

Shree Sathyam College of Engineering and Technology

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai.

NH-544, Salem - Coimbatore Highways, Kuppanur, Sankari Taluk, Salem - 637301, TamilNadu, India. Email:principal@shreesathyam.edu.in Web:www.shreesathyam.edu.in Phone: 04283 - 244080

Department of Electronics and Communication Engineering EC3354 Signals and Systems Unit 2 – ANALYSIS OF CONTINUOUS TIME SIGNALS

Presented by

Dr. Kannan Pauliah Nadar, M.E., Ph.D.

Introduction to Signal Analysis

Signal analysis techniques are essential for transforming signals into frequency domain representations.

Three important techniques:

- Fourier Series: Used for periodic signals.
- Fourier Transform: Used for both periodic and non-periodic signals.
- Laplace Transform: Widely used for analyzing system behavior in the s-domain.

Fourier Series for Periodic Signals

- Fourier Series expresses a periodic signal as a sum of sinusoidal functions (sines and cosines).
- Mathematical Expression:

$$x(t) = \sum_{n=-\infty}^{\infty} C_n e^{jn\omega_0 t}$$

Where C_n are the Fourier coefficients and ω_0 is the fundamental angular frequency.

• Fourier series works for periodic signals with a period $T_0 = rac{2\pi}{\omega_0}$.

Fourier Series Coefficients $C_n = rac{1}{T_0} \int_0^{T_0} x(t) e^{-jn\omega_0 t} dt$

 The Fourier coefficients C_n describe the amplitude and phase of each harmonic component of the signal.

Fourier Transform

- Fourier Transform is a generalization of the Fourier Series to non-periodic signals.
- Definition:

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt$$

Where X(f) is the frequency-domain representation of x(t).

Example: Transform a simple signal (e.g., a Gaussian pulse) from the time domain to the frequency domain.

Properties of Fourier Transform

- **Linearity**: The Fourier transform of a sum of signals is the sum of their Fourier transforms.
- **Time Shifting**: Shifting a signal in time results in a phase shift in the frequency domain.
- **Frequency Shifting**: Multiplying a signal by a complex exponential corresponds to a shift in the frequency domain.
- Scaling: Compressing a signal in time causes expansion in frequency and vice versa.
- **Convolution**: The Fourier transform of the convolution of two signals is the product of their Fourier transforms.

Laplace Transform

- Laplace Transform is a more general transform than the Fourier transform and is used to analyze systems in the complex *s*-domain.
- Definition:

$$X(s) = \int_0^\infty x(t) e^{-st} dt$$

Where $s = \sigma + j\omega$ is a complex variable.

Properties of Laplace Transform

- Linearity: The Laplace transform of a sum of functions is the sum of their Laplace transforms.
- **Time Shifting**: A shift in time corresponds to a multiplication by e^-as in the Laplace domain.
- Frequency Shifting: A frequency shift corresponds to e^{bs}.
- **Differentiation in Time Domain**: Differentiating a signal in time domain corresponds to multiplying its Laplace transform by s.
- Initial and Final Value Theorems: Provides the initial and final values of a signal based on its Laplace transform.

Fourier Transform vs Laplace Transform

- Fourier Transform: Primarily used for signals with known periodic or asymptotic behavior.
- Works with the $j\omega$ axis (frequency).
- Laplace Transform: Used for more general signals (including unstable or exponential signals).
- Works in the complex s-domain, enabling analysis of system stability and transient responses.

Applications in Signal Processing

- Fourier Series: Used in analyzing periodic signals, such as those in communication systems.
- Fourier Transform: Used in spectrum analysis, audio signal processing, and filter design.
- Laplace Transform: Used in control systems, stability analysis, and circuit analysis.

Example - Fourier Transform of a Signal

- Example: Compute the Fourier transform of a simple exponential decay signal.
- Mathematical Expression:

$$x(t) = e^{-\alpha t}u(t)$$

Where u(t) is the unit step function.

Solution:

$$X(s) = \frac{1}{s + \alpha}$$

- Fourier Series represents periodic signals as sums of harmonics.
- Fourier Transform generalizes this to both periodic and aperiodic signals.
- Laplace Transform provides a broader analysis for system behavior, particularly in the s-domain.

- Text books
 - Oppenheim, A.V., Schafer, R.W., "Discrete-Time Signal Processing", Pearson.
 - Proakis, J.G., "Digital Signal Processing", Pearson.
 - Haykin, S., Van Veen, B., "Signals and Systems", Wiley.