

Shree Sathyam College of Engineering and Technology

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai. NH-544, Salem - Coimbatore Highways, Kuppanur, Sankari Taluk, Salem - 637301, TamilNadu, India. Email:principal@shreesathyam.edu.in Web:www.shreesathyam.edu.in Phone: 04283 - 244080

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

QUESTION BANK

PROGRAMME ACADEMIC YEAR	:	B.E ECE 2024-2025
SEMESTER	:	V (ODD)
REGULATION COURSE CODE	:	2021 EC 3551
COURSE NAME	:	TRANMISSION LINES AND RF SYSTEMS
COURSE COMPONENT NAME OF THE COURSE IN-CHARGE	:	CORE Dr. P. KANNAN

UNIT I TRANSMISSION LINE THEORY

Syllabus:General theory of Transmission lines - the transmission line - general solution - The infinite line - Wavelength, velocity of propagation - Waveform distortion - the distortion-less line - Loading and different methods of loading - Line not terminated in Z0 - Reflection coefficient - calculation of current, voltage, power delivered and efficiency of transmission - Input and transfer impedance - Open and short circuited lines - reflection factor and reflection loss.

Assessment Questions for UNIT I

Bloom's Taxonomy Levels: L1- Remember, L2- Understand, L3- Apply, L4 - Analyze, L5- Evaluate, L6- Create

Thinking Skills: LOTS – L1 &L2, IOTS – L3 &L4, HOTS – L5 &L6

Sl. No.	Questions	Marks	CO	BL	PI Code		
	PART A						
1	What are the primary constants of a transmission line?	2	CO1	L1	1.4.1		
2	What are the secondary constants of a transmission line?	2	CO1	L1	1.4.1		
3	What are transmission lines?	2	CO1	L1	1.4.1		
4	List the types of transmission lines.	2	CO1	L1	1.4.1		
5	When will a transmission line deliver maximum power to a load?	2	CO1	L1	1.4.1		
6	Name the types of line distortion.	2	CO1	L1	1.4.1		
7	Write the condition for a distortionless line.	2	CO1	L1	1.4.1		
8	Define wavelength and velocity of a wave.	2	CO1	L1	1.4.1		
9	What is phase distortion or delay distortion?	2	CO1	L1	1.4.1		
10	What is frequency distortion?	2	CO1	L1	1.4.1		
11	How can distortion be reduced in a transmission line?	2	CO1	L1	1.4.1		
12	Write an expression for characteristic impedance.	2	CO1	L1	1.4.1		
13	What is called an infinite line?	2	CO1	L1	1.4.1		
14	Define propagation constant.	2	CO1	L1	1.4.1		
15	Mention the relation between characteristic impedance and primary	2	CO1	L1	1.4.1		
	constant of a transmission line.						
16	Draw the equivalent circuit of a transmission line.	2	CO1	L1	1.4.1		
17	What does reflection take place on a transmission line?	2	CO1	L1	2.1.2		
18	Define reflection coefficient.	2	CO1	L1	2.1.2		

19	How are practical lines made appear as infinite lines?	2	C01	L1	1.4.1
20	Define reflection factor.	2	C01	L1 L1	1.4.1
20	Define reflection loss.	$\frac{2}{2}$	C01	L1 L1	1.4.1
21	What is waveform distortion?	2	C01	L1 L1	1.4.1
22	The open circuit and short circuit impedances of a transmission line	2	C01	L1 L1	1.4.1
23	at 1500 Hz and 800 \angle -30° Ω and 400 \angle -10° Ω respectively.	2	COI	LI	1.4.1
	Calculate its propagation constant.				
24	Give the general equation for the input impedance of a dissipation	2	CO1	L1	1.4.1
	line.	_			
25	Write the expressions for the characteristic impedance and	2	CO1	L1	1.4.1
	propagation constant for the dissipationless line.				
26	How will you find out the propagation constant if the values of	2	CO1	L2	1.4.1
	open and short circuited impedances are given?				
27	Give the relationship between the input impedance and	2	CO1	L2	1.4.1
	characteristic impedance of an infinite line.				
28	Draw the waveform of voltage and current distribution along a	2	CO1	L2	1.4.1
	short circuited line.				
29	Draw the waveform of voltage and current distribution along an	2	CO1	L2	1.4.1
	open circuited line.				
30	What is the input impedance of an open circuit line?	2	CO1	L2	1.4.1
31	What is the input impedance of a short circuit line?	2	CO1	L2	1.4.1
32	A lossless line has a shunt capacitance of 69 pF and a series	2	CO1	L2	1.4.1
	inductance of 0.387 µH. Calculate the characteristic impedance.				
33	Determine the reflection coefficient of a line when $Z_R = 200 \Omega$ and	2	CO1	L2	1.4.1
	Z₀= 692 ∠-12°Ω.				
34	Calculate the load reflection of an open and short circuited line.	2	CO1	L2	1.4.1
35	Calculate the characteristic impedance of a transmission line if the	2	CO1	L2	1.4.1
	following measurements have been made on the line $Z_{oc} = 550 \angle$ -				
	$60\circ\Omega$ and $Z_{sc} = 500 \angle 30\circ\Omega$.				
36	A 50 Ω line is terminated in load $Z_R = 90 + j60 \Omega$. Determine the	2	CO1	L2	1.4.1
	reflection coefficient.				
37	Find the attenuation and phase shift constant of a wave propagating	2	CO1	L2	1.4.1
	along the line whose propagation constant is $1.048 \times 10^{-4} \angle 88.8^{\circ}$.				
	PART B				
1	a) Discuss the general solution of a transmission line in detail.	7	CO1	L1	1.4.1
	b) A generator of 1.0 Volts, 1000 cycles, supplies power to a	6			
	100 mile open wire line terminated in Z_0 and having the following				
	parameters: Series resistance R = 10.4 Ω /mile, Series inductance L				
	= 0.00367 H/mile, Shunt conductance G = 0.8 x 10^{-6} U/mile and				
	capacitance between conductors $C = 0.00835 \times 10^{-6} F/mile$. Find				
	the Characteristic impedance, Propagation constant, Attenuation				
	constant, Phase shift constant, Velocity of propagation and				
	Wavelength.				
2	a)Discuss in detail about lumped loading and derive the	7	CO1	L1	1.4.1
	Campbell's equation.				
	b) A 2 meter long transmission line with characteristic impedance	6			
	of 60 + j40 Ω is operating at $\omega = 10^6$ rad/sec has attenuation	0			
	constant of 0.921 Np/m and phase shift constant of 0 rad/m. If the				
	line is terminated by a load of $20 + j50 \Omega$, determine the input				
	j - j j				
	impedance of this line.				
3		13	CO1	L2	1.4.1

4	Derive an expression for the propagation constant and the velocity				
	of propagation for an ordinary telephone cable.	- 10			
5	Show that a line will be distortionless if CR=LG.	13	CO1	L2	1.4.1
6	 a) Explain in detail about the wave-form distortion and also derive the condition for distortion less line. b) Derive the expressions for input impedance of open and short circuited lines. 	10 6			
7	Derive the condition to be satisfied for a distortionless line.	13	CO1	L2	1.4.1
8	Develop the differential equations governing the voltage and current at any point on a uniform transmission line. Solve these to obtain the voltage and current in terms of the load current and voltage.	13	CO1	L2	3.4.1
9	Explain the wave propagation in the zero dissipation line with waveforms of voltage and current for various loads.				
10	Derive an expression for the reflection co-efficient in terms of characteristic impedance Z_o and terminal impedance Z_R .	13	CO1	L3	1.4.1
11	Derive an expression for the input impedance of a transmission line. Assume the length of the lineas 'l', characteristic impedance Z_0 terminated with Z_R .	13	CO1	L3	1.4.1
12	 a) Explain in detail about the reflection on a line not terminated but its characteristic impedance Z_o. b) Derive the condition for minimum attenuation in a 	7 6	CO1	L2	1.4.1 1.4.1
	distortionless line.		~~ (
13	Derive the equations for α and β . Obtain the conditions for distortionless lines.	13	CO1	L1	1.4.1
14	Show that for any uniform transmission line the following relations are valid. $\overline{Z} = \sqrt{\frac{1}{2} \frac{1}{2}}$	13	CO1	L1	1.4.1
	$Z_o = \sqrt{Z_{oc} Z_{sc}}$ and $tanh\gamma l = \sqrt{\frac{Z_{sc}}{Z_{oc}}}$				
15	a) A parallel wire transmission line is having the following line parameters at 5 KHz. Series resistance (R=2.59 x 10 ⁻³ Ω /m), Series inductance (L=2 μ H/m), Shunt conductance (G=0 \mho /m) and capacitance between conductors (C=5.56 nF/m). Find the characteristic impedance, attenuation constant, phase shift constant, velocity of propagation and wavelength. b) A 2meter long transmission line with characteristic impedance of 60+j40 Ω is operating at ω =10 ⁶ rad/sec has attenuation constant of 0 rad/m. If the line in terminated by a load of 20+j50 Ω , determine the input impedance of this line.	7	CO1	L3 L3	2.1.2
16	 a) Derive the transmission line equation and hence obtain expression for voltage and current on a transmission line. b) Prove that an infinite line equal to finite line terminated in its characteristic impedance. 	7 6	CO1	L1 L1	1.4.1
17	A generator of 1 V, 1000 Hz supplies power to a 100 Km open wire line terminated in Z _o and having following parameters. $R = 10.4 \ \Omega/Km, G = 0.8 \ x \ 10^{-6} O/Km, L = 0.00367 \ H/Km, C = 0.00835 \ \mu F/Km$. Calculate Z _o , α , β , λ , ϑ . Also find the received power.	13	CO1	L3	2.1.2

18	A communication line has $L = 3.67 \text{ mH/Km}$, $G = 0.08 \times 10^{-6} \text{O/Km}$, $C = 0.0083 \mu\text{F/Km}$ and $R = 10.4 \Omega/\text{Km}$. Determine the characteristic impedance, propagation constant, phase constant, velocity of propagation, sending end current and receiving end current for given frequency $f = 1000 \text{ Hz}$, sending end voltage is 1 Volts and transmission line length is 100 Km.	13	CO1	L3	2.1.2
19	Derive the general transmission line equations for voltage and currents at any point on a line.	13	CO1	L1	1.4.1
20	Derive the input impedance Z_o from the transmission line equation and also find voltage reflection ratio at the load.	13	CO1	L1	1.4.1
	PART C				
1	A less loss transmission line with $Z_o = 50 \ \Omega$ and $d = 1.5 \ m$ connects a voltage V_g source to a terminated load of $Z_L = 50 + j50 \ \Omega$. If $V_g = 60 \ V$, operating frequency $f = 100 \ MHz$ and $Z_g = 50 \ \Omega$, find the distance of the first voltage maximum lM from the load and what is the power delivered to the load P_L ? Assume the speed of the wave along the transmission line equal to speed of light.	15	CO1	L3	2.1.2
2	A 100 km long line is terminated in its characteristic impedance. A generator of internal impedance of 600 ohm and a voltage of 5 volts operating at frequency of 800 Hz is connected at the input end of the line. The characteristic impedance of the line is $550 \angle -15^{\circ}$ and the propagation constant $\gamma = 0.045 + j0.0825$ per Km. Observe the parameter such as (a) Primary Constants (b)Sending end current and sending end voltage (c)Receiving end current and Receiving end Voltage	15	CO1	L3	2.1.2
	(d) Sending end power and Receiving end power.				
3	Open circuited and short circuited measurements at a frequency of 5KHz on a line of length 200km yielded the following results: $Z_{oc} = 570 \angle -48^{\circ}$ ohm, $Z_{sc} = 720 \angle 34^{\circ}$ ohm. Evaluate Z_{o} , α , β and primary constants given that the approximate velocity of propagation to be 1.8 x 10 ⁶ km/sec.	15	CO1	L3	2.1.2
4	a) An open wire line is 200 Km long is correctly terminated. The generator at the sending end has $E_s = 10$ V, $f = 1$ KHz and internal impedance of 500 Ohm. At that frequency $Z_o=683$ -j138 and $\gamma = 0.0074$ +j0.0356 per Km. Measure the sending and receiving end voltage, current and power. b) A cable has $\alpha = 0.01$ Nepers /Km and $\beta = 0.0018$ /Km and having length of 100 Km.Estimate the receiving end voltage	8	CO1	L3 L3	2.1.2
	when the line is terminated in its characteristic impedance and $E_s = 5V$.				

UNIT II HIGH FREQUENCY TRANSMISSION LINES

Syllabus:Transmission line equations at radio frequencies - Line of Zero dissipation - Voltage and current on the dissipation-less line, Standing Waves, Nodes, Standing Wave Ratio - Input impedance of the dissipation-less line - Open and short circuited lines - Power and impedance measurement on lines - Reflection losses - Measurement of VSWR and wavelength.

Assessment Questions for UNIT II

Bloom's Taxonomy Levels: L1- Remember, L2- Understand, L3- Apply, L4 - Analyze, L5- Evaluate, L6-Create

Thinking Skills: LOTS – L1 &L2, IOTS – L3 & L4, HOTS – L5 & L6

Sl.	Questions	Marks	CO	BL	PI
No.	Part A				Code
1	Define Standing Wave Ratio.	2	CO2	L1	1.4.1
2	Determine the values of VSWR in the case of a) $Z_R=0$ and b) $Z_R=Z_0$.	2	CO2	L1	1.4.1
3	Write the equation of SWR in terms of reflection coefficient.	2	CO2	L1	1.4.1
4	Write the equation of reflection coefficient in terms of SWR.	2	CO2	L1	1.4.1
5	Give the minimum and maximum value of SWR and reflection coefficient.	2	CO2	L1	1.4.1
6	Why is the quarter wave line called as copper insulator?	2	CO2	L1	1.4.1
7	A lossless line has a characterisitic impedance of 400 Ohms. Determine the standing wave ratio if the receiving end impedance is $800 + j0.0$ Ohms.	2	CO2	L3	1.4.1
8	Give the properties of an infinite line.	2	CO2	L2	1.4.1
9	A lossless transmission line has a shunt capacitance of 100 pF/m and a series inductance of 4 μ H/m. Determine the characteristic impedance.	2	CO2	L3	1.4.1
10	For the line of zero dissipation, what will be the values of attenuation constant and characteristic impedance?	2	CO2	L3	1.4.1
11	What are the assumptions to simplify the analysis of line performance at high frequencies?	2	CO2	L3	1.4.1
12	Write the expression for standing wave ratio in terms of reflection coefficient.	2	CO2	L3	1.4.1
13	Write the expression for the input impedance of open and short circuited dissipationless line.	2	CO2	L3	1.4.1
14	Calculate standing wave ratio and reflection coefficient on a line having the characteristic impedance $Z_o = 300 \ \Omega$ and terminating impedance in $Z_R = 300 + j400 \ \Omega$.	2	CO2	L3	1.4.1
15	Why is a quarter wave line called an impedance inverter?	2	CO2	L1	1.4.1
16	What is the nature and value of Z_0 for the dissipationless line?	2	CO2	L1	1.4.1
17	What are nodes and antinodes on a line?	2	CO2	L2	1.4.1
18	Give the minimum and maximum values of SWR and reflection coefficient.	2	CO2	L2	1.4.1
19	A lossless transmission has a shunt capacitance of 100 pF/m and a series inductance of 4μ H/m. Calculate the characteristic impedance.	2	CO2	L1	1.4.1
20	Analyze the line with dissipationless line and find the values of attenuation constant and characteristic impedance.	2	CO2	L1	1.4.1
21	Explain the concept of dissipation less line.	2	CO2	L2	1.4.1
22	Sketch standing waves on a line having open or short circuit termination.	2	CO2	L1	1.4.1
23	Write an expression for inductance of an open wire line and coaxial line.	2	CO2	L1	1.4.1
24	Find the terminating load for a certain R.F transmission line which has the characteristic impedance of the line 1200 Ω and the reflection co- efficient was observed to be 0.2.	2	CO2	L3	2.1.2
	Part B				
1	Derive the expressions for voltage and current at any point on the radio frequency dissipation less line. Obtain the expressions for the same for different receiving end conditions.	13	CO2	L1	1.4.1
2	a) Explain standing waves, nodes, standing wave ratio also make relation between the standing wave ratio S and the magnitude of the reflection coefficient.	7	CO2	L2	1.4.1
2	b) State the condition for the open wire line at high frequencies and derive the parameters.	6		L1	

	a) Explain the	7	CO2	L2	1.4.1
	parameters of open wire line and co axial at RF. Mention the standard				
3	assumptions made for radio frequency line. Label the Line constants for	6		T 1	
	zero dissipation.	6		L1	
	b) Derive the				
	voltage and current equation on dissipation less line.	6	COD	1.2	1 4 1
	a) Discuss the	6 7	CO2	L2	1.4.1
	reflection coefficient of different transmission lines.	/		L3	
4	b) The ratio of				
4	spacing'd' to the radius 'a' of an open wire dissipation less line is 25 and the space between the conductors has a dielectric of relative permittivity				
	of 8. Calculate				
	(i)Inductance (ii) Capacitance (iii) Characteristic impedancea) Compare the features of open wire and co axial cable at high	6	CO2	L2	1.4.1
	frequencies.	0	02	L2	1.4.1
5	*	7			
	b) Explain the variation of input impedance along open and short circuit lines with relevant graphs.	/			
	a) Describe	7	CO2	L2	1.4.1
	the various parameters of open wire and co axial lines at radio frequency.	1			1.7.1
6	b) Summarize	6			
	the concept of Standing wave ratio.	U			
7	Explain how the VSWR and wavelength of the line measured in detail.	13	CO2	L2	1.4.1
1	a) Derive the	7	CO2	L1	1.4.1
	line constants of a zero dissipation less line.	,	002		1.1.1
8	b) Sketch the voltages and currents on dissipation less line for the	6		L1	
Ũ	conditions given below.	U		21	
	(i) Open circuit (ii) Short circuit (c) $R_R = R_o$				
	a) A low loss transmission line of 100 Ω characteristic impedance is	6	CO2	L3	2.1.2
	connected to a load of 200 Ω . Calculate the voltage reflection coefficient				
9	and the standing wave ratio.				
	b) Solve the standing wave ratio and reflection co – efficient on a line				
	having $Z_0=300 \Omega$ and terminated in $Z_R=300 + j400 \Omega$	7		L3	2.1.2
	a) Draw the standing wave pattern for	7	CO2	L1	1.4.1
10	(i) Open circuited load (ii) Short circuited load(iii) matched load				
10	b)Prove that the reflection coefficient	6		L1	
	[Emax - Emin] / [Emax + Emin].				
	Explain the expressions for the input impedance of the dissipation less	13	CO2	L2	1.4.1
11	line. Deduce the input impedance of open and short circuited dissipation				
	less line.				_
	a) Examine	7	CO2	L3	1.4.1
	the voltage and currents at any point on the dissipation less line along				
12	with incident and reflected voltage wave phasor diagrams which must				
	satisfy the conditions such as open circuit, short circuit, $R_R=R_o$.				
	b) Explain the	-			
	concept of generation of standing waves with neat diagram.	6	000	L2	0.1.0
	a) Summarize the relation between standing wave ratio (S) and	7	CO2	L3	2.1.2
13	magnitude of relation co – efficient.	C		12	212
	b) Find the reflection coefficient and voltage standing wave ratio of a line baying $P = 100$ shm $Z = 100$. $i100 \ O$	6		L3	2.1.2
	line having $R_o = 100$ ohm, $Z_R = 100 - j100 \Omega$.		C02	1.2	1 4 1
	Explain the following parameters	2	CO2	L2	1.4.1
14	(a) Standing waves (b) Standing wave ratio	3			
14	(b) Standing wave ratio	3			
	(c) Relation between SWR and K(d) Nodes and Antinodes	4 3			
	(u) moues and Antinoues	3			

15	Discuss the various parameters of open wire and co-axial lines at radio frequency.	13	CO2	L2	1.4.1
16	a) A lossless in air having a characteristic impedance of 300 Ω is terminated in unknown impedance. The first voltage minimum is located at 15 cm from the load. The standing wave ratio is 3.3. Calculate the wavelength and terminated impedance.	7	CO2	L3	2.1.2
	b) Derive the expression that permit easy measurements of power flow on a line of negligible losses.	6		L1	1.4.1
17	 a) A line with zero dissipation has R = 0.006 Ω/m, C = 4.45 pF/m, L = 2.5 µH/m, if the line is operated at 10 MHz find Ro, α, β, λ and θ. b) A lossless line has a standing waving ratio of 4. The Ro is 150 Ω and 	7	CO2	L3	2.1.2
17	the maximum voltage measured in the line is 135 V. Find the power delivered to the load.	6		L3	2.1.2
	a) Derive an expression for the input impedance of a dissipationless line and also find the input impedance is maximum and minimum at a distance 's'.	6	CO2	L1	1.4.1
18	b) Find the sending end line impedance for a HF line having characteristic impedance of 50 Ω . The line is of length (1.185 λ) and is terminated in a load of (110+j80) Ω .	7		L3	2.1.2
	a) Describe an experimental set up for the determination of VSWR of an RF transmission.	7	CO2	L2	1.4.1
19	b) Briefly explain on:i) Standing wavesii) Reflection Loss	6			1.4.1
	a) Derive the expression that permit easy measurements of power flow on a line of negligible losses.	7	CO2	L1	1.4.1
20	b) A radio frequency line with $Zo = 70 \Omega$ is terminated by $ZL = 115$ -j80 Ω at $\lambda = 2.5$ m. Find the VSWR and the maximum and minimum line impedances.	6		L3	2.1.2
21	Calculate the average input power at a distance from the load 'l' and find the impedance when the load is short circuited, open circuited and for a matched line.	13	CO2	L3	2.1.2
22	a) A 30 m long lossless transmission line with $Zo = 50 \Omega$ operating at 2 MHz is terminated with a load $ZL = 60 + j40$. If $u = 0.6c$ ('c' is velocity of light, 'u' is phase velocity) on the line. Find i) The reflection coefficient ' γ ' ii) The standing wave ratio	7	CO2	L3	2.1.2
	iii) The input impedanceb) Draw the input impedance pattern for a lossless line when short circuited and open circuited.	6		L1	
	PART C		L	I	I
	a) A Dissipation less co-axial cable has an inner copper conductor of radius 3mm and an outer copper conductor of radius 15mm. It is filled	15	CO2	L3	1.4.1
1	with dielectric material of relative permittivity ε_r . When it is excited at one end by an a.c. source, the phase velocity of the wave was observed to be 1.5 X 10 ⁸ m/s. The other end is terminated in a load resistance $Z_R = R_R$ which produces standing wave ratio of 3.8. What would you recommend the values for following parameters? (i) Characteristic impedance $Z_o = R_o$				
	(ii) Dielectric constant(iii) Load resistance ZR = RR				

	(iv) Reflection Coefficient K				
	Generalize the expressions for voltage and current at any point on the	15	CO2	L1	1.4.1
2	radio frequency dissipation less line. Obtain the expressions for the same				
	for different receiving end conditions.				
	Find the length of dissipationless line to obtain an inductance of 15µH at	15	CO2		2.1.2
3	60 MHz frequency with open circuit termination? Given that				
	characteristic impedance of the line is 400 Ohm.				
	a) How would	15	CO2		3.4.1
	you make up the expression for maximum and minimum impedances on				
4	the line for a lossless line as RoS and Ro/S respectively?				
4	b) What way			5	
	would you design the coaxial line at high frequencies? Design a graph to				
	show the variation of R_0 for a coaxial line.				

UNIT III IMPEDANCE MATCHING IN HIGH FREQUENCY LINES

Syllabus:Impedance matching: Quarter wave transformer - Impedance matching by stubs - Single stub and double stub matching - Smith chart - Solutions of problems using Smith chart - Single and double stub matching using Smith chart.

Assessment Questions for UNIT III

Bloom's Taxonomy Levels: L1- Remember, L2- Understand, L3- Apply, L4 - Analyze, L5- Evaluate, L6-Create

Thinking Skills: LOTS – L1 &L2, IOTS – L3 & L4, HOTS – L5 & L6

Sl.	Questions	Marks	CO	BL	PI Code
No.					
	PART A				
1	What is the need for impedance matching?	2	CO3	L1	1.4.1
2	List the requirements of a better transmission line.	2	CO3	L1	1.4.1
3	Explain the effect of impedance mismatching.	2	CO3	L1	1.4.1
4	Write the expression for standing wave ratio in terms of reflection coefficient.	2	CO3	L1	1.4.1
5	What are nodes and anti-nodes in a transmission line?	2	CO3	L1	1.4.1
6	Why do standing waves exist on transmission lines?	2	CO3	L2	1.4.1
7	Give the minimum and maximum value of SWR and reflection coefficient.	2	CO3	L2	1.4.1
8	Calculate the standing wave ratio if the reflection co-efficient of a line is $0.3 \angle -66^{\circ}$.	2	CO3	L3	1.4.1
9	A lossless line has a characteristic impedance of 400Ω . Determine the standing wave ratio if the receiving end impedance is $800+j0\Omega$.	2	CO3	L2	1.4.1
10	List the application of a quarter wave line.	2	CO3	L2	1.4.1
11	Why quarter wave lines are termed as impedance inverter?	2	CO3	L3	2.1.2
12	Why Quarter wave line is called as copper insulator?	2	CO3	L2	1.4.1
13	A 75 Ω lossless transmission line is to be matched to a resistive load impedance of $Z_L = 100\Omega$ via a quarter wave section.	2	CO3	L1	1.4.1
14	State the characteristic impedance of the quarter wave transformer.	2	CO3	L3	2.1.2
15	Mention the advantages of Smith Chart.	2	CO3	L1	1.4.1
16	Explain the procedure to find the impedance from the given admittance using smith chart.	2	CO3	L3	2.1.2
17	Define the term Stub used in transmission line.	2	CO3	L3	2.1.2
18	Why short circuited stub is preferred to open circuited stub?	2	CO3	L1	1.4.1

19	Explain the method to determine the position and the length of a single stub connected across the transmission line.	2	CO3	L2	1.4.1
20	Compare single stub matching and double stub matching.	2	CO3	L2	1.4.1
21	It is required to match a 200 Ω load to a 300 Ω transmission line to	2	CO3	L3	2.1.2
	reduce the SWR along the line to 1. What must be the characteristic	-	000	20	
	impedance of the quarter wave transformer used for this purpose if it is				
	directly connected to the load?				
22	Design a quarter wave transformer to match a load of 200 Ω to a source resistance 500 Ω . The operating frequency is 200 MHz.	2	CO3	L3	2.1.2
23	Name few applications of half-wave line.	2	CO3	L1	1.4.1
24	What are constant S circles?	2	CO3	L1	1.4.1
25	How Smith chart can be used as an admittance chart? Explain.	2	CO3	L2	1.4.1
26	What are the advantages of double stub matching over single stub	2	CO3	L1	1.4.1
20	matching?	2	005	21	1.4.1
27	What is stub matching?	2	CO3	L1	1.4.1
28	Give the names of circles on Smith chart.	2	CO3	L1	1.4.1
29	Mention two applications of Smith chart.	2	CO3	L1	1.4.1
30	List the advantages of Smith chart.	2	CO3	L1	1.4.1
31	What are the limitations of single stub matching?	2	CO3	L1	1.4.1
32	What is the transformation utilized for formulating the Smith chart?	2	CO3	L1	1.4.1
33	Why short circuited stub is preferred to an open circuited stub?	2	CO3	L2	1.4.1
34	Distinguish between single and double stub matching.	2	CO3	L2	1.4.1
35	On what mathematical formulation are the curves, circles etc., of a Smith chart obtained?	2	CO3	L2	1.4.1
36	Why is single stub matching inaccurate on coaxial line?	2	CO3	L2	1.4.1
37	What is the importance of a quarter wave line? or Mention the uses of quarter line.	2	CO3	L1	1.4.1
38	What is the functional operation of quarter wave transformer?	2	CO3	L1	1.4.1
39	How tapped $\lambda/4$ line can be used as an impedance transformer?	2	CO3	L2	1.4.1
40	Write down the expression to determine the length of the stub.	2	CO3	L1	1.4.1
41	Write down the expression to determine the position of the stub.	2	CO3	L1	1.4.1
	PART B				
1	Discuss how a Smith chart is constructed and explain its applications.	13	CO3	L1	1.4.1
2	Originating from the bilinear derive the analytical formulation of the Smith chart for a lossless transmission line.	13	CO3	L1	1.4.1
3	Derive from first principles how the Smith chart analytical equations can be obtained from bilinear transformation. Is the Smith chart an approximation?	13	CO3	L1	1.4.1
4	Enumerate the advantages of Smith chart, single stub and double stub matching on a line.	13	CO3	L2	1.4.1
5	Explain with diagrams, the method of deriving constant S circles and constant β_S circles used for impedance determination. Illustrate one application.	13	CO3	L2	1.4.1
6	Derive from first principle, the resistance and reactance circles converging through the centre of the Smith chart.	13	CO3	L2	1.4.1
7	Obtain from first principles, the Smith chart formulation using bilinear transformation. Explain how double stub matching is undertaken.	13	CO3	L2	1.4.1
8	Explain the following: a) Single stub matching	13	CO3	L2	1.4.1
	b) Double stub matching				

			1	1	
9	What are the features of a quarter wave transformer? Discuss its properties.	13	CO3	L2	1.4.1
10	A single stub tuner is to match a lossless line of 400 Ω to a load of 800 $-j300 \Omega$. The frequency is 3 GHz. Find the distance from the load and determine the length of the stub.	13	CO3	L3	2.1.2
11	A line of $Zo = 300 \Omega$ is connected to a load of 73 Ω , for frequency of 40 MHz. Find the length and location of the nearest load of a single stub to produce an impedance match.	13	CO3	L3	2.1.2
12	A 300 Ω line feeding an antenna has a standing wave ratio of 4 and the distance from the load of the first voltage minima is 6 cm. If the frequency is 150 MHz, design a single stub matching the system to eliminate the standing wave from the maximum possible length of the line.	13	CO3	L3	2.1.2
13	A lossless line $\frac{3}{8}\lambda$ long has a normalized input impedance of 1.2 + j0.95. Find the normalized load impedance and standing wave ratio.	13	CO3	L3	2.1.2
14	An antenna, as load on a transmission line, produces a standing wave ratio of 3 with a voltage minimum 0.12λ from the antenna terminals. Find the antenna impedance and the reflection coefficient at the antenna, if characteristic impedance is 300 Ω for the line.	13	CO3	L3	2.1.2
15	 A lossless line terminated in a resistance is found to have a standing wave ratio of 4. The characteristic impedance is 100 Ω. A short circuited stub that matches the line to the load is placed less than λ/8 from the load. a) What is the value of the load resistance? b) What is the stub length in wave lengths? 	13	CO3	L3	2.1.2
16	Determine the sending end impedance of a lossless line whose data is given below: $Z_o = 70 \ \Omega$, $Z_R = 20 + j100 \ \Omega$, length of the line = 4.2 λ .	13	CO3	L3	2.1.2
17	A load impedance of $40 - j80 \Omega$ is connected to a 100 Ω line. Calculate the reflection coefficient at the load, input impedance of the line of length 0.7 λ connected to the above load impedance. Determine the length of the stub required to connect the susceptance utilizing the Smith chart.	13	CO3	L3	2.1.2
18	A SWR on a lossless line is found to be 5 and the successive voltage minimum are 40 cm apart. The first voltage minimum is observed to be 15 cm from the load. The length of the line is 160 cm and the characteristic impedance is 300 Ω . Using Smith chart determine a) Load impedance b) Sending end impedance	13	CO3	L3	2.1.2
19	Using Smith chart, find the length, termination and location nearest to the load of a single stub to produce impedance matching for a line of characteristic impedance of 500 Ω connected to a load of 63 Ω if the frequency is 50 MHz.	13	CO3	L3	2.1.2
	PART C				
1	a) Determine length and location of a single short circuited stub to produce an impedance match on a transmission line with characteristic impedance of 600 ohm and terminated in 1800 ohm. b) A 300 Ω transmission line is connected to a load impedance of (450-j600) Ω at 10MHz.Evaluate the position and length of a short circuited stub required to match the line using smith chart.	8	CO3	L3	2.1.2
2	For a normalized load impedance of $0.8+j1.2\Omega$ design a double stub tuner with the distance between them as $3\lambda/8$. Considering the stubs are short circuited determine the length of the stubs and the position of the	15	CO3	L3	2.1.2

first stub from the load. Verify the answer using Smith Chart.				
a) A line having characteristic impedance of 50 Ω is terminated	8	CO3	L3	1.4.1
-	7			
transmission lines.	7			
a) Develop the expression for the input impedance of the	8	CO3	L3	1.4.1
1				
	7			2.1.2
	 a) A line having characteristic impedance of 50 Ω is terminated in load impedance [75+j75] Ω. Determine the reflection coefficient and voltage standard wave ratio. b) Mention the significance of smith chart and its application in transmission lines. 	 a) A line having characteristic impedance of 50 Ω is terminated in load impedance [75+j75] Ω. Determine the reflection coefficient and voltage standard wave ratio. b) Mention the significance of smith chart and its application in transmission lines. a) Develop the expression for the input impedance of the dissipation less line and thus obtain the expression for the input impedance of the quarter wave line. Also discuss the application of the quarter wave line. b) Design a single stub match for a load of 150+j225 Ω for a 75 Ω 	a) A line having characteristic impedance of 50 Ω is terminated in load impedance [75+j75] Ω . Determine the reflection coefficient and voltage standard wave ratio. b) Mention the significance of smith chart and its application in transmission lines. a) Develop the expression for the input impedance of the dissipation less line and thus obtain the expression for the input impedance of the quarter wave line. Also discuss the application of the quarter wave line. b) Design a single stub match for a load of 150+j225 Ω for a 75 Ω 7	a) A line having characteristic impedance of 50 Ω is terminated in load impedance [75+j75] Ω . Determine the reflection coefficient and voltage standard wave ratio. b) Mention the significance of smith chart and its application in transmission lines. a) Develop the expression for the input impedance of the dissipation less line and thus obtain the expression for the input impedance of the quarter wave line. Also discuss the application of the quarter wave line. b) Design a single stub match for a load of 150+j225 Ω for a 75 Ω 7

UNIT IV WAVEGUIDES

Syllabus: General Wave behavior along uniform guiding structures – Transverse Electromagnetic Waves, Transverse Magnetic Waves, Transverse Electric Waves – TM and TE Waves between parallel plates. Field Equations in rectangular waveguides, TM and TE waves in rectangular waveguides, Bessel Functions, TM and TE waves in Circular waveguides.

Assessment Questions for UNIT IV

Bloom's Taxonomy Levels: L1- Remember, L2- Understand, L3- Apply, L4 - Analyze, L5- Evaluate, L6-Create

Thinking Skills: LOTS - L1 &L2, IOTS - L3 & L4, HOTS - L5 & L6

Sl.	Questions	Marks	CO	BL	PI Code			
No.								
PART A								
1	What are guided waves? Give examples.	2	CO4	L1	1.4.1			
2	What is TE wave or H wave?	2	CO4	L1	1.4.1			
3	What is TM wave or E wave?	2	CO4	L1	1.4.1			
4	What is dominant mode? Give examples.	2	CO4	L1	1.4.1			
5	Give the dominant mode for TE and TM of rectangular wave guide.	2	CO4	L1	1.4.1			
6	What is cut-off frequency?	2	CO4	L1	1.4.1			
7	Write down the expression for cut-off frequency when the wave is propagated in between two parallel plates.	2	CO4	L1	1.4.1			
8	Write down the expression for cut-off wavelength of the wave which is propagated in between two parallel plates.	2	CO4	L1	1.4.1			
9	Give the expression for the guide wavelength when the wave is transmitted in between two parallel plates.	2	CO4	L1	1.4.1			
10	Write down the relation between guide wavelength and cut-off wavelength.	2	CO4	L1	1.4.1			
11	Give the expression for velocity of propagation of wave in between two parallel plates.	2	CO4	L1	1.4.1			
12	What is TEM wave or Principal wave?	2	CO4	L1	1.4.1			
13	Mention the characteristic of TEM waves.	2	CO4	L1	1.4.1			
14	Give the relation between phase velocity and group velocity.	2	CO4	L1	1.4.1			
15	Define attenuation factor.	2	CO4	L1	1.4.1			
16	Give the relation between the attenuation factor for TE waves and attenuation factor for TM waves.	2	CO4	L1	1.4.1			

17	Find the frequency of minimum attenuation for TM mode.	2	CO4	L3	1.4.1
18	Distinguish TE and TM waves.	2	CO4	L2	1.4.1
19	Define wave impedance.	2	CO4	L1	1.4.1
20	What is a wave guide?	2	CO4	L1	1.4.1
20	Why are rectangular waveguides preferred over circular waveguides?	2	CO4	L4	1.4.1
22	Mention the applications of waveguides.	2	CO4	L1	1.4.1
23	Why waveguide is designed in circular or rectangular form?	2	CO4	L4	1.4.1
24	For an air filled copper X-band waveguide with dimensions $a = 2.286$ cms and $b = 1.016$ cms, determine the cut-off frequencies for TE ₁₁ and TM ₁₁ modes.	2	CO4	L3	1.4.1
25	Define wave impedance.	2	CO4	L1	1.4.1
26	What is evanescent mode?	2	CO4	L1	1.4.1
27	Which are the non-zero field components for the TE_{10} mode in a rectangular waveguide?	2	CO4	L2	1.4.1
28	Which are the non-zero field components for the TM ₁₁ mode in a rectangular waveguide?	2	CO4	L2	1.4.1
29	Draw a neat sketch showing the variation of wave impedance with frequency for TE and TM waves in a waveguide.	2	CO4	L1	1.4.1
30	Find the cut-off wavelength and cut-off frequency of the TE_{10} mode in a rectangular waveguide?	2	CO4	L3	1.4.1
31	Find the cut-off wavelength and cut-off frequency of the TM_{11} mode in a rectangular waveguide?	2	CO4	L3	1.4.1
32	What is the wave impedance of the TEM waves in a waveguide?	2	CO4	L1	1.4.1
33	Write the expression for wave impedance of the TE mode.	2	CO4	L1	1.4.1
34	Write the expression for wave impedance of the TM mode.	2	CO4	L1	1.4.1
35	Write the expression for phase velocity in a waveguide.	2	CO4	L1	1.4.1
36	Define characteristic impedance in a waveguide.	2	CO4	L1	1.4.1
37	Explain why TM_{01} and TM_{10} modes in a rectangular waveguide do not exist.	2	CO4	L2	1.4.1
38	A rectangular waveguide has the following dimensions $l=2.54$ cm, $b=1.27$ cm, waveguide thickness = 0.127 m. Calculate the cut-off frequency for TE ₁₁ mode.	2	CO4	L3	1.4.1
39	What are dominant mode and degenerate modes in rectangular waveguide?	2	CO4	L1	1.4.1
40	Why the TE_{10} wave is called as dominant wave in rectangular waveguide?	2	CO4	L4	1.4.1
41	A rectangular waveguide with dimensions $a=8.5$ cm and $b=4.3$ cm is fed by 5 GHz carrier. Will a TE ₁₁ mode be propagated?	2	CO4	L4	1.4.1
42	Calculate the cut-off wavelength of a rectangular waveguide whose inner dimensions are a=2.3cm and b=1.03cm operating at TE_{10} mode.	2	CO4	L3	1.4.1
43	For a frequency of 6 GHz and plane separation of 3 cm, find the group velocity and phase velocity for the dominant mode.	2	CO4	L3	1.4.1

44Calculate the cut-off wavelength for the TM11 mode in a standard rectangular waveguide if a=4.5 cm.2CO445Mention the applications of a circular waveguide.2CO4	L3 L1	1.4.1
45Mention the applications of a circular waveguide.2CO4	L1	1.4.1
46 Which mode in circular waveguides has attenuation effect 2 CO4 decreasing with increase in frequency?	L2	1.4.1
47 Mention the dominant modes in rectangular and circular 2 CO4 waveguides.	L1	1.4.1
48 Write the expression for cut-off frequency in a circular 2 CO4 waveguide.	L1	1.4.1
49 Calculate the cut-off frequency of a copper tube with 3 cm 2 CO4 diameter, filled with air, in the TE_{11} mode.	L3	1.4.1
50 Determine the cut-off frequency of a circular waveguide with a 2 CO4 diameter of 2.36 cms operating in the dominant mode.	L3	1.4.1
51 Why is TM_{01} mode preferred to the TE_{01} mode in a circular 2 CO4 waveguide?	L4	1.4.1
52 A circular waveguide operated at 11 GHz has the internal diameter of 4.5 cm. For a TE01 mode propagation, calculate λ and λ_c [(ha) ₀₁ = 2.405].	L3	1.4.1
53Write Bessel's function of first kind of order zero.2CO4	L1	1.4.1
54 Why is the Bessel's function of second kind (Neumann's 2 CO4 function) not applicable for the field analysis inside circular waveguide?	L4	1.4.1
55What is Bessel function?2CO4	L1	1.4.1
PART B		
1A parallel plane wave guide consists of two sheets of good conductor separated by 10 cm. Find the propagation constant at frequencies of 100 MHz and 10 GHz, when the wave guide is operated in TE_{10} mode. Does the propagation take place in each 	L4	1.4.1
2 A pair of perfectly conducting planes are separated by 8 cm in air. For frequency of 5000 MHz with the TM1 mode excited, Analyze the cut-off frequency, wave impedance, attenuation constant for f=0.95fc, phase shift constant, phase velocity, group velocity and wavelength measured along the guiding walls.	L4	1.4.1 1.4.1
3 For a frequency of 6000 MHz and plane separation of 7 cm, examine the cut-off frequency, angle of incidence on the planes, phase velocity, group velocity. Is it possible to propagate TE_3 mode?	L4	1.4.1
$\begin{array}{ c c c c c } \hline 4 & Consider a parallel plate wave guide with plate separation 20 cm & 8 & CO4 \\ \hline with the TE10 mode excited at 1 GHz. Analyze the propagation \\ constant, the cut-off frequency and guide wavelength assuming \\ \hline \epsilon_r = 4 \text{ for medium of propagation in the guide.} \end{array} $	L4	1.4.1
5 A waveguide is formed by two parallel copper sheets $\sigma = 5.8 \text{ x}$ 10^7 s/m separated by a 5 cm thick lossy dielectric $\varepsilon_r = 2.25$, $\mu_r = 1$, $\sigma = 10^{-10} \text{ s/m}$. For an operating frequency of 10 GHz, categorize β , α_d , α_c , v_p , v_g and λ_g for TE ₁ mode, TM ₂ mode and	L4	1.4.1
TEM mode.		
	L4	1.4.1

	length of the guide when operating at the frequency of 10 GHz?				
7	A rectangular wave guide has cross section dimensions $a = 7$ cm	8	CO4	L4	1.4.1
	and $b = 4$ cm. Categorize all the modes which will propagate				1.4.1
	through the wave guide at a frequency of 6 GHz.				
8	A 10 GHz signal is to be propagated in the dominant mode in a	8	CO4	L4	1.4.1
	rectangular wave guide. If its group velocity is to be 90% of the				
	free space velocity of light, what must be the breadth of the				
	wave guide and the wave impedance?				1.4.1
9	An air filled hollow rectangular conducting waveguide has cross	8	CO4	L4	1.4.1
	section dimensions of 8 x 10 cm. How many TE modes will this				
	waveguide transmit at frequencies below 4 GHz? How these				
	modes designated and what are their cut-off frequencies?				1.4.1
10	What are the dimensions of a waveguide with the following	8	CO4	L4	2.1.2
	specifications:				1.4.1
	a) At a frequency of 9959.5 MHz, the guide wavelength for				
	TE10 mode is 87.5% of the cut-off wavelength.				
	b) TE_{30} and TE_{12} mode have the same cut-off frequency.				
11	A X-band air filled rectangular waveguide has inner dimensions	8	CO4	L4	3.4.1
	of $a = 2.3$ cm and $b = 1$ cm. Categorize the cut-off frequencies in				
	the following modes: TE_{10} , TE_{20} , TM_{11} , TM_{12} . Also check which				
	of the modes will propagate along the waveguide when the signal frequency in 10 GHz.				
12	A TE ₁₀ wave 10 GHz propagates with velocity of 2 x 10^8 m/sec	8	CO4	L3	2.1.2
12	in a brass $\sigma_c = 1.57 \times 10^7 \text{ s/m}$ rectangular waveguide with inner	0	04	LJ	2.1.2
	dimensions $a = 1.5$ cm and $b = 0.6$ cm, which is filled with			L3	2.1.2
	polyethylene $\varepsilon_r = 2.25$, $\mu_r = 1$. Calculate the phase shift constant,			LJ	2.1.2
	guide wavelength, phase velocity, wave impedance which,				
	which signal among the two separate signals with frequency 5				
	GHz and 15 GHz will be supported by the rectangular				
	waveguide for propagation through it?				
13	Calculate and compare the values of β , v_p , v_g , λ_g and wave	8	CO4	L4	1.4.1
	impedance for TE_{10} mode for a 2.5 cm x 1.5 cm rectangular				
	waveguide operating at 7.5 GHz (a) if the waveguide is hollow				
	(b) if the waveguide is filled with a dielectric medium characterized by $\varepsilon_r = 2$, $\mu_r = 1$ and $\sigma = 0$.				
14	A rectangular air filled waveguide with dimension 0.9" x 0.4"	8	CO4	L4	1.4.1
17	cross section and 12" length is operated at 902 GHz with	0		LT	1.7.1
	dominant mode. Analyze cut-off frequency, guide wavelength,				
	phase velocity, wave impedance and conductor loss in dB.				
15	An air filled circular waveguide having an inner radius of 1 cm	8	CO4	L3	1.4.1
	is excited in dominant mode at 10 GHz. Find cut-off frequency				
	of the dominant mode at 10 GHz, the guide wavelength, wave				
	impedance. Also find the bandwidth for operation bandwidth for				
	operation in the dominant mode only.		ac.		
16	Given a circular waveguide used for a signal at a frequency of	8	CO4	L3	2.1.2
	11 GHz propagated in the TE ₁₁ mode and the internal diameter is 4.5 cm Calculate cut off wavelength gride wavelength group				
	4.5 cm. Calculate cut-off wavelength, guide wavelength, group velocity, phase velocity and characteristic impedance.				
17	A circular waveguide has a cut-off frequency of 9 GHz in the	8	CO4	L3	2.1.2
1/	dominant mode: a) Find the inner diameter of the guide if it is air	0		ப	2.1.2
	filled b) Determine the inner diameter of the guide if the guide is				
	filled with dielectric. The relative dielectric constant is $\varepsilon_r = 4$.				
18	An air filled circular waveguide of 2 cm inside radius is operated	8	CO4	L4	2.1.3

	in the TE_{01} mode. a) Compute the cut-off frequency b) If the guide is to be filled with a dielectric material of $\epsilon r = 2.25$, to what value must its radius be changed in order to maintain the cut-off frequency at its original value? PART C				
1	Design a rectangular waveguide with the following specifications a) At a 7.5 GHz, the guide wavelength for TE_{10} mode is 90% of the cut-off wave length b) TE_{30} and TE_{12} have the same cut-off frequency	15	CO4	L3	1.4.1
2	A TE10 wave 10 GHz propagate with velocity of $2x10^8$ m/sec in a brass $\sigma_c=1.57 \times 107$ s/m rectangular waveguide with inner dimensions a = 1.5 cm and b = 0.6 cm, which is filled with polyethylene $\varepsilon_r=2.25$, $\mu_r=1$. Calculate the phase constant, guide wavelength, phase velocity, wave impedance which signal among the two separate signals with frequency 5 GHz and 15 GHz will be supported by the rectangular waveguide for propagation through it?	15	CO4	L3	1.4.1
3	A X-band air filled rectangular waveguide has inner dimensions of a = 2.3 cm and b = 1 cm. Calculate the cut-off frequencies in the following modes: TE10, TE20, TM11, TM12. Also check which of the modes will propagate along the waveguide when the signal frequency in 10 GHz.	15	CO4	L4	1.4.1

UNIT V RF SYSTEM DESIGN CONCEPTS

Syllabus: Active RF components: Semiconductor basics in RF, bipolar junction transistors, RF field effect transistors, High electron mobility transistors, Basic concepts of RF design, Mixers, Low noise amplifiers, voltage control oscillators, Power amplifiers, transducer power gain and stability considerations.

Assessment Questions for UNIT V

Bloom's Taxonomy Levels: L1- Remember, L2- Understand, L3- Apply, L4 - Analyze, L5- Evaluate, L6-Create

Thinking Skills: LOTS - L1 &L2, IOTS - L3 & L4, HOTS - L5 & L6

SI.	Questions	Marks	CO	BL	PI Code				
No.									
	PART A								
1	What is the band gap energy for germanium, silicon, and gallium arsenide?	2	CO5	L1	1.4.1				
2	What is diffusion current?	2	CO5	L1	1.4.1				
3	What is diffusion barrier potential or built-in potential?	2	CO5	L1	1.4.1				
4	What is junction capacitance?	2	CO5	L1	1.4.1				
5	What is diffusion capacitance?	2	CO5	L1	1.4.1				
6	What is Schottky contact?	2	CO5	L1	1.4.1				
7	Mention the advantages of Schottky contact.	2	CO5	L1	1.4.1				
8	Define forward current gain in BJT.	2	CO5	L1	1.4.1				
9	Define reverse current gain in BJT.	2	CO5	L1	1.4.1				
10	What are the salient features of RF FETs?	2	CO5	L1	1.4.1				
11	How RF FETs are classified?	2	CO5	L2	1.4.1				
12	What is pinch-off voltage?	2	CO5	L1	1.4.1				
13	What is a high electron mobility transistor (HEMT)?	2	CO5	L1	1.4.1				
14	Mention the advantages of HEMT.	2	CO5	L1	1.4.1				
15	What is Mixer?	2	CO5	L1	1.4.1				
16	What is a low noise amplifier?	2	CO5	L1	1.4.1				

17	List the characteristics of power amplifier.	2	CO5	L1	1.4.1
18	Define transducer power gain.	2	C05	L1	1.4.1
19	Define available power gain.	2	CO5	L1	1.4.1
20	Define power gain.	2	C05	L1	1.4.1
21	What are stability circles?	2	CO5	L1	1.4.1
22	Compare stability circles.	2	CO5	L2	1.4.1
23	Define stability of an amplifier.	2	CO5	L1	1.4.1
24	Distinguish between conditional and unconditional stabilities of an amplifier.	2	CO5	L2	1.4.1
25	Write the demerits of S-parameters for checking amplifiers stability.	2	CO5	L1	1.4.1
25	List the methods available to verify amplifiers stability. Write the types of analytical stability methods.	2	CO5	L1	1.4.1
26	Write the three-parameter test expressions.	2	CO5	L1	1.4.1
27	Write the two-parameter test expressions.	2	CO5	L1	1.4.1
28	Write advantages and disadvantages the two and three parameter tests.	2	CO5	L1	1.4.1
29	What is single parameter test and its merits?	2	CO5	L1	1.4.1
30	Write the limitations of analytical method.	2	CO5	L1	1.4.1
31	Write the expressions to verify the stability factor of an amplifier.	2	CO5	L1	1.4.1
32	Draw the output stability circles stable and unstable regions.	2	CO5	L1	1.4.1
33	Draw the input stability circles stable and unstable regions.	2	CO5	L1	1.4.1
34	Write the disadvantages of stability circles.	2	CO5	L1	1.4.1
35	How do you calculate the intrinsic carrier concentration in GaAs at room temperature T=300°K, Nc = 4.7 x 10^{17} /cm3, Nv = 7 x 10_{18} /cm3 and the bandgap energy is 1.42 eV?	2	CO5	L3	1.4.1
36	Define the condition for stability in circuit design.	2	CO5	L1	1.4.1
37	Mention the requirements and applications of low noise amplifiers.	2	CO5	L1	1.4.1
38	Consider a p-type Si semiconductor whose doping concentration at room temperature is $N_A=5x10^{16}/cm^3$ and intrinsic concentration is $n_i=1.5x10^{10}/cm^3$. Find the minority and majority carrier concentration and conductivity of the semiconductor of $\mu_n=1350 \text{ cm}^2/v.\text{s}$ and $\mu_p=480 \text{ cm}^2/v.\text{s}$.	2	CO5	L3	1.4.1
39	In a p-type semiconductor, a linear hole concentration changing from $5x10^{17}$ /cm ³ to 10^{18} /cm ³ over a distance of 100 µm. Find the current density if the diffusion coefficient is given at T=300°K is D _p =12.4 cm ³ /s.	2	CO5	L3	1.4.1
40	A p-type semiconductor of $N_A=10^{18}/\text{cm}^3$ joined with an n-type semiconductor of $N_D=5x10^{15}/\text{cm}^3$. Find the barrier potential at room temperature if $n_i=1.45x10^{10}/\text{cm}^3$.	2	CO5	L3	1.4.1
41	A silicon pn junction has a conductivity of 10 s/cm and 4 s/cm for p and n layers respectively. Calculate the built-in voltage of the junction at room temperature if mobilities $\mu_p=480 \text{ cm}^2/\text{v.s}$ and $\mu_n=1350 \text{ cm}^2/\text{v.s}$.	2	CO5	L3	1.4.1
	PART B				
1	Explain the quantitative theory of <i>pn</i> junction with necessary diagrams.	13	CO5	L2	1.4.1
2	Derive an expression for diffusion barrier voltage of <i>pn</i> junction.	13	CO5	L1	1.4.1
3	Derive an expression for diffusion capacitance of <i>pn</i> junction.	13	CO5	L1	1.4.1
4	Explain the quantitative theory of <i>pn</i> junction under forward bias and reverse bias with aid of space charge distribution, electric field distribution and voltage distribution diagrams.	13	CO5	L2	1.4.1
5	With aid of energy band diagram, explain the Schottky contact.	13	CO5	L2	1.4.1
6	Describe the construction of high frequency BJT and explain its operation with the help of its characteristics.	13	CO5	L2	1.4.1

7	Derive the expressions for forward current gain and reverse current gain of RF BJT.	13	CO5	L1	1.4.1
8	Explain the operation of BJT in (a) forward active mode, (b) reverse active mode, (c) saturation mode.	13	CO5	L2	1.4.1
9	Describe the construction of MESFET and explain its operation with characteristics.	5 8	CO5	L2	1.4.1
10	Derive the expression for drain current and saturation current of MESFET.	13	CO5	L1	1.4.1
11	Explain the construction and operation of high electron mobility transistor with energy band diagram and necessary equations.	13	CO5	L2	1.4.1
12	Draw the circuit diagram of low noise amplifier and explain its operations.	13	CO5	L2	1.4.1
13	Explain the concept of RF mixer and explain its operation with circuit diagram	13	CO5	L2	1.4.1
14	Explain the concept of RF VCO and explain its operation with circuit diagram.	13	CO5	L2	1.4.1
15	Discuss the various aspects of amplifier-power relations for RF transistor amplifier design.	13	CO5	L4	1.4.1
16	Discuss gain consideration of RF amplifier.	13	CO5	L4	1.4.1
17	Derive equations for power gain of RF amplifier.	13	CO5	L1	1.4.1
18	Explain stability considerations for RF amplifier.	13	CO5	L2	1.4.1
19	Explain the power amplifiers used at RF frequencies.	13	CO5	L2	1.4.1
20	Explain the working of FET at RF frequencies.	13	CO5	L2	1.4.1
	PART C				
1	Determine the stability of a GaAs FET that has the following S-parameters at 2 GHz in a 50 Ω system both graphically and mathematically: S ₁₁ = 0.89 \angle -60°, S ₂₁ = 3.1 \angle 123°, S ₁₂ = 0.02 \angle 62°, S ₂₂ = 0.78 \angle -27°	15	CO5	L3	1.4.1
2	A BJT has the following S-parameters: $S_{11} = 0.65 \angle -95^\circ$, $S_{21} = 5.0 \angle 115^\circ$, $S_{12} = 0.035 \angle 40^\circ$, $S_{22} = 0.8 \angle -35^\circ$ Is this transistor unconditionally stable? If not, analyze the reason.	15	CO5	L4	1.4.1
3	The scattering parameters for a transistor is given below. Determine stability and in a potentially unstable, draw the input and output stability circles: $S = \begin{bmatrix} 0.67 \angle 67^\circ & 0.075 \angle 6.2^\circ \\ 1.74 \angle 36.4^\circ & 0.6 \angle -92.6^\circ \end{bmatrix}$	15	CO5	L3	1.4.1
4	The S-parameters of several two-port networks are given by: $S = \begin{bmatrix} 0.7 \angle 0^{\circ} & 0.7 \angle 180^{\circ} \\ 0.7 \angle 0^{\circ} & 0.7 \angle 0^{\circ} \end{bmatrix}$ Determine K and $ \Delta $. Draw the input and output stability circles for each case as well.	15	CO5	L3	1.4.1

Prepared by Course in-Charge Verified by HoD Approved by PRINCIPAL