (ii) 
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Answer: 

 

1 1 1 0 0 0 1 0 1

0 0 1 1 0 1 0 1 0
( ) ( )

1 0 0 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0

   

   

   

   

   

   

i i i

 
 

8(a) Examine whether the following pair of graphs are isomorphic.  If not isomorphic, give the reasons 

 

 

 

 

                        u1                                      u2 

 

 

 

 u3          

                                 u5                                  u4 

                                                                                                                                                v4                                                                                 

                                                                                                                                                                                

Solution: 

Same number of vertices and edges.  Also an equal number of vertices with a given degree. 

The adjacency matrices  of  the two graphs are  

    

   

































01011

10111

01010

11101

11010

              and                                  

































01011

10111

01010

11101

11010

 

  since the two adjacency matrices are the same, the two graphs are isomorphic. 

 

8(b) Prove that if a graph G has not more than two vertices of odd degree, then there can be Euler path in 

G. 

Statement: Let the odd degree vertices be labeled as V and W in any arbitrary order. Add an edge  to G 

between the vertex pair (V,W) to form a new graph G
‟
. 

 

Now every vertex of G‟ is of even degree and hence G‟ has an Eulerian Trail T. 

If the edge that we added to G is now removed from T, It will split into an open trail containing all edges of 
G which is nothing but an Euler path in G 

 

9(a) Show that 
7

K  has Hamiltonian graph. How many edge disjoint Hamiltonian cycles are there in 
7

K ? 

List all the edge-disjoint Hamiltonian cycles. Is it Eulerian graph ? 

 

 

 

 

v3 

v1 

v5 

v2 
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 UNIT – IV GROUP THEORY 
 PART – A 
01. Define Algebraic system. 

Ans: A set together with one or more n-ary operations on it is called an algebraic system.  

Example (Z,+) is an algebraic system. 

02. Define Semi Group. 

Ans: Let S be non empty set, * be a binary operation on S. The algebraic system (S, *) is called a semi 

group, if the operation is associative. In other words (S,*) is a semi group if for any x, y, z   S,                           

x* (y * z) = (x* y )* z. 

03. Define Monoid. 

Ans: A semi group (M, *) with identity element with respect to the operation * is called a Monoid.  

In other words (M,*) is a semi group if for any x, y, z   M, x* (y * z) = (x* y )* z and there exists an 

element  e   M such that for any  x   M then  e* x  = x* e = x. 

04. Define Group. 

Ans: An algebraic system (G,*) is called a group if it satisfies the following properties: 

(i) G is closed with respect to * 

(ii) * is associative.  

(iii)  Identity element exists. 

(iv) Inverse element exists. 

05. State any two properties of a group. 

Ans: (i)The identity element of a group is unique.  

   (ii) The inverse of each element is unique. 

06. Define a Commutative ring. 

Ans: If the Ring  (R, *) is commutative, then the ring (R, +, *) is called a commutative ring. 

07. Show that the inverse of an element in a group (G, *) is unique. 

Ans: Let (G,*) be a group with identity element e. Let „b‟ and „c‟ be inverses of an element „a‟ 

a * b = b * a = e, a * c = c * a = e. 

b = b * e = b * ( a * c) = ( b * a ) * c = e * c = c 

b = c. Hence inverse element is unique. 

08. Give an example of semi group but not a Monoid. 

Ans: The set of all positive integers over addition form a semi-group but it is not a Monoid. 

09. Prove that the semigroup homomorphism preserves idempotency. 

Ans: Let a   S be an idempotent element. 

*

( * ) ( )

( ) ( ) ( )

 





a a a

g a a g a

g a g a g a

 

This shows that   ( )g a  is an idempotent element in T. 

Therefore the property of idempotency is preserved under semigroup homomorphism. 

10. Define cyclic group. 

Ans: A group (G,*) is said to be cyclic if there exists an element a   G such that every element of G can 

be written as some power of „a‟. 
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11. Define group homomorphism. 

Ans: Let (G,*) and ( , )S  be two groups. A mapping f : G  S is said to be a group homomorphism if for 

any a, b   G f(a*b) = f(a)  f(b). 

12. Define Left Coset. 

Ans: Let (H,*) be a subgroup of (G,*). For any a   G the set H is defined by aH = {a*h: h  H} is called 

the right coset of H determined by a   G. 

13. State Lagrange‟s theorem. 

Ans: The order of the subgroup of a finite group G divides the order of the group. 

14. Define Ring. 

Ans: An algebraic system (R, +,  *) is called a ring if the binary operations + and R satisfies the following. 

(i) (R,+) is an abelian group  

(ii) (R,*) is a semi group  

(iii) The operation is distributive over +. 

15. Define field. 

Ans:  A commutative ring  (F, +, *) which has more than one element such that every nonzero element of 

F has a multiplicative inverse in F is called a field. 

16. Define Integral Domain. 

Ans: A commutative ring R with a unit element is called an integral domain if R has no zero divisors. 

17. Let T be the set of all even integers. Show that the semi groups (Z,+) and (T,+) are isomorphic. 

Ans: Define a function f: Z  T by f(n) = 2n where  n1, n2  N. 

f is a homomorphism since f(n1+ n2 ) =f n1) +f( n2). 

f is one-one since f(n1) = f( n2).  

f is onto since f(a) = 2a. therefore f is an isomorphism. 

18. Show that the semi group homomorphism preserves the property of idempotency. 

Ans: Let f : (M,*) → (H,Δ) be a semi group homomorphism. x is idempotent element in M.  

x*x = x. f(x*x) = f(x) Δ f(x). 

19. Let <M, *, eM> be a Monoid and aM.  If a is invertible, then show that its inverse is unique. 

Ans: Let „b‟ and „c‟ be inverses of „a‟. Then a * b = b * a = e and a * c = c * a = e. 

Now b = b * e = b * ( a * c ) = ( b * a) * c = e * c = c. 

20. If H is a subgroup of the group G, among the right cosets of H in G , prove that there is only one 

subgroup H. 

Ans: Let Ha be a right coset of H in G where a  G. If Ha is a subgroup of G, then e  Ha where e is the 

identity element in G.Ha is an equivalence class containing a with respect to equivalence relation. So that e 

  Ha =>          He = Ha. So Ha =H. 

 PART – B 

1(a) Show that group homomorphism preserves identity, inverse and subgroup. 

Proof:   

Identity 

Let : ( , * ) ( , )g G H  be a group homomorphism.  

Now ( ) ( * ) ( ) ( )G G G G Gg e g e e g e g e    

Hence ( )Gg e  is an idempotent element and ( )Gg e = He is the identity element. 
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Inverse 

1 1

1 1

( * ) ( ) ( * )

( ) ( ) ( ) ( )

G

H

g a a g e g a a

g a g a e g a g a

 

 

 

   

 

Hence 
1

( )g a


is the inverse of ( )g a  

subgroup 

Let S be the subgroup of ( , * )G  

(i) As Ge S then ( )He g S  

(ii) If x = g(a) S  then  
11

( ) ( )x g a g S


   

(iii) If a, b S  then g(a*b) ( * ) ( ) ( ) ( )g a b g a g b x y g S      

Hence ( )g S  is a subgroup of H. 

1(b) Let (S, *) be a semi-group.  Prove that there exists a homomorphism g: S  S
S
. where < S

S
, > is a 

semi-group of functions from S to S under the operation f (left) composition. 

Solution: 

For any element a  S, let g(a) = fa, where fa  S
S
 and fa is defined by fa(b) = a * b for any b S. 

Now g(a * b) = f a*b, where f a*b (c) = (a * b) * c = a * ( b* c) = fa (fb (c)) = a b(f f )   (c) 

Therefore, g(a* b) = f a*b = a bf f = g(a)   g(b).  Hence g is a homomorphism. 

For an element a  S, the function fa is completely determined from the entries in the row corresponding to 
a in the composition table of (S, *). Since fa = g(a), every row of the table determines the image under the 

homomorphism of g. 

2(a) Show that the set N of natural numbers is a semigroup under the operation x * y = max {x, y}. Is it a 

Monoid? 

Proof:  

Clearly if x, y   N then max{x,y} = x or y   N. Hence closure is true. 

Now (x*y)*z = max {x*y, z} = max {x,y*z} = x*(y*z). Hence N is associative. 

e =   is the element in N such that x*e=e*x=e. 

Hence (N, *,  ) is Monoid. 

2(b) Prove that if (G, *) is an Abelian group, if and only if (a * b)
2
 = a

2
 * b

2
 

Proof:  

Let G be an abelian group. 

Now (a * b)
2
 = (a * b) * (a * b) = a * (b * a) * b = a * (a * b) * b = a

2
 * b

2
. 

Conversely, let (a * b)
2
 = a

2
 * b

2
 

               (a* b) * (a*b) = (a * a) * (b * b)  

   (a
–1

 * a) * (b * a) * (b* b
–1

) = (a
–1

 * a) * a * b * (b * b
–1

)  b * a = a * b. 

Hence G is abelian. 

3(a) Prove that the necessary and sufficient condition for a non empty subset H of a group (G, *) to be a 

subgroup of G if 
1

, *a b H a b H


    

Proof: 

Necessary Condition: 

Let us assume that H is a subgroup of G. Since H itself a group, we have if a, b   H implies a*b  H 
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Since b   H then b
-1 

   H which implies a * b
-1 

   H. 

Sufficient Condition: 

Let a * b
-1 

   H, for a, b  H 

If a  H, which implies a* a
-1

 = e  H 

Hence the identity element „e‟   H. 

Let a, e   H, then e* a
-1

 = a
-1
 H 

Hence a
-1
 is the inverse of „a‟. 

Let a, b
-1 
 H, then a* (b

-1
)

-1
 = a *b  H. 

Therefore H is closed and clearly * is associative. Hence H is a subgroup of G. 

3(b) Prove that intersection of two subgroups is a subgroup, but their union need not be a subgroup of G. 

Proof: 

Let A and B be two subgroups of a group G. we need to prove that BA   is a subgroup. i.e. it is enough to 

prove that 
1

A B an d a , b A B a * b A B


        . 

Since A and B are subgroups of G, the identity element e  A and B. 

BAbaBbaandAba

BbaandAbaBAbaLet

BA







 111
***

,,,



 

Hence BA   is a subgroup of G. 

Consider the following example,  

Consider the group, (Z, +), where Z is the set of all integers and the operation + represents usual addition. 

Let ,.......}6,4,2,0{2  ZA  and ,.......}9,6,3,0{3  ZB . 

(2Z, +) and (3Z, +) are both subgroups of (Z, +). 

Let .........}6,4,3,2,0{32  ZZH  

Note that ZZHbutH 325532,3,2   

i.e ZZ 32  is not closed under addition. 

Therefore ZZ 32  is not a group 

i.e. ZZ 32  is not a subgroup of (Z, +). 

Therefore (H, +) is not a subgroup of (Z, +). 

4(a) Show that the Kernel of a homomorphism of a group (G, *) into another group (H,  ) is a subgroup 

of G. 

Proof: 

Let K be the Kernel of the homomorphism g. That is { ( ) }K x G g x e    where e  the identity element 

of H. is 

Let x, y   K. Now  

   
1 11 1

1

( * ) ( ) ( ) ( ) ( )

*

g x y g x g y g x g y e e e e e

x y K

  



            



 

Therefore K is a subgroup of G.  

4(b) State and prove Cayley‟s theorem on permutation groups. 

Statement: 

Every finite group of order “n” is isomorphic to a group of degree n. 
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Proof: 

Let G be the given group and A(G) be the group of all permutations of the set G. 

For any a G , define a map :f G G such that f(x) = ax and we have to prove the following things 

(i) fa is well defined. 

(ii) fa  is one – one 

(iii) fa  is onto 

Now let K be the set of all permutations and define a map : G K  such that ( ) aa f   

Clearly   is one-one, onto and homomorphism and hence   is isomorphism which proves the theorem. 

5(a) Prove that every subgroup of a cyclic group is cyclic. 

Proof: 

Let (G,*) be the cyclic group generated by an element a  G and let H be the subgroup of G. If H contains 

identity element alone, then trivially H is cyclic. Suppose if H contains the element other than the identity 

element. Since H G, any element of H is of the form a
k
 for some integer k. Let “m” be the smallest 

positive integer such that a
m
  H. Now by division algorithm theorem we have  

k = qm + r where 0   r < m. Now a
k
 = a

qm + r 
= (a

m
)

q
. a

r
 and from this we have a

r
 =  (a

m
)

- q
. a

r
. Since a

m
, a

k
 

 H, we have a
r
  H. Which is a contradiction that a

m
  H such that “m: is small. Therefore r = 0 and a

k
 = 

(a
m
)

q
. Thus every element of H is a power of a

m
 and hence H is cyclic. 

5(b) Prove that every cyclic group is an Abelian group. 

Proof: 

Let (G,*) be the cyclic group generated by an element a  G. 

Then for any two element x, y  G, we have x = a
n
, y = a

m
, where m, n are integer.  

Now x*y = a
n
 * a

m
 = a

n + m 
 = a

m + n
 = a

m
 * a

n
 = y * x 

Hence (G,*) is abelian. 
 

6(a) State and Prove Lagrange‟s theorem  

Statement:  

The order of each subgroup of a finite group is divides the order of the group. 

Proof: 

Let G be a finite group and o(G) = n and let H be a subgroup of G and o(H) = m. 

For Gx  , the right coset of Hx is defined by },........,,{
321

xhxhxhxhH
mx

 . 

Since there is a one to one correspondence between H and Hx, the members of Hx are distinct. Hence, each 

right coset of H in G has „m‟ distinct members. 

We know that any two right cosets of H in G are either identical or disjoint. 

i.e. let H be a subgroup of a group G. GyxLet , . Let Hx and Hy be two right cosets of H in G. we need 

to prove that either Hx = Hy or Hx∩Hy =   . 

Suppose 
yx

HH . Then there exists an element 
x y

H H
 

Thus by proving  O(G)/O(m)=k 
O(H) is a divisor of O(G) → O(H) divides O(G). 

6(b) Let (G, *) and (H,  ) be groups and :g G H be a homomorphism. Then the Kernal of g is a 

normal subgroup. 

Proof: 

Let K be the Kernel of the homomorphism g. That is { ( ) }K x G g x e    where e  the identity element 

of H. is 

Let x, y   K. Now  
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   
1 11 1

1

( * ) ( ) ( ) ( ) ( )

*

g x y g x g y g x g y e e e e e

x y K

  



            



 

Therefore K is a subgroup of G. Let 

    
1 11 1

1

,

( * * ) ( ) * ( ) * ( ) ( ) ( ) ( ) ( )

* *

x K f G

g f x f g f g x g f g f e g f g f g f e

f x f K

  



 

    

 

 

Thus K is a normal subgroup of  G. 

7(a) State and prove the fundamental theorem of group homomorphism 

Statement: 

If f is a homomorphism of G onto G   with kernel K, then /G K G  . 

Proof: Let :f G G  be a homomorphism. Then K = Ker (f) = {x ( )G f x e   } is a normal subgroup 

and also the quotient set ( / , )G K   is a group. 

Define : /G K G  given by ( ) ( )K a f a  . 

Now we have to prove  

(i)   is well defined. 

(ii)   is a homomorphism. 

(iii)   is one – one. 

(iv)   is onto. 

From this proof‟s we have /G K G   

7(b) Prove that intersection of any two normal subgroups of a group (G, *) is a normal subgroup of a 

group (G, *) 

Proof: 

Let G be the group and H and K are the subgroups of G.  

Since H and K are subgroups of G, 

 e H and e K e H K   . Thus H K is nonempty. 

Since 
1

a b H


 and 
1

a b K



1

a b H K


    

Since 
1

g xg H


  and 
1

g xg K



1

gxg H K


    

Thus H K  is a Normal subgroup of G. 

8(a) Prove that every subgroup of an Abelian group is a normal subgroup. 

Proof: 

Let (G,*) be an abelian group and (N,*) be a subgroup of G. Let g be an element of G and n be an element 

of N.  

Now 
1 1 1

* * ( * ) * * ( * ) *g n g n g g n g g n e n N
  

      

Hence for all 
1

, * *g G a n d n N g n g N


    

Therefore (N,*) is a normal subgroup  

8(b) Prove that a sub group H of a group is normal if 
1

* * ,x H x H x G


  
 

Proof:  

         
1

* *L e t x h x H



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1

* H * ,x x H x G


   
 

  H is a normal subgroup of G. 

Conversely, let us assume that H is normal subgroup of G. 
1

* H * ,x x H x G


  
 

Now x G 
1

x G

  

 
1

1 1
. . * H * ,i e x x H x G


 

  
 

1

1 1 1

1

1

1

* H *

* ( * H * ) * * *

* H * e * *

* *

* H *

x x H

x x x x x H x

e x H x

H x H x

x x H



  















 

 

9(a) Prove that every subgroup of a cyclic group is normal. 

Proof: 

We know that every cyclic group is Abelian. 

That is x * y = y * x. 

Let G be the cyclic group and let H be a subgroup of G. 

Let x    G and Hh   then  

   
1 1 1 1

* * * * * * ( * ) * *
   

     x h x x h x x x h x x h e h h H  

Thus for 
1

x G an d h H , x * h * x H


    

Thus H is a normal subgroup of G. 

Therefore every subgroup of a cyclic group is normal 

9(b) Prove that every field is an integral domain, but the converse need not be true. 

Proof: 

Let ( , , )F    be a field. That is F is a commutative ring with unity. Now to prove F is an integral domain it 

is enough to prove it has non-zero divisor.  

Let ,a b F such that a . b = 0 and let 0a  then 
1

a F


  

Now 

 

1 1

1

( ) ( )

0 1

0 .

a a b a a b

a b

b

 









   

   

Therefore F has non-zero divisor 

10(a) If R is a commutative ring with unity whose ideals are {0} and R, then prove that R is a field. 

Proof: 

We have to show that for any 0 a R   there exists an element 0 b R  such that ab = 1. 

Let 0 a R   

Define { }R a ra r R   

Proof of Ra is an ideal 

Since e R ea R a a R a      

{0}R a   (since a  0) 
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Therefore the hypothesis of the theorem 

Ra = R 
This means that every element of R is a multiple of „a‟ by some element of R. 

, ,

1 , 0

1

x R x r a fo r s o m e r R

F o r I R

b a fo r s o m e b R

a b

   



  

 

 

10(b) Prove that {Zp, +p, *p}is an integral domain if and only if p is prime. 

Solution: 

Let us assume that Zp be an integral domain and to prove that p is prime. 

Suppose p is not prime then p = mn, where 1< m < p, 1 < n < p. Hence mn = 0. 

Therefore „m‟ and „n‟ are zero divisors and hence Zp is not an integral domain.  

Which is a contradiction. 

Hence p is a prime. 

Conversely,  

Suppose p is prime. 

Let 
p

Zba ,  and ab = 0 

Then ab = pq where 
p

Zq  then p divides ab 

i.e p divides a  (or) p divides b 

therefore a = 0  (or) b = 0 

thus Zp has no zero divisors. Also Zp is a commutative ring with identity. 

Hence Zp is an integral domain. 

 UNIT-V     LATTICES AND BOOLEAN ALGEBRA 
 PART – A 
01. Define lattice. 

            Ans: A partially ordered set (L,≤) in which every pair of elements has a least upper bound and greatest 

lower bound is called a lattice. 

02. Define lattice homomorphism and isomorphism. 

Ans: If 
1 2

( , , ) ( , , )L a n d L     are two lattices, a mapping 
1 2

:f L L  is called a lattice 

homomorphism from 
1

L  to
2

L   , if for any
1

,a b L ,

( ) ( ) ( ) ( ) ( ) * ( )f a b f a f b a n d f a b f a f b     . 

If a homomorphism 
1 2

:f L L  of two lattices 
1 2

( , , ) ( , , )L a n d L     is objective   i.e.  one -one, onto, 

then f is called an isomorphism. 

03. Define sub lattice with example. 

Ans: A non-empty subset M of a lattice ( , , )L    is called a sub lattice of L, if and only if M is closed 

under both the operations a n d  that is if a, b M, then a b a n d a b  also in M. ( , )
n

S D  is a sub 

lattice of ( , )Z D


 

04. Define partial ordering on S. 

Ans: A relation   on a set S is called a partial ordering on S if it has the following three properties S is 

reflexive, anti-symmetric, transitive. A set S together with a partial ordering is called a partially ordered set 

or poset. 
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05. Define Hasse diagram. 

Ans: Hasse diagram of a finite partially ordered set S is the directed graph whose vertices  are the elements 

of S and there is a directed  edge from a to b whenever a < b in S. 

06. Simplify the Boolean expression
' ' ' ' '
. . . . . .a b c a b c a b c  , using Boolean algebraic identities. 

              Ans:  ' ' ' ' '
. . . . . .a b c a b c a b c     =  

' ' ' '
. . . .( )a b c a b c c    =  

' ' '
. . . .1a b c a b  = 

' '
.( . )b a a c  = 

' '
.( ) ( . )b a a a c   =   

' '
. .a b b c  

07. Prove that  
4 2 4 2 ,

{ }D S D  is a complemented lattice by finding the complements of all the elements.  

Ans: 
4 2

{1, 2 , 3, 4 , 7 ,1 4 , 2 1, 4 2}D      

The complement of 1 is 42, the complement of 2 is 21, the complement of 3 is 14, the complement of 6 is 

7, the complement of 14 is 3, the complement of 21 is 2, the complement of 42 is 1. the complement of 7 is 

6. Every element has a complement. Hence  is a complemented lattice 

08. In the poset ( , / ) ,Z


 are the integers 3 and 9 comparable? Are 5 and 7 comparable?   

             Ans: Since 3/9, the integers 3 and 9 are comparable. 

For 5, 7 neither 5/7 nor 7/5.  Therefore, the integers 5 and 7 are not comparable. 

09. When a lattice is called complete? 

Ans: A lattice <L, *, > is called complete if each of its non-empty subsets has a least upper bound and a 

greatest lower bound. 

10. Define direct product of lattice. 

Ans: Let ( , , )L    and ( , , )S    be two lattices. The algebraic system ( , , )L S    in which the binary 

operation + and   on   L x S are such that for any 
1 1 2 2

( , ) ( , )a b a n d a b  in L x S  

1 1 2 2 1 2 1 2

1 1 2 2 1 2 1 2

( , ) .( , ) ( , )

( , ) ( , ) ( , )

a b a b a a b b

a b a b a a b b

  

   
 

is called the Direct product of the lattice ( , , )L    and ( , , )S   . 

11.   Prove that a a b a b    

Ans: a a b =  a a b a b                  (a = a + ab) 

             =  ( )a b a a   =   a b                       

Since  
1b c a a n d b c

b a a a n d b a b

   

   
 

 Therefore b does not have any complement .the given lattice is not complemented lattice. 

12. Check the given lattice is complemented lattice or not. 

Ans: 

 

4 2 4 2 ,
{ }D S D
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13. 
Reduce the expression .a a b



. 

              Ans: .a a b



=0.b = 0 

14. Prove the involution law
' '

( )a a . 

Ans: It is enough to show that  
' '

1 . 0a a a n d a a    

By dominance laws of Boolean algebra, we get 
' '

1 . 0a a a n d a a    

 By commutative laws, we get  
' '

1 . 0a a a n d a a   .  Therefore Complement of a‟ is a 
' '

( )a a  

15. Determine whether the following posets are lattices. 

(i) ({1,2,3,4,5},/)                         (ii) ({1,2,4,8,16},/) 

Ans: ({1,2,3,4,5},/)  is not a lattice because there is no upper bound for the pairs (2,3) and (3,5).     

(ii)   ({1,2,4,8,16},/)  is a lattice. Since every pair has a LUB and a GLB .   

16. Reduce the expression a(a+c). 

               Ans: a(a+c)= aa+ac =  a+ac  = a(1+c) = a. 

17 Show that the „greater than or equal to „relation (≥) is a partial ordering on the set of integers. 

 Ans: Since a≥ a for every integer a, ≥ is reflexive. 

  If a≥ b and b≥a,then a=b.hence „≥‟ is antisymmetric. 

  Since a≥b and b≥c imply that a≥c,‟ ≥‟ is transitive. 

  Therefore „≥‟ is a partial order relation on the set of integers. 

18. Prove that any lattice homomorphism is order preserving. 

Ans: Let 
1 2

:f L L   be a homomorphism. 

Let  a b Then  GLB{𝑎, 𝑏}= a b =a, LUB{𝑎, 𝑏}= a b =b 

Now  ( ) ( )f a b f a   ( ) ( ) ( )f a f b f a   

 i.e., GLB {𝑓(𝑎), 𝑓(𝑏)} =  𝑓(𝑎).  Therefore   ( ) ( )f a f b  

If   a b  implies ( ) ( )f a f b .  Therefore f  is order preserving. 

19. Is the poset ( , / )Z


 a lattice. 

Ans: Let a and b be any 2 positive integer. 

Then   LUB{a,b} =LCM {a,b} and GLB{a,b}= GCD{a,b} should exists in Z


. 

For example, let a=4, b=20 

Then  LUB{a,b} = lcm {4,20} = 1  and  GLB{a,b}=gcd{4,20}=4 

Hence, both GLB and LUB exist.  Therefore The poset ( , / )Z


 is a lattice.        

20. Which elements of the poset ({2,4,5,10,12,20,25},/ )  are maximal and which are  minimal? 

Ans: The relation R is R={(2,4) (2,10) (2,12) (2,20) (4,12) (4,20) (5,10) (5,20) (5,25) (10,20)} 

 Its Hasse diagram is  

                                       
 The maximal elements are 12, 20, and 25 and The minimal elements are 2 and 5. 
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 PART – B 

1(a) Draw the Hasse diagram for (i) P1 = {1, 2, 3, 4, 12} and  ≤  is a relation such that x ≤ y if x   divides y   

(ii) Let S = {a, b, c} and Ã = P(S) = {ϕ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} Consider the partial 

order of set inclusion (⊆). 

Answer: 

 (i)                                                                         (ii) 

  
1(b) Draw the Hasse diagram for D24 = {1, 2, 3, 4, 6, 8, 12, 24},D30 = {1, 2, 3, 5, 6, 10, 15, 30}, 

D36 = {1, 2, 3, 4, 6, 9, 12, 18, 36} considering the partial order divisibility. 

Answer: 

 

2(a) Show that every chain is a distributive lattice. 

Solution: 
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Let ),( L  be a chain and let a, b, c L , then cbaandcba  . 

When cba  , we have  

acacba  )(  

also, aaacaba  )()( .  

Thus ).()()( cabacba   

Again bbacba  )( . Also bcbcaba  )()(  

therefore  )( cba  = )()( caba  . 

),,(  L  is a distributive lattice. 

When cba  , we have abaandbba   

Now, 

)()()(

)()()(

)()(

,

).()()(

).()(

)(

cabacba

aaacaba

acacba

Also

cabacba

bcbcaba

bbacba













 

Hence, ),,( L  is a distributive lattice. This indicates that every chain is a distributive lattice. 

2(b) State and prove Isotonicity property in lattice. 

Statement: 

Let ( , , )L   be given Lattice. For any a, b, c L , we have, 

 1)

2 )

b c

a b a c

a b a c

 

  

  

 

Proof: 

Given b c  Therefore { , } { , }G L B b c b c b a n d L U B b c b c c       

Claim 1: a b a c    

To prove the above, it‟s enough to prove { , }G L B a b a c a b     

Claim 2: a b a c    

To prove the above it‟s enough to prove { , }L U B a b a c a c     

3(a) Prove that the De Morgon‟s laws hold good for a complemented distributive lattice ),,( L . 

Solution: 

The De Morgon‟s Laws are  

   (1) a b ' a ' b ' (2 ) a b ' a ' b ' , fo r all a , b B        

Proof: 

Let (  ,,L ) be a complemented distributive lattice. Let a, b    L. Since L is a complemented lattice, the 

complements of „a‟ and „b‟ exist. 

Let the complement a be  a '  and the complement of b be  b '  

Now  
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( ) ( ) { ( ) } { ( ) }

{ ( )} { ( )}

{ ( ) } ( 1)

(1 ) ( 1)

1 1

1

( ) ( ) { ( ) } { ( ) }

{ ( )} { ( )}

{ ( ) } ( 1)

(1 ) ( 1)

0 0

0

a b a b a b a a b b

a b a a b b

a a b a

b a

a b a b a b a a b b

a b a a b b

a a b a

b a

           

      

    

   

 



           

      

    

   

 



 

hence   ''' baba   

By the principle of duality, we have   ''' baba   

3(b) Show that direct product of any two distributive lattices is a distributive lattice. 

Proof: 

Let L1 and L2 be two distributive lattices. Let x, y, z 1 2L L  be the direct product of L1 and L2  Then  x = 

(a1, a2), y = (b1, b2) and z = (c1, c2) 

Now  

 

   

   

1 2 1 2 1 2

1 2 1 2 1 2 1 2

( ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

x y z a a b b c c

a a b b a a c c

x y x z

    

   

   

 

Thus direct product of any two distributive lattice is again a distributive lattice 

4(a) State and prove the necessary and sufficient condition for a lattice to be modular. 

Statement: 

A lattice L is modular if and only if none of its sub lattices is isomorphic to the pentagon lattice N5 

Proof: 
Since the pentagon lattice N5 is not a modular lattice. Hence any lattice having pentagon as a sub lattice 

cannot be modular. 

Conversely, let ),( L  be any non modular lattice and we shall prove there is a sub lattice which is 

isomorphic to N5. 

4(b) Prove that every distributive lattice is modular. Is the converse true? Justify your claim. 

Proof: 

Let ),( L  be a distributive lattice, for all a, b, c L , we have  

( * ) ( ) * ( )a b c a b a c     

Thus if ,a c th en a c c    

( * ) ( ) *a b c a b c     

So if ,a c the modular equation is satisfied and L is modular. 

However, the converse is not true, because diamond lattice is modular but not distributive.  

5(a) In a lattice   ,,L , prove that )()()()()()( accbbaaccbba   
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Solution: 

)()()(

)()()(

)]()[()]()([

)]()[()]()[(

}]([)]([

])[(])[(

])[()[(])[(

])[([)(

])[(])[()()()()(

accbba

bacbac

acbacbac

cababcac

cbabac

acbcba

acbbacba

acbcba

acbccbbaaccbba



















 

5(b) Prove that every finite lattice is bounded. 

Proof: 

Let ( , , )L   be given Lattice. 

Since L is a lattice both GLB and LUB exist. 
Let “a” be GLB of L and “b” be LUB of L. 

For any x L , we have 

{ , }

{ , }

{ , }

{ x , b }

a x b

G L B a x a x a

L U B a x a x x

a n d

G L B x b x b x

L U B x b b

 

  

  

  

  

 

Therefore any finite lattice is bounded.
 

6(a) In a lattice if ,a b c  show that  

 
( ) *

( ) ( * ) ( * ) ( ) * ( )

i a b b c

ii a b b c a b a c b

 

    
 

Proof: 

(i) Given a b c   

  Since 

 

, * b ... (1)

, * ... ( 2 )

, * ... (3 )

a b a b b a a

b c b c c b c b

a c a c c a c a

    

    

    

 

From (1) and (2), we have *a b b b c    

(ii) LHS     ( * ) ( * )a b b c a b b     

                    RHS    ( ) * ( ) *a b a c b c b     

Therefore ( * ) ( * ) ( ) * ( )a b b c a b a c b      

6(b) In a Distributive lattice  , ,L    if an element a L  is a complement then it is unique. 

Proof: 

Let a be an element with two distinct complement b and c. Then a*b = 0 and a*c = 0 
Hence a*b = a*c 

Also  
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1 1a b a n d a c

a b a c

   

   
 

Hence b = c. 

7(a) Show that in a distributive lattice and complemented lattice * 0 1a b a b a b b a            

Proof: 

* 0 1a b a b a b b a            

Claim 1: * 0a b a b     

Since , * ba b a b b a a      

Now * b (( * ) * b ) ( * * b ) * 0 0a a b a b a       

Claim 2: * 0 1a b a b      

We have * 0a b    

Taking complement on both sides, we have  

   * 0 1a b a b       

Claim 3: 1a b b a       

       1 * 1 * * * * 0

*

a b a b b b a b b b b a b b

a b b b a

                    

      

 

Claim 4: b a a b     

We have b a   taking complement we get b a a b     

7(b)  In a Boolean algebra prove that   ' ' 'a b a b    

Proof: 

( ) ( ) { ( ) } { ( ) }

{ ( ) ( )} { ( ) ( )}

{1 ( )} { ( ) 1}

1

( ) ( ) { ( ) } { ( ) }

{ } { }

{0 } { 0}

0

a b a b a b a a b b

a a b a a b b b

b a a b

b b

a b a b a b a a b b

a a b a b b

b a

           

          

      

 



           

      

   



 

Hence proved. 

8(a) In any Boolean algebra, show that 0a b a b     if and only if  a = b 

Proof: 

Let a = b 

Now 0 0 0a b a b a a a a          

Conversely let  0a b a b    

Now  

 

0

.1 ( ) 1 .

a b a b a b a b a b

a n d a a a b b a b a b a b a b a a b b b

         

             
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8(b) 
Simplify          ( ) * ( ) * * * * * *i a b a b ii a b c a b c a b c           

Solution: 

       

   

( ) * *

* *

i a b a b a b a b

a b a a b b a b

       

            
      

 

     ( ) * * * * * * ( ) * ( * ) *ii a b c a b c a b c a a b c b c             

9(a) In a Boolean algebra prove that    ( ) * ( ) * ,i a a b a ii a a b a for a ll a b B      

Proof: 

   ( ) * ( 0 ) *

(0 * )

( * 0 ) 0

i a a b a a b

a b

a b a a

   

 

    

 

Similarly by duality we have  *a a b a   

9(b) Show that in any Boolean algebra,            a b b c c a a b b c c a             

Proof: 

           

     

           

     

     

     

0 0 0

. . . . .

0 0 0

a b b c c a a b b c c a

a b c c b c a a c a b b

a b c a b c b c a b c a c a b c a b

a b c c b c a a c a b b

a b b c c a

a b b c c a

              

           

                    

           

        

     

 

10(a) Show that in any Boolean algebra, accbbaaccbba  . 

Solution: 

Let (B, +, 0, 1) be any Boolean algebra and a, b, c   B. 

accbbaaccbba

accbba

bacacb

bacccabbcbaa

bcacbacbacabcbacba

cbabcacbacabcbacba

bbacaacbccba

accbbaaccbba

















.1.1.1

)()()(

)()()(

)()()(

1.1.1.

 

10(b) Apply Demorgan‟s theorem to the following expression 

 ( ) ( ) ( ) ( )i x y x y ii a b c d     
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Solution: 

   ( ) ( ) ( )

. .

. .

i x y x y x y x y

x y x y

x y x y

x y

     

 

 

 

 

( ) ( )

. .

i i a b c d a b c d

a b c d

     

 
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